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ABSTRACT

We propose a novel superpixel algorithm based on Mini-
mum Spanning Tree (MST), to generate superpixels efficient-
ly while strictly adhere to object boundaries. The MST, which
built by gradually removing strong edges of the image graph
extracted from the image, is more sensitive to image local
structures. Therefore, an efficient hierarchical clustering s-
trategy is basically employed in our algorithm to segment the
input image into superpixels based on the tree distance. To
gradually merge the image pixels and remove texture noises,
a multi-layer scheme with different resolutions of superpixels
is proposed. In each layer, the graph is constructed from the
lower layer and segmented into superpixels in a linear com-
plexity with the node number in the graph. Because the node
number in each layer is exponentially reduced, the compu-
tational time of our method mainly concentrates on the first
few layers, which is linear with the number of image pixels.
The experimental results conducted on the Berkeley Segmen-
tation Dataset demonstrate that our method outperforms state-
of-the-art methods both in terms of structure preservation and
computational efficiency.

Index Terms— Image Segmentation

1. INTRODUCTION

Most previous superpixel algorithms can be typically divid-
ed into graph-based algorithms and grow-based algorithms.
The graph-based algorithms start with Normalized Cuts [15],
which results segments of similar size, and then improved by
Felzenszwalb and Huttenlocher [7], which encourage pixels
of similar color to assemble together in greedy way. Vek-
sler and Boykov [18] put initial labeling on image and opti-
mize the regional term of graph-cut energy function, which
is further simplified by Zhang et al. [21] by dividing the la-
beling problem into vertical and horizontal directions. Super-
pixel Lattice [12] and Lattice Cut [13] both generate regular
shape superpixels and preserve the Cartesian grid topology. It
is beneficial to understand the high order representation and
high level relation among segments. Liu et al. [9] propose
a new energy function based on entropy rate of the random
work on graph. They have the best performance in homoge-
neous clusters but time-consuming. Overall, the energy func-

tions defined by graph-based algorithms are always solved
globally and fail to catch image local structures. Moreover,
the graph-based optimization is NP-hard, which results in a
extremely high computational complexity.

The grow-based algorithms usually begin with uniform
cluster centers, and iteratively update the superpixels for en-
suring each pixel is assigned to its most similar cluster cen-
ter. However, no matter Euclidean distance of color and ordi-
nate space used by Mean-shift [5] and SLIC [1], or Geometric
distance used by Levinshtein et al. [8] and Zeng [19], is not
structure-aware enough to generate good structure-preserving
superpixels. SEEDS [16] is not grow-based algorithm in strict
sense. It starts from regular grids, and recursively exchanges
the pixels between neighboring patches. It focuses on encour-
aging the color homogeneity in each superpixel but less suc-
cessful in protecting image structures.

Recently, a novel measurement tree distance is emerged
from Bao et al. [2] because of its excellent structure-sense
and efficiency. Firstly, edges of large weights will be removed
when MST is built, thus the tree distance defined in the MST
is a fine edge-aware metric for describing the similarities be-
tween pixels. Secondly, if a graph has Cartesian grid topolo-
gy, an MST can be extracted from a 1-megapixel 8-bit image
in about 70 ms on an Intel 3.4 GHz Core i7 CPU [2].

Therefore, an MST-based structure-preserving superpixel
algorithm is proposed in this paper. The proposed algorithm
consists of single layer and multi-layer segmentation. With
extracted MST from image, we can use a simple and efficient
strategy to obtain a good partition of tree in single layer seg-
mentation using tree distance. A sampling approach is pro-
posed to uniformly select cluster centers in the MST based on
Poisson disc sampling [3], and a nearest neighbor approach is
then used to categorize the rest of nodes in the graph.

However, the superpixels generated from the single layer
segmentation are easily influenced by texture accumulation.
Therefore, a multi-layer segmentation scheme is proposed to
smooth the image textures. Each superpixel generated from
the previous layer is averaged and treated as a node of cur-
rent layer. A graph is extracted from current layer and is
partitioned into coarser superpixels based on the single lay-
er segmentation. The nodes number in each layer reduces
exponentially, and thus the computational cost mainly resides
in the first few layers and is linear to the image size. The pro-
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Fig. 1. Algorithm overview: I0 is input image and In is out-
put superpixels with desired number, see Sec. 2 in details.

posed superpixel extraction algorithm runs at around 26FPS
on an Intel I7 4.0GHz CPU. It is faster than state-of-the-art
algorithms and better preserves object boundaries.

2. OVERVIEW

Our algorithm generates superpixels by gradually merging the
image pixels based on the multi-layer strategy, as showed in
Figure 1. Given an input image I0, we firstly build an MST
T1 for layer L1 (is described in Sec. 3). Based on T1 and a
specified seed distance D̂seed, we cluster the pixels into K1

superpixels based on our single layer segmentation (as will be
detailed in Sec. 4). We next average the color in each super-
pixel to generate I1. For any layer Li (i > 2), an undirected
graph Gi can be extracted from the avaraged image Ii−1 given
by Li−1. After that an MST Ti is generated from the graph
and an approach similar to the single layer segmentation is
performed to generate Ki superpixels and the averaged im-
age Ii (see more details in Sec. 5). We adopt an consistently
increasing seed distance D̂seed in each layer to iteratively re-
duce the superpixels size. A bisection scheme is used in the
final layer Ln to choose an appropriate D̂seed to produce the
desired number of superpixels In.

3. TREE DISTANCE

The superpixel algorithm proposed in this paper relies on two
types of distance measurements defined on the MST. Before
we introduce the details of our clustering method, we firstly
explain the definitions of MST and the two distances.

Minimum Spanning Tree from Image Given an input
image I of N pixels, an undirected graph G = (V,E) can
be obtained directly from the image by treating the image
pixels as nodes V = {pi}i=1,...,N and the edges between
the 4-connected neighboring pixels as the edges E. The
edge weights are computed from the maximum color differ-
ences between two neighboring pixels p and q: e(p, q) =
maxc∈{R,G,B} ∥Ic(p) − Ic(q)∥. From the undirected image
graph G, a minimum spanning tree T can be extracted effi-
ciently and linear to image size [6].

Spatial distance in MST The spatial distance DS(p, q),
firstly introduced in [2], is defined as the path length between
two nodes (p, q) on the MST. DS(p, q) = 1 if p and q are
adjacent nodes.

Weighted distance in MST The weighted distance
DW (p, q) between two nodes p and q in an MST is defined
as the sum of weights of the connected edges on the path be-
tween p and q. DW (p, q) = e(p, q) if p and q are adjacent
pixels.

Spatial distance and weighted distance in the MST are
both edge-aware measurement, and can be computed effi-
ciently in recursive manner in linear complexity to node num-
bers of the MST (proposed by [2]). Figure 2 (b)-(c) present
the spatial distances of all the image pixels to the red and
green pixels, respectively. Figure 2 (d)-(e) present the corre-
sponding weighted distances. For pixels in a homogeneous
region, the weighted distance does not consider the spatial re-
lation in image. As shown in Figure 2(e), a large amount of
pixels in the sky region will have the same distance to the
green pixel. In contrast, the spatial distance in Figure 2(c)
has a higher performance in homogeneous region. Neverthe-
less, the spatial distance is not sensitive to boundaries enough.
Compared to Figure 2 (b), the weighted distance in Figure 2
(d) better presents the color difference between the branch and
sky.

(d)

(b) (c)

(a)

(e)

Fig. 2. Comparison between two types of distance. (a) Input
image with two marked pixels. The red pixel is located on
a thin and long branch. The green pixel is located on a ho-
mogeneous region. (b) (c): spatial distance maps from all the
image pixels to the red and green pixels, respectively. (d) (e):
weighted distance maps from all the image pixels to the red
and green pixels, respectively. In the distance maps, red color
indicates a smaller distance while the blue color indicates a
larger distance, and the green color is in-between.



4. SINGLE LAYER SUPERPIXELS

Given an MST, the single layer segmentation can be divided
into two steps: seed sampling and node clustering. In the
seed sampling step, we uniformly select a set of seeds on the
MST as the cluster centers based on MST spatial distances.
In the clustering step, the remaining nodes are clustered to
their nearest seeds based on both MST spatial and weighted
distances.

4.1. Seed sampling

In order to make the initial seeds uniformly distribute on the
MST, a similar method with Poisson disc sampling [3] is im-
plemented. From Figure 2, the MST spatial distance is more
reasonable to measure the spatial uniformity, thus it is used as
the uniform measurement to sample seeds on MST.

Denote D̂seed as the seed distance (similar to the sampling
radius in Poisson sampling process), the seed nodes can be
selected on the MST through an iterative searching

1. Initialization: Two empty lists Lseed and Lcandidate

will be created for storing the sampled seeds and can-
didate nodes respectively. The root node of the MST
will be firstly pushed to Lcandidate.

2. Seed sampling: Pop a node from Lcandidate and let p
denote this node. Check if p is whin distance D̂seed of
existing seeds when Lseed is not empty. If not, insert
p (regard as a new seed) into Lseed and do a depth-first
search process from p to find the new candidate nodes.

For each node q in the searching path, we progressively
compute the MST spatial distance DS(p, q) between p
and q. Once DS(p, q) > D̂seed, push q into Lcandidate

and stop searching on this branch. When the depth-first
search ends, all the potential candidates related to p will
be pushed into Lcandidate.

3. Termination: Repeat the seed sampling step until
Lcandidate = ∅. All the sampled seeds will be stored in
Lseed.

4.2. Node Clustering

In the clustering step, we firstly give each sampled seed a la-
bel, valued by its index in Lseed, then cluster the remaining
nodes on the MST based on a nearest neighbor strategy mea-
sured by a clustering distance Dcluster(p, q). For each node
p, we assign it the same label with its closest seed as

L(p) = L(argminq∈Lseed
Dcluster(p, q)), (1)

Based on the advantages of the MST spatial distance (con-
siders spatial relation) and weighted distance (presents color
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Fig. 3. Sampling and clustering in three iterations when
D̂seed = 2. (a)-(c): The sampled seeds are marked in red.
The seed candidates are marked in green. The purple nodes
are those have been visited during the depth-first searching,
Dmin(q) are showed inside the nodes. (d)-(f): The label val-
ues L(q) of nodes update in each iteration.

difference) described in Sec. 3, we combine them for measur-
ing the clustering distance as follows:

Dcluster(p, q) =
∑

<pa,pb>∈Path(p,q)

max(DW (pa, pb), 1),

(2)
where < pa, pb > is a pair of connecting nodes in the path
Path(p, q) on the MST.

We use an array Dmin(q) to record the Dcluster(p, q) be-
tween each node q and its nearest seed p, and another array
L(q) to record the label of p. Since both the spatial dis-
tance and the weighted distance between any pair of nodes
are computed progressively on the same path, we can com-
pute both the DS(p, q) and Dcluster(p, q) in depth-first search
process from seed p and gradually update Dmin(q) and L(q),
as showed in Figure 3. Because only the distances from each
seed to its nearby pixels are computed, the complexity of dis-
tance estimation is linear to number of nodes in MST.

4.3. Bisection method

The number of sampled cluster centers monotonously de-
pends on the D̂seed in the seed sampling process. We cannot
perfectly control the generated cluster numbers by analytical-
ly computing an exact D̂seed. A bisection method is thus em-
ployed to find the appropriate D̂seed to generate the desired
K̂ clusters.

Let D̂seed ∈ {Dmin, Dmax}. We iteratively set D̂seed =
Dmin+Dmax

2 and run the segmentation process that generates
K∗ clusters. If K∗ < K̂, we set Dmax = D̂seed; otherwise,
Dmin = D̂seed + 1. The iteration terminates when Dmin =
Dmax or K∗ = K̂. Dmin is initialized to 0 and Dmax should
be large enough and thus is initialized to image size.



4.4. Discussion

However, the image textures sometimes mislead the nearest
neighbor strategy and cause undesirable results, as showed in
black squares of Figure 4 (a). Because the MST weighted
distance will be significantly accumulated at texture regions
and is very likely to be much larger than the color difference
of the real boundary. The problem is illustrated in Figure 4
(b), the superpixel boundary (red line) generated by nearest
neighbor strategy is deviated from the real boundary (yellow
line). Therefore, an multi-layer approach is proposed in Sec. 5
to gradually cluster the pixels and smooth the texture regions.
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Fig. 4. (a): False segmentation caused by textures noises (100
superpixels), the yellow points are sampled seeds. (b): A, B
are two seeds, red line is superpixel boundary generated by
nearest neighbor strategy, and yellow line is the real boundary.

5. MULTI-LAYER SEGMENTATION

Our multi-layer segmentation mainly consists of two step:
connecting neighboring layers and segmenting each layer.
The connecting step generates a graph from the averaged im-
age given by previous layer and extracts the MST. The seg-
menting step clusters the nodes of the MST and produces an
averaged image in current layer.

5.1. Connecting neighboring layers

Given an N pixels image I , assumed that I has been seg-
mented into Kr−1 superpixels in the previous layer Lr−1,
Nr−1(p) is the number of pixels belong to each superpixel p
(N0(p) = 1 and K0 = N to original image). For the current
layer Lr, we build a new undirected graph G by setting each
superpixel of Lr−1 as a node p. The edges are constructed
according to the spatial neighborhood relations between the
superpixels.

The edge weight between two neighboring nodes p and q
in graph G is defined as

er(p, q) = ∥Īr−1(p)− Īr−1(q)∥, (3)

where Īr−1(p) is the averaged color of all the pixels in super-
pixel p in previous layer Lr−1. Finally an MST is extracted
from the graph G and is used as the input to Lr.

5.2. Segmentation at each layer

In multi-layer scheme, the segmentation conducted in each
layer Lr takes the same method as single layer segmentation
except for the use of MST spatial distance Dr

S(p, q). For en-
couraging to sample seeds and produce superpixels uniformly
in image, Dr

S(p, q) is not longer equals to the length of the
path Pr(p, q) in the MST, but considers the number of pixels
in each node (each superpixel in previous layer) on the path
Pr(p, q). So that the MST spatial distance is redefined as

Dr
S(p, q) =

∑
v∈Pr(p,q)

Nr−1(v), (4)

v is any node on the path Pr(p, q). Based on the new MST
spatial distance, the segmentation method conducted in layer
Lr will generate Kr superpixels.

5.3. Parameters

The size of the output clusters monotonically decreases when
the seed distance D̂seed increases. In order to converge the
number of superpixels exponentially, we set D̂seed = k ×
dr−1 for each layer Lr, where d controls the growing speed
of D̂seed (the decreasing speed of the number of superpixel-
s), and k controls the initial value of D̂seed in the first layer.
Let K̂ denote the desired number of superpixels. As the lay-
er r increases, there must be a layer l that satisfy Kl > K̂
and Kl+1 < K̂ because of the monotonic property. Then we
use the bisection method to generate K̂ superpixels in Ll+1,
which is regarded as the final layer in our algorithm.

Since the color of each superpixel has been averaged in
each layer, the texture regions are gradually smoothed, as
showed in Figure 5. And the false segmentation problem (Fig-
ure 4 (a)) is efficiently solved by multi-layer strategy (Figure 5
(c)) with the same superpixels size.

(a) (b) (c)

Fig. 5. Hierachical results for generating 100 superpixels.

Because the number of nodes decreases exponentially
w.r.t the increase of r, the computational cost of proposed
multi-layer method mainly resides in the first few layers and
is linear to the image size. The small d meticulously smooth
the image texture, but reduce the nodes number slowly and
raise the runtime. The large k favor to reduce the nodes num-
ber quickly, but dampen the segmentation performance in first
layer. We balance the parameters and adopt d = 3, k = 9 for
experiments to compare our superpixel method with the state-
of-the-art methods.
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Fig. 6. Quantitative evaluation using BSD data sets. The experiments were conducted on an Intel I7 4.0GHz CPU.

6. EXPERMENTS

In this section, the evaluation benchmark of superpixel al-
gorithm is firstly introduced. Then, four recent state-of-the-
art superpixel segmentation methods including ERS [9], S-
LIC [1], SEEDS [16] and FH [7] are numerically and visually
compared with the proposed method.

6.1. Benchmark

The 200 test images of Berkeley Segmentation Dataset (B-
SD) [10] are used in our experiments. Two standard mea-
surements, boundary recall (BR) and under-segmentation er-
ror (UE), are used to evaluate the performance of different
superpixel algorithms. Neubert and Protzel [14] propose a
standard implementation of boundary recall for eliminating
the confusion of different definition of parameters. They also
summarize the previous definition of under-segmentation er-
ror and propose a new version for reducing serious penalty by
the large superpixels overlap the ground truth segment with a
small region. This paper uses the open source code provided
by Neubert and Protzel to compute the BR and UR for each
method for quantitative evaluation.

6.2. Comparison

Figure 6 presents the boundary recall, under-segmentation er-
ror and running time of each method computed from 200 test
images. It shows that our superpixel algorithm outperform-
s all the other state-of-the-art algorithms on boundary recal-
l and time efficiency. Our algorithm concentrates on catch-
ing the local detail of image, which the manual segmentation
benchmark pay less attention to. Thus our segmentation error
is slightly higher than ERS and SEEDS (no more than 0.02),
but our boundary recall is higher than ERS and SEEDS (more
than 0.04) and our runtime is the most efficient.

Figure 7 presents visual comparison with the state-of-the-
art. It shows that the proposed method has a higher perfor-
mance on preserving image structures. FH is a good structure-
preserving superpixel algorithm as well, but it can easily
merge large area of background pixels into a single super-

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

Origin Ours ERS FH SEEDS SLIC

Fig. 7. Visual comparison with four state-of-the-art algo-
rithms by the averaged color of 100 superpixels

pixel if they have similar color (c). SEEDS might produce
strip-like error (the sky area in (a)). In contrast, the proposed
method has advantage on preserving the local detail in image
such as human face (e) and water (g), and preserving long-
thin structures (i).



7. CONCLUSION

We present an efficient structure-preserving superpixel algo-
rithm based on MST. The presented algorithm takes structure-
sensitive advantage of the MST and achieves a high perfor-
mance both on structure-preserving and efficiency. Also, our
algorithm proposes a multi-layer scheme for gradually merg-
ing the image pixels and dampening the texture noises. The
nodes number is exponentially reduced in each layer so that
our algorithm stay in linear complexity. The experimental re-
sults show that the proposed algorithm outperforms current
state-of-the-art algorithms both on accuracy (boundary recal-
l) and time efficiency. However, our algorithm is not robust
enough for video superpixels, which will be considered in our
future works.
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