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An improved modeling algorithm using frequency-adaptive meshes is applied to meet the computational re-
quirements of all seismic frequency components. It automatically adopts coarse meshes for low-frequency com-
putations andfinemeshes for high-frequency computations. The grid intervals are adaptively calculated based on
a smooth inversely proportional function of grid size with respect to the frequency. In regular grid-based
methods, the uniform mesh or non-uniform mesh is used for frequency-domain wave propagators and it is
fixed for all frequencies. A too coarsemesh results in inaccurate high-frequencywavefields and unacceptable nu-
merical dispersion; on the other hand, an overly finemeshmay cause storage and computational overburdens as
well as invalid propagation angles of low-frequency wavefields. Experiments on the Padé generalized screen
propagator indicate that the Adaptive mesh effectively solves these drawbacks of regular fixed-mesh methods,
thus accurately computing the wavefield and its propagation angle in a wide frequency band. Several synthetic
examples also demonstrate its feasibility for seismic modeling and migration.
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1. Introduction

Seismic wavemodeling is an important tool for understanding com-
plex wave phenomena in realistic heterogeneous media. It typically in-
cludes two key steps: discretizing the model with grid-based schemes
and solving the wave equation. For the latter, the frequency-domain
wave propagator is one of thewidely usedmethods in seismicmodeling
and it is of special interest inmany applications, such asmultisource ex-
periments (Pratt and Worthington, 1990), the frequency-domain
acoustic-wave modeling (Operto et al., 2007; Moreira et al., 2014), the
frequency-domain elastic-wave modeling (Gosselin-Cliche and Giroux,
2014; Li et al., 2015) and the frequency-domain seismic in vertical
transversely isotropic media (Operto et al., 2014). The choice of wave
propagators directly determines the computational efficiency and accu-
racy of modeling. Furthermore, the grid interval is a key factor that
affects modeling accuracy and efficiency as long as the numerical algo-
rithm is based on grid discretization, such as in the finite difference
method (e.g., Shan, 2009; Martin et al., 2015) and the finite element
method (e.g., Wang et al., 2013; Ansari and Farquharson, 2014). A
too coarse discretization (undersampling) results in inaccurate solu-
tions and unacceptable numerical dispersion, while an overly fine
discretization (oversampling) may cause storage and computational
overburdens (Falk et al., 1998; Tessmer, 2000). This dilemma occurs
especially when the medium is quite heterogeneous and uniform
grids are used for discretization. Moreover, a uniform grid may lead
to large errors near the source point when a finite difference scheme
is applied for solving the eikonal equation (Vidale, 1988; Qin et al.,
1992; Kim and Cook, 1999; Qian and Symes, 2002; Zhao, 2005;
Qian et al., 2007; Sun et al., 2011). For these reasons, it is crucial in
modeling to define an appropriate discrete grid.

To balance the accuracy and efficiency of seismic modeling in com-
plex media, grid-based methods with improvements are proposed,
such as the finite-difference method using staggered grids (Chu and
Stoffa, 2011; Wang et al., 2014; Ren and Liu, 2015 ), rotated staggered
grids (Saenger et al., 2000; Krüger et al., 2005; Bohlen and Saenger,
2006; Bansal and Sen, 2008), mixed-grids (Hustedt et al., 2004), vari-
able time steps (Tessmer, 2000) and adaptive variable-length spatial
operators (Liu and Sen, 2011a, 2011b). They are mostly dependent on
uniform grid mesh. Space-adaptive grid schemes are proposed in
which the model is discretized with a spatially non-uniform grid
mesh. Those employ irregular grids (Moczo, 1989; Jastram and Behle,
1992; Jastram and Tessmer, 1994; Opršal and Zahradník, 1999;
Adriano and Oliveira, 2003), variable grids (Wang and Schuster, 1996;
Hayashi and Burns, 1999), or discontinuous grids (Aoi and Fujiwara,
1999). The common point of these methods is basically to adopt fine
grids in low-velocity regions or small-scale structures and coarse grids
in high-velocity regions or large-scale structures. These space-adaptive
meshes are also employed to handle the topography of the computa-
tional area (Zhang and Chen, 2006), or to improve the stability and ac-
curacy of the finite difference solution to the eikonal equation along
the expandingwavefront (Sun et al., 2007). In general they improve ac-
curacy with minimal increase in computational cost. However, varying
the grid interval may give rise to artificial reflections and therefore
should be employed with care.
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The space-adaptive mesh mentioned above is, in fact, velocity-
adaptive and wavelength-adaptive. In this way, the grid interval coin-
cides well with the wavelength to keep the algorithm stable and accu-
rate without much dispersion. Note that the wavelength is dependent
on the frequency as well as the velocity. Naturally, it is also effective to
vary the grid interval with the frequency instead of the velocity.
Compared with the velocity- or space-adaptive mesh, the frequency-
adaptive mesh can be applied to frequency-domain wave propagators
easily (e.g., Fichtner et al., 2013; Li et al., 2015). In space-adaptive ap-
proaches, the grid mesh is determined by the wavelength of the
highest-frequency wavefield to ensure the mesh is appropriate for all
frequencies wavefields, or undersampling may corrupt the result of
the wavefield simulation due to the numerical dispersion. However,
such a very finemesh unavoidably increases the computational cost es-
pecially in 3D cases. On the other hand, the wave propagation angle for
lower frequencies, one of the key parameters in seismic processing, can-
not be computed accurately using the highest frequency-based mesh.

The propagation angle is generally calculated by ray tracing, in
which the slowness vector denotes the propagation direction of the
wavefront (Aki and Richards, 1980; Cerveny, 2001; Bruneton et al.,
2002; Gray, 2006; Ruud, 2006). However, the ray-basedmethod is diffi-
cult to applywith frequency-domainwave propagators such as the Padé
generalized screen propagator (GSP) (Xie andWu, 1998) due to its fre-
quency limitation. Jia andWu (2009a) presented an alternative method
that makes use of the wavefield gradient to obtain the wave propaga-
tion angle. Based on their results, in the low-frequency case, the wave
propagation angle is likely calculated within the scale of less than one
wavelength and thus yields invalid results. In brief, the calculation of
the wavefield and its propagation angle in a wide frequency band
poses issues for frequency-domain wave propagators based on a single
and fixed mesh.

In this paper, we apply an algorithm using frequency-adaptive
meshes for seismic modeling and migration. The model is discretized
with different uniform grid meshes for different frequency wave com-
ponents. Grid meshes are coarse for low-frequency computations and
relatively fine for high-frequency computations. Grid meshes coincide
with frequencies. The grid size and the grid interval are adaptively cal-
culated based on the corresponding frequency. Compared with regular
fixed-meshmethods, this method is more suitable for frequency analy-
sis and multi-scale study and accurately calculates the wavefield and
the wave propagation angle in a wide frequency band. In this study,
we employ GSP (Le Rousseau and de Hoop, 2001a, 2001b; Chen, 2010;
Shin et al., 2015), a standard frequency-domain propagator, to test the
adaptive-mesh method. Without modification to the propagator, this
approach can be applied to other frequency-domain wave propagators.

The theory and methods of the frequency-adaptive mesh are
addressed in the next section. We first introduce the theory of
frequency-adaptive mesh and develop it for the GSP method. Then,
we discuss the advantage of this approach for computing propagation
angles in frequency-domain and analyze its numerical dispersion. The
third section presents two synthetic tests to compare modeling results
and migration results of the adaptive-mesh GSP method with the
fixed-mesh GSP method. The conclusion is drawn in the final section.

2. Theory and methods

An algorithm that uses frequency-adaptive meshes is proposed to
try to satisfy the computational requirements of different frequencies,
in which the computational area is discretized with different uniform
grid meshes for different frequency wave components. More specifical-
ly, it automatically adopts coarse meshes for low-frequency computa-
tions and fine meshes for high-frequency computations. The grid
intervals are adaptively calculated based on a function between the
grid interval (denoted by h) and the frequency (denoted by ω). There-
fore, defining an appropriate relationship function h(ω) is a crucial
part of this method. In principle, any function may be used for h(ω) as
long as the grid meshes are coarse for low frequencies and fine for
high frequencies. However, the numerical dispersion must be taken
into account when stacking the frequency wave components into the
time domain. Therefore, the h(ω) curve should be defined to satisfy nu-
merical dispersion. Additionally, the computational efficiency, numeri-
cal stability and possible artifacts should also be considered when
defining h(ω).

For a reasonable h(ω), different gridmeshes are applied for different
frequency components as Fig. 1 shows. During the computation of
each frequency component, the input original velocitymodel is interpo-
lated into the corresponding grid. The computing results, that is the
single-frequency wavefield, will be interpolated into a common grid
(mesh(out) shown in Fig. 1) to stack back into the timedomain and out-
put the final result. To interpolate the input velocity and single-
frequency-wavefields, classic linear, quadratic or spline interpolation
can be adopted in our method; other approaches such as the interpola-
tion scheme using Kaiser windowed sinc functions (Hicks, 2002) may
also be employed for high accuracy. In this paper, we used the linear in-
terpolation due to its less time–cost. Additionally, the spatial fitting of
grids and source positions must be considered during interpolations.
To do this, during interpolation we fix the source location on a grid
point as the starting point (shown by the red point in Fig. 2), and inter-
polate the velocity from the starting point to the sides successively. This
process confirms that the absolute source location is correct. For seismic
modeling these interpolationsmentioned above are necessary. For seis-
mic migration, the workflow is plotted in Fig. 3 and it is necessary to
perform an extra interpolation on seismic data. We resample the data
by interpolation to guarantee the fit of the grid and the receivers' posi-
tions. Given that the time-distance curve of reflectionwaves is usually a
quadratic function, we apply the quadratic interpolation and the state-
of-the-art interpolation or data regularization approaches (Hicks,
2002; Jin, 2010) can also be used here.

2.1. GSP method with frequency-adaptive meshes

The implementation of adaptive meshes is completely independent
of the wave propagator itself. We propose a discretization strategy for
all grid-based frequency-domain propagators. In this paper, as an
example, we develop the theory of frequency-adaptive meshes for the
GSP method. GSP is a typical frequency-domain propagator and the
wavefield has the form of (Appendix A)

u x; z1ð Þ ¼ F−1−iΔzk0AF
−1 k
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where u(x,z1) is the pressure component, z1=z0+Δz and Δz is the
depth step, δv(x,z0)/v(x,z0) stands for the relative velocity perturbation,

k0, kx and kz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20 þ k2x

q
are the background, transverse and vertical

wavenumber, respectively; i is the imaginary unit, F refers to Fourier
transform from the space domain to the wavenumber domain and
A=(1/2){[1/(v0/v(x,z0))∗]−1} in which v0 is a reference velocity, [1/
(v0/v(x,z0))∗] is the Fourier transform of 1/(v0/v(x,z0)) and “*” denotes
the convolution in wavenumber domain. Based on Appendix A, the
GSP can be given totally in the wavenumber domain by

u kx; z1ð Þ ¼ exp iΔzkz−iΔzk0
δv x; z0ð Þ
v x; z0ð Þ �

� �
−iΔzk0A
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On the right hand side of Eq. (2), the first two terms refer to the phase
screen solution; the third term is the modification for perturbations of
large velocities and large angles. In this research, the frequency-adaptive
meshes algorithm primarily addresses two critical numerical artifacts
produced by fixed-grids pacing. The first is the wave propagation angle
anomalies produced by fine grid for low-frequency components. The



Fig. 1. Illustration ofmeshes for different frequency components. f1 ~ fn denote the frequency varying fromsmall to large, and fp is the dominant frequency. ‘mesh(out)’ is the commonmesh
for stacking wave components.
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second includes the numerical dispersion due to insufficient sampling for
high-frequency components.

2.2. Calculation of the wave propagation angle

Thewave propagation angle, a key factor in seismic processing (Sava
and Fomel, 2003; Ursin et al., 2005; Jia andWu, 2009a; Sun et al., 2010),
is one of the concerns of frequency-adaptive mesh theory asmentioned
above. The propagation angle obtained by ray tracing is based on high-
frequency approximations and can hardly be used by low and modest
frequencies. Therefore, for frequency-domain propagators we have to
apply other methods to calculate the propagation angle. Jia and Wu
(2009a) proposed a useful method to employ the wavefield gradient
to calculate the propagation angle. It is especially effective for dual-
domain propagators (e.g. GSP) since the wavefield gradient can be eas-
ily obtained in space-frequency domain. Comparedwith the notable ap-
proach using Poynting vector (Dickens andWinbow, 2011) to represent
the propagating direction, this approach takes less cost and is more eas-
ily implemented (especially in the frequency domain). In acoustic cases
the wavefield gradient and Poynting vector have the same direction.
Here we adopt Jia and Wu's method to calculate the propagation
angle and derive the wavefield gradient directly from the marching ex-
pression of GSP. According to Eq. (1), we have the horizontal compo-
nent of the wavefield gradient as

∂u x; z1ð Þ
∂x ¼ i F−1−iΔzk0AF
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Based on the other form of GSP given by Eq. (2), we have its uninte-
grated form as

∂u kx; zð Þ
∂z ¼ i kz−k0

δv x; z0ð Þ
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Fig. 2. Illustration of interpolating velocity model. (For interpretation of the references to
color in this figure, the reader is referred to the web version of this article.)
From Eq. (4), the vertical component of the wavefield gradient is
given as

∂u x; z1ð Þ
∂z ¼ ikzu x; z1ð Þ−ik0

δv x; z0ð Þ
v x; z0ð Þ u x; z1ð Þ þ i

A
k0

∂2u x; z1ð Þ
∂x2 : ð5Þ

Actually, a finite-difference of the quantities ∂u(x,z1)/∂x and
∂u(x,z1)/∂z from the wavefield u(x,z1) is simpler and less time-
consuming than Eqs. (3) and (5). However, we use Eqs. (3) and (5)
due to their higher accuracy. Once the gradient vector is obtained, we
have the wave propagation angle with respect to the vertical direction
as

θ x; zð Þ ¼ tan−1 ∂u x; zð Þ
∂x

����
����
� ∂u x; zð Þ

∂z

����
����

� �
: ð6Þ

For dual-domain wave propagators such as GSP, the wavefield values
are usually complex. Therefore, absolute values are used in Eq. (6).

However, note that the wavefield gradient has no explicit physical
meaning. It only indicates the variation of wavefield values between
two spatial points and doesn't naturally represent the direction of the
wave propagation. The key reason is that the basic unit in seismic ener-
gy (i.e. group) propagation is a wavelet package. Therefore, when mea-
suring the flowing direction of seismic energy, one wavelet package
should be considered as a single unit. This principle must be followed
when calculating thewavefield gradient and avoids processing it within
one wavelet package. Fig. 4 provides a conceptual illustration of using
the same grid to calculate the wavefield gradient for two different fre-
quency components. Note that the shown wavefields are computed
Fig. 3. The migration workflow of the method with frequency-adaptive meshes.



Fig. 4. Conceptual illustration of calculating wavefield gradients for different frequencywave components on a commonmesh. The dashed lines refer to grid lines. u(m,n), u(m+1,n) and
u(m,n+1) denote thewavefields at grid points (m,n), (m+1,n) and (m,n+1), respectively.dx is thehorizontal grid interval and dzthe vertical. (a) For a high-frequencywave component,
the grid interval is either greater than the wavelength or has the same scale. (b) For a low-frequency wave component, the grid interval is less than the wavelength.
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not exactly by the plotted grid. Based on the above analysis, the spatial
distance between u(m,n), u(m+1,n) and u(m,n+1) in Fig. 4 should be
larger than one wavelength or at least shouldn't be less than one wave
length too much. In this way the wavefield gradient can represent the
direction of wave propagation. Otherwise, the x-direction component
of the wavefield gradient (denoting the variation from u(m,n) to
u(m,n+1)) and z-direction component (denoting the variation from
u(m,n) to u(m+1,n) can't indicate the seismic propagation. Fine
mesh can surely provide accurate wavefield, but using the same fine
mesh to calculate wavefield gradient may lead to invalid propagation
direction in low frequency cases. An alternative approach is to calculate
the wavefield and its gradient with different grid intervals. After
obtaining accurate wavefield as shown in Fig. 4a, we skip some grid
points to calculate the wavefield gradient meaning that dx, dz actually
include several grid points of the original mesh. In brief, only in the
case that grid interval is larger than the wavelength or have the same
scale, can the wavefield gradient accurately represent the direction of
wave propagation as shown in Fig. 4a and thus the propagation angle
obtained by Eq. (6) is right.

For the low frequency, its wavelength is large. Hence, we need to
take more attentions into processing wavefield gradient. In regular
frequency-domain algorithms, the model is discretized with uniform
or non-uniformmeshes. The grid interval is determined by the shortest
wavelength and fixed for calculating all single-frequency wave compo-
nents so that in the case of very low frequency computation, the wave-
length is larger than the grid interval and thus the computation of
wavefield gradient is processed in the scale of less than onewavelength
(Fig. 4b). In this way, the wavefield gradient obtained from Eqs. (3) and
(5) is inaccurate and fails to represent the true direction of seismic en-
ergy flow. By solving Eq. (6), this anomaly of the direction vector will
be evident in thedistribution of propagation angle for a single frequency
and then corrupt results of propagation-angle-based methods such as
the superwide-angle wave propagator (Jia and Wu, 2009b).

In the superwide-anglewave propagator a propagation-angle-based
weight function is employed to conduct wavefield reconstruction;
therefore correctly computing propagation angles for all frequencies
is quite important. With regular fixed mesh, the angles for low-
frequencies cannot be guaranteed. Fig. 5 shows an example for BP
2004 model of using the superwide-angle migration with the fixed
mesh. In this test, the minimum frequency, dominant frequency and
maximum frequency for the source are 5 Hz, 27 Hz and 40 Hz respec-
tively. The shortest wavelength with respect to minimum velocity
1500 m/s (Fig. 5c) is 37.5 m. We define a grid with Δx=12.5 m and
Δz=12.5 m and thus 3 grid points per shortest wavelength have been
used. Fig. 5a is the migration image of the superwide-angle method
with this fixed mesh. The propagation angles for each frequency are
computed based on correspondingwavefields so the image for each fre-
quency is computed based on different angle-based weight functions.
Based on the discussions above the weight functions of low frequencies
may be incorrect. For this reason, the images corresponding to different
frequencies can hardly coincide with one another so that the stack
image appears smeared. As two red arrows show, Fig. 5a has some
noise, and the resolution is not high enough at the salt boundary. In
this case, the high frequency's propagation angles are computed cor-
rectly. For comparison,we chose the propagation angle of the frequency
83 Hz to calculate the weight function for all frequencies. As Fig. 5b
shows, the migration image of the salt has clearly been improved espe-
cially in areas indicated by two red arrows. To ensure the accuracy of
propagation angles, the propagation angle of the high frequency can
be saved and adopted by all frequency components. Additionally, the
frequency-adaptive mesh will also be a useful scheme, in which the
model is discretized with different uniform meshes for the computa-
tions of different frequency components and the mesh size is deter-
mined by the corresponding minimum wavelength.

2.3. Numerical dispersion analysis

Numerical dispersion poses a significant problem for most numeri-
cal algorithms and a great deal of the literature examines this topic
(e.g., Alford et al., 1974; Dablain, 1986; Brzostowski and Black, 1989).
The grid interval needs to be finer than that determined by sampling
theorem. In this section we discuss the numerical dispersion of
frequency-adaptive meshes.

First, we take the finite difference as an example. The 2D acoustic
wave equation is given by

1

v x; zð Þ2
∂2u x; zð Þ

∂t2
¼ ∂2u x; zð Þ

∂x2 þ ∂2u x; zð Þ
∂z2 ; ð7Þ

where u(x,z) is the pressure and v is the velocity of seismic wave with-
out dispersion. Its 2N-order finite-difference solution based on square
grids is given by Fan et al. (2015)

1

v x; zð Þ2
∂2u x; zð Þ

∂t2
¼ 1

Δx2
XN
j¼1

w Nð Þ
j u xþ jΔx; zð Þ−2uðx; zÞ þ uðx−jΔx; zÞ½ �

þ 1
Δz2

XN
j¼1

w Nð Þ
j u x; zþ jΔzð Þ−2uðx; zÞ þ uðx; z−jΔzÞ½ �;

ð8Þ



Fig. 5. The stacked images of superwide-angle migration. The angle-based weight
functions for each frequency are computed by (a) corresponding wavefields and (b) the
wavefield of 83 Hz, respectively. (c) The part of BP2004 model used in this case. (For
interpretation of the references to color in this figure, the reader is referred to the web
version of this article.)

Fig. 6.Dispersion curves of the spatial 4-order 2D finite-differencemethod. The velocity is
3 km/s, the frequency band is 1 Hz–100 Hz and the propagation angle is 30°. For grid
intervals of 10 m, 15 m, 20 m and 30 m, the number of grid point per minimum
wavelength are 3, 2, 1.5 and 1 respectively. The minimum grid interval from the grid
variation function h(f)=λ(f)/10 is 3 m and the maximum one is 300 m. (For
interpretation of the references to color in this figure, the reader is referred to the web
version of this article.)
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wherewj
(N) is the finite-difference coefficients; Δx=Δz=h are the grid

intervals in the x and z directions, respectively. Consider a plane har-
monic wave whose wave propagation angle with respect to the z direc-
tion is α, in the form of

u x; z; tð Þ ¼ exp i ωt−kx sinα−kz cosαð Þ½ �; ð9Þ

where k is the wavenumber. Substituting Eq. (9) into Eq. (8), we obtain
the dispersion equation as follows

ω2 ¼ −2v x; zð Þ2
h2

XN
j¼1

w Nð Þ
j cos jkh sinαð Þ þ cos jkh cosαð Þ−2½ �: ð10Þ
Consequently, according toω ¼ kvwhere v is the numerical disper-
sion velocity, we have

δ2 ¼ −2

khð Þ2
XN
j¼1

w Nð Þ
j cos jkh sin αð Þ þ cos jkh cosαð Þ−2½ �; ð11Þ

whereδ ¼ vðx; zÞ=vðx; zÞ. For a specified frequencyω, the greater the dif-
ference between vðx; zÞ andv(x,z), the greater the dispersion. If δ=1,
there is no numerical dispersion. In the fixed-mesh method the grid in-
tervals employed for all single-frequency computations are the same,
and then hk is related to frequency and gets its maximum value π at
the Nyquist frequency. Therefore, δ is also frequency-dependent, and
this is one factor that accounts for the dispersion. Fig. 6 plots the disper-
sion curves in the homogeneous medium (3 km/s) for h= 10m, 15 m,
20m and 30m, respectively. As the frequency increases, δ drops quickly
from 1 meaning great dispersions occur because the grids are not fine
enough. In our method, the grid interval is the function of frequency,
and the dispersion equation is modified as

δ2 ¼ −2

kh ωð Þ½ �2
XN
j¼1

w Nð Þ
j cos jkh ωð Þ sin αð Þ þ cos jkh ωð Þ cosαð Þ−2½ �; ð12Þ

where h(ω) is the function between the grid interval and frequency. In
this case, it may be possible to make δ independent of ω by defining an
appropriate h(ω), andwebelieve thiswill be helpful to suppress the dis-
persion. Considering there is a linear relationship between k and ω, we
primarily investigate the inversely proportional function defined by
sampling theorem. It is given by

h ωð Þ ¼ λmin ωð Þ=n; i:e: h ωð Þ ¼ 2π � vmin=ωð Þ=n ð13Þ

where λmin(ω) is the minimum wavelength of corresponding frequen-
cy; n is the number of sampling points within λmin(ω) and vmin is the
minimum velocity. Consequently, hk is not a function of the frequency;
thus, δ is independent of the frequency. As the red line in Fig. 6 shows,
the dispersion error δ of our approach with the grid variation function
h(ω)=λ(ω)/10 is always close to 1, while other four grids cause large
numerical dispersion as the frequency increases since their grid inter-
vals do not satisfy the requirement for the 4-order finite difference
modeling (i.e., five or more grid points per minimum wavelength).
Moreover, to suppress dispersion the inversely proportional function
h(ω) must be smooth because an unsmooth h(ω) indicates that hk is
still a function of the frequency and may give rise to great dispersion.

The above discussion is based on the finite difference solution of the
wave equation. Similarly, we can obtain the dispersion equation for
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fixed-mesh GSP method as follows

exp −ikz1 cosαð Þ
¼ exp i hk0 cosα−hk0

δv x; z0ð Þ
v x; z0ð Þ �

� �
−hk0A sin2α

� �	 

exp −ikz0 cosαð Þ;

ð14Þ

where (δv(x,z0)/v(x,z0)∗) is the Fourier transformof δv(x,z0)/v(x,z0), “*”
denotes the convolution in wavenumber domain, and the dispersion
equation for adaptive-mesh GSP method can be expressed as

exp −ikz1 cosαð Þ
¼ exp i h ωð Þk0 cosα−h ωð Þk0 δv x; z0ð Þ

v x; z0ð Þ �
� �

−h ωð Þk0A sin2α
� �	 


� exp −ikz0 cosαð Þ:
ð15Þ

In the GSPmethod with frequency-adaptive meshes, it is almost im-
possible to generate an explicit expression of the numerical dispersion
error δ and quite difficult to define one appropriate h(ω) directly from
Eq. (15). However, the derivation of GSP includes no frequency approx-
imations so the above conclusion for FD is also valid for GSP. To verify it,
in the following experiments, we study several possible h(ω) functions
for a simple model and choose the best one for further modeling and
migration.

3. Numerical experiments

3.1. Numerical modeling experiments

First, we apply GSP to compute wavefields for frequencies of 10 Hz
and 50 Hz respectively. The same mesh of grid interval 10 m is used.
The velocity is 2 km/s, so the wavelength of 50 Hz is 40 m and there
are 4 grid points per wavelength. However it is still not enough for the
50 Hz component. As expected, the wavefield at 50 Hz contains strong
numerical dispersion as Fig. 7b shows, while this mesh performs well
for the low frequency of 10 Hz (Fig. 7a). To avoid undersampling for
the high frequency of 50 Hz, themesh has to be finer enough. In regular
Fig. 7. Single-frequency wavefields in a constant velocity (2 km/s) model. The source is
located at the surface centre. The grid interval is 12 m. (a) 10 Hz; (b) 50 Hz.
methods, the grid interval determined by the maximum frequency is
used for all frequencies components to guarantee wavefields accurate
enough. Using such a fine grid will dramatically increase the computa-
tional time and memory storage especially in 3D cases. It is actually un-
necessary for computations at low frequencies.

On the other hand, a coarse mesh is also required to obtain accurate
wave propagation angles. As shown in Fig. 8a and b, ‘knotted’ anomalies
exist in the results of the propagation angle for low-frequency compo-
nents. The anomalies disappear as the frequency increases. In the case
of low frequency, the grid interval is much smaller than one wave-
length, and the wavefield gradient will be processed within the scale
of less than one wavelength as Fig. 4b shows. As a consequence, the
wavefield gradient cannot represent the real propagated direction and
thus produces invalid results. For comparison, Fig. 8e shows the angle
distribution obtained by ray tracing. We see the propagation angle for
high frequencies agrees well with the result of ray tracing. The differ-
ences between Fig. 8d and e are within the scale of 10−4 to 10−3 as
Fig. 8f shows. We also demonstrate in Fig. 9 the distribution of ray pa-
rameter calculated with different grid intervals, varying from 5 m to
600m for a given frequency. The densermeshes result in some ‘knotted’
anomalies (Fig. 9a and b). Fig. 9d illustrates that a coarse mesh is re-
quired to obtain accurate wave propagation angles.

According to the analysis above, the single and fixed mesh used in
the regular GSP method is too coarse to compute high-frequency
wavefields correctly, but too fine to generate accurate results on wave
propagation angles for low frequencies due to conducting the first-
order derivative of the wavefield. Therefore, when we need both the
wavefield and its propagation angle in a wide frequency band, the reg-
ular single-mesh GSP method includes a trade-off. Fortunately, the
adaptive meshes algorithm presented here can address this problem.

Unlike the space-adaptive mesh grid, which is essentially a non-
uniform mesh grid, here we use uniform meshes with the grid interval
h adaptively varying with frequency ω. We examine various h(ω)
curves for comparison and determine the best variation function h(ω).
In this example of the constant-velocity (2 km/s)model, we test the lin-
ear h(ω) curve, exponential h(ω) curve, parabolic h(ω) curve and the
piecewise constant h(ω) curve and compare them with two inversely
proportional h(ω) curves defined by Eq. (13). They are plotted in
Fig. 10. The other four curves are designed by considering two inversely
proportional curves. There are almost no intersections between the six
curves except at the end points, so we can easily examine the influence
of grid interval and mesh variation. Fig. 11 shows the snapshots obtain-
ed by the adaptive-meshGSPmethod using these h(ω) curves shown in
Fig. 10, respectively. Numerical experiments indicate that two inversely
proportional h(ω) functions (red and magenta lines in Fig. 10) satisfy
most of the requirements mentioned above and generate the best
modeling results among the six.

Note thatmost grid intervals computed by the two inversely propor-
tional curves in Fig. 10 are smaller than those computed by the linear,
exponential and parabolic curves. This may explain why the inversely
proportional functions provide relatively high-quality modeling results.
In addition,we test the inversely proportional h(ω) curvewith different
n in Eq. (13). Fig. 12 shows the snapshots obtained by the adaptive-
mesh GSP method using h(ω)=(2π×vmin/ω)/n with n = 3, 4, 5, 6, 7
and 10, respectively. Numerical experiments indicate that when n≥7
the inversely proportional h(ω) functions satisfy most of the require-
mentsmentioned above and generate the desiredmodeling results. Ad-
ditionally, as discussed in Section 2.3 Numerical dispersion analysis, the
other requirement for h(ω) is its smoothness; strong variation of grid
intervals with frequency may give rise to numerical dispersion. In
Fig. 10, we see that the piecewise function provides a mesh grid even
finer than the inversely proportional function with n=10. However, it
yields much stronger dispersion in the snapshots compared in Fig. 11d
and e. This dispersion is caused by unsmooth variation of grid intervals
with frequency, not by interpolations. In this method, the finer the
mesh, the more interpolations it has to perform. But these



Fig. 8. Distributions of ray parameters in the mediumwhere v(z)=2+0.27z (km/s). The source is located at the surface centre. The grid interval is 10m. For (a) ~ (d) the frequencies are
2 Hz, 10 Hz, 50 Hz and 200 Hz, respectively, and GSP is used; (e) The ray parameter provided by ray tracing; (f) The differences between (d) and (e).
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interpolations do not significantly influence the numerical dispersion.
For example, the magenta curve in Fig. 10 has smaller grid intervals
than the other five, but it still generates the best modeling result as
shown in Fig. 11f.

3.2. Migration experiments

In this section, two examples are shown to test the validity of the
adaptive-mesh GSP migration and compare it with the conventional
fixed-mesh GSP migration. We interpolate traces of shot gathers with
Fig. 9. Distributions of ray parameters in the mediumwhere v(z)=2+0.27z (km/s). The sourc
10 m, 50 m, 200 m and 600 m, respectively.
a quadratic function to move receivers to the surface grid points and
choose the inversely proportional function as the mesh variation func-
tion given by

h ωð Þ ¼ 2π � vmin=ωð Þ=10: ð16Þ

The interval between two adjacent frequencies is determined by
dω=2π/(ntfft×dt) where ntfft is the length of Fourier transforms and
dt is the time sampling interval. It is small enough so that h(ω) as de-
fined in Eq. (16) could be regarded as a smooth curve.
e is located at the surface centre. The frequency is 2 Hz. The grid intervals for (a) ~ (d) are



Fig. 10. Curves of the grid interval varying with frequency. (For interpretation of the
references to color in this figure, the reader is referred to the web version of this article.)
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The first example is a three-layer model shown in Fig. 13a. The
length of the model is 7437 m and the depth is 2987 m. The mesh of
1191 × 479 grids with the grid interval dx=dz=6.25 m is used to
discretize the model. The synthetic data were generated by the finite
Fig. 11. Snapshots at 0.3 s and 0.75 s in a constant velocity (2 km/s) model obtained by the adap
curve; (b) the exponential curve; (c) the parabolic curve; (d) the red inversely proportional cur
source is located at the surface centre. (For interpretation of the references to color in this figu
difference method with 8th order spatial accuracy and 2nd order tem-
poral accuracy. The source is a Rickerwaveletwith a dominant frequen-
cy of 25Hz, a time shift of 0.05 s, and a record length of 3 s. The receivers
are distributed on the surface from 0 m to 7437 m with an interval of
12.5 m, and the shot interval is 375 m. 144 frequencies have been
used in both GSP migrations with fixed mesh and adaptive mesh. The
minimum frequency is 5 Hz and the maximum frequency is 40 Hz. For
migration with adaptive mesh, as Fig. 3 shows, the interpolations
among single-frequency wave components exist in both the source
and the receiver wavefield simulations. Therefore, the interpolations
complicate the cross-correlation imaging condition. We have two
schemes for dealing with the imaging condition. The first scheme is to
interpolate the single-frequency sourcewavefield S(x,z;ω) and receiver
wavefield G(x,z;ω) respectively, before applying the imaging condition.
The single-frequency image I(x,z;ω) is given by:

I x; z;ωð Þ ¼ ½e11S11 x11; z11;ωð Þ þ e12S12 x12; z12;ωð Þ þ e21S21 x21; z21;ωð Þ
þ e22S22 x22; z22;ωð Þ þ :::� � ½e11G11 x11; z11;ωð Þ þ e12G12 x12; z12;ωð Þ
þe21G21 x21; z21;ωð Þ þ e22G22 x22; z22;ωð Þ þ :::�;

ð17Þ
tive-mesh GSP using the different mesh variation functions shown in Fig. 10. (a) the linear
ve; (e) the piecewise constant function; (f) themagenta inversely proportional curve. The
re legend, the reader is referred to the web version of this article.)



Fig. 12. Snapshots at 0.3 s and 0.75 s in a constant velocity (2 km/s)model obtained by the adaptive-meshGSP using h(ω)=(2π×vmin/ω)/n. (a) ~ (f) forn=3,4, 5, 6, 7 and10, respectively.
The source is located at the surface centre.
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where e11, e12, e21 and e22 are coefficients of the 2-dimensional La-
grangian interpolation; S11, S12, S21, S22 and G11, G12, G21, G22 denote
source wavefields and receiver wavefields on interpolation grid
points, respectively. Here, the classic linear interpolation, quadratic,
spline interpolation or other higher accurate interpolations can be
adopted. Consequently, the image for a full frequency band is given
by

I x; zð Þ ¼
Xωmax

ω¼ωmin

I x; z;ωð Þ; ð18Þ

where ωmin and ωmax are the cut frequencies. In this test, ωmin=
5 Hz, ωmax=40 Hz. The number of frequency is 144. Fig. 13c shows
the image obtained by an adaptive-mesh GSP migration with this
scheme. It corresponds well with the image obtained by the regular
fixed-mesh GSP migration using the mesh with the grid interval
dx=dz=6.25 m (Fig. 13b), and the two interfaces can be easily im-
aged by both methods. In the second scheme, we apply the imaging
condition to the single-frequency source wavefield and receiver
wavefield, and then interpolate the single-frequency image after-
wards. The final single-frequency image I(x, z;ω) on the common
mesh can be expressed as

I x; z;ωð Þ ¼ e11 S11 x11; z11;ωð Þ � G11 x11; z11;ωð Þ½ � þ e12½S12 x12; z12;ωð Þ
�G12 x12; z12;ωð Þ� þ e21 S21 x21; z21;ωð Þ � G21 x21; z21;ωð Þ½ �
þ e22 S22 x22; z22;ωð Þ � G22 x22; z22;ωð Þ½ � þ ::::

ð19Þ

As shown by red circles in Fig. 13, wefindmore artifacts in the image
(Fig. 13d) obtained by this scheme compared with the fixed-mesh re-
sult (Fig. 13b) and the first scheme result (Fig. 13c). According to
Eqs. (17) and (19), the first scheme retainsmore initial wavefield infor-
mation than the second one such as the terms S11G12 and S22G11,which
to some extent suppress the noise caused by mesh variation. Note that
some artifacts in these three images are caused by the discrete Fourier
transform in GSP and are independent of the applied method.

The second model we test is the Marmousi model shown in Fig. 14.
The synthetic data were generated by the finite difference method
with 8th order spatial accuracy and 2nd order temporal accuracy. The
source is a Ricker wavelet with a dominant frequency of 25 Hz, a time
shift of 0.05 s, and a record length of 3 s. The receivers are distributed
on the surface from 0 m to 7437 m at an interval of 12.5 m, and the
shot interval is 75 m. 144 frequencies have been used in both GSP



Fig. 13. Stacked images of the three-layer model with 20 shots. (a)A three-layer model;
(b) Fixed-mesh GSP image; (c) Adaptive-mesh GSP image obtained by the first
interpolation scheme; (d) Adaptive-mesh GSP image obtained by the second
interpolation scheme. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

Fig. 14.Marmousi model. The length of themodel is 7437m and the depth is 2987m.We
discretize the model into 1191 × 479 grids with the grid interval dx=dz=6.25 m.

Fig. 15. The 150-Hz wavefields in the Marmousi model obtained by: (a) the fixed-mesh
GSP using a mesh of 1191 × 479 grids with the grid interval dx=dz=6.25 m; (b) the
adaptive-mesh GSP using 7432 × 2989 grids with dx=dz=1.0 m. The source location is
(3375 m, 0). The red box is a zoom of the initial figure in small red box. (For
interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)
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methods with fixed mesh and adaptive mesh. The minimum frequency
is 5 Hz and the maximum frequency is 40 Hz. To demonstrate the high
performance of the frequency-adaptive meshes in modeling, a
wavefield at 150 Hz (Fig. 15b) and a propagation angle at 2 Hz
Fig. 16. Distributions of ray parameters for 2 Hz in the Marmousi model obtained by:
(a) the fixed-mesh GSP using a mesh of 1191 × 479 grids with a grid interval dx=dz=
6.25 m; (b) the adaptive-mesh GSP using 96 × 39 grids with dx=dz=76.8 m. The
source location is (3375 m, 0).



Fig. 18. Stacked images of the Marmousi model with 100 shots obtained by (a) Fixed-
mesh GSP migration using the mesh of 1191 × 479 grids with dx=dz=6.25 m;
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(Fig. 16b) are shown, comparedwith the corresponding results from the
fixed-meshmethod (shown in Figs. 15a and 16a). Based on the enlarged
image indicated by the big red box in Fig. 15, the adaptive-meshmethod
ensures accurate wavefields for the high frequency and improves
the precision of propagation angles for the low frequency because
the angle in Fig. 16b contains less ‘knotted’ anomalies than that in
Fig. 16a. If a coarser mesh is used for the 2-Hz component, the accuracy
of the propagation angle will increase further. For those methods using
propagation angles such as the superwide-angle wave propagator,
we can easily modify the mesh variation function h(ω) to make all
meshes coarse enough so that the propagation angles are computed ac-
curately and the wavefields satisfy the precision requirement simulta-
neously. Fig. 17 shows snapshots obtained by the fixed-mesh GSP and
adaptive-mesh GSP. As the red arrows indicate, the frequency-
adaptivemesh results in less numerical dispersion than the convention-
al single and fixed mesh.

Fig. 18a and b show the images generated by the regular GSPmigra-
tion and the adaptive-mesh GSP migration, respectively. Compared
with the image from the reverse time migration (Fig. 18c), these two
methods limited by the one-way approximation also obtain a basic
image of target areas: the three faults and the deep anticline. In partic-
ular, the image using adaptivemeshes (Fig. 18b) contains fewer artifacts
shown by red circles and as the arrow shows, the structures adjacent to
the faults are better imaged than in the fixed-mesh one (Fig. 18a). In
terms of efficiency, the computation cost is related to the choice of
mesh variation function and the extra computation cost due to fine
meshes demanded by high frequencies is generally balanced by the
benefits at low frequencies. In fact, the efficiency of our approach may
vary significantly for different frequency-domain propagators. In this
numerical example, the adaptive-mesh GSP migration for a single-
shot gather takes 33.2 s compared to 18.4 s for thefixedmeshmigration
on our computer. The implementation of GSP consists of many Fourier
transforms switching the wavefield between the space domain and
the wavenumber domain. As such, the computational time is higher
than that of other propagators, although it is still acceptable. If the fre-
quency band contains a small quantity of high frequencies, the compu-
tation time will decrease.
Fig. 17. Snapshots at 0.4 s and 0.9 s in the Marmousi model simulated by: (a) the fixed-
mesh GSP using a mesh of 1191 × 479 grids with a grid interval dx=dz=6.25 m,
(b) the adaptive-mesh GSP using h(f)=(vmin/f)/10 as the mesh variation function. The
source location is (3375 m, 0). (For interpretation of the references to color in this
figure, the reader is referred to the web version of this article.)

(b) adaptive-mesh GSP migration using h(f)=(vmin/f)/10; (c) reverse time migration.
4. Conclusions

We apply a numerical approach using frequency-adaptive meshes
for seismic simulation in the frequency domain. This method automati-
cally changes themesh through themesh variation function tomeet the
requirement of different frequencies. The mesh variation function is
related to the frequency and is the key to applying this approach. Dis-
persion analysis indicates that it can be defined as the inversely propor-
tional function andmust be smooth in order to minimize the numerical
dispersion. To apply this approach to modeling, two interpolations are
required, i.e. interpolating velocity model and interpolating single-
frequency wavefields onto a common mesh. The linear interpolation
works well and cost less computational time. For migration, interpolat-
ing data traces using the parabolic function onto correspondingmeshes
is necessary.

In this study, we develop the theory of frequency-adaptive meshes
for the Padé generalized screen propagator and do seismic modeling
and migration test. Synthetic examples demonstrate that this
adaptive-mesh method addresses two numerical modeling artifacts
produced by fixed-grid spacing including the propagation angle anom-
alies of low-frequencywavefields and the numerical dispersion of high-
frequency wavefields. And the modeling and migration results corre-
spondwell with the results obtained by regularmethods. In terms of ef-
ficiency, the total cost increases in this test due to theway to do Fourier
transforms compared with the fixed-grid method. However, the com-
putational cost is acceptable allowing for the potential of the method
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in propagation angle calculation, multi-scale study and frequency anal-
ysis. And it is quite easy to extend this approach to other frequency-
domain methods such as the frequency domain finite difference.
Furthermore, this scheme can be combined with space-dependent
mesh, i.e., non-uniform mesh to address heterogeneous media more
efficiently.
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Appendix A

This appendix gives a brief derivation of the Padé generalized screen
propagator (GSP) (Xie and Wu, 1998). First, based on the perturbation
theory, themedium velocity v(x,z) can be divided into the constant ref-
erence v0 and the variable perturbation velocity δv(x,z)=v(x,z)−v0.
Therefore, the 2D acoustic wave equation of the frequency-domain
has the form of

∂2

∂x2 þ
∂2

∂z2 þ k20n
2

 !
u x; zð Þ ¼ 0; ðA:1Þ

where u(x,z) is the frequency-domain wavefield; the n=v0/v(x,z) re-
fers to the refraction index and k0=ω/v0is the reference wavenumber.
From Eq. (A.1), we can write the downgoing wave equation as

∂u x; zð Þ
∂z ¼ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2k20 þ

∂2

∂x2

s
u x; zð Þ: ðA:2Þ

Under the small propagation angles approximation or for the media

with small velocity perturbations, ∂2
∂x2 is small. Hence the root square on

the right hand side of Eq. (A.2) can be expanded by Taylor series. How-
ever, for the large velocity perturbations and wide angle situations, this
expansion is no longer valid. An alternative is to use the Padé approxi-
mation which is

1þ xð Þ1=2 ¼ 1þ x=2

1þ x=4

1þ x=4

1þ x=4
:::

:

ðA:3Þ

Under the first-order Padé approximation of the square root func-
tion, Eq. (A.2) is modified as

∂u x; zð Þ
∂z ¼ ink0 1þ

a
1

n2k20

∂2

∂x2

1þ b
1

n2k20

∂2

∂x2

0
BBBB@

1
CCCCAu x; zð Þ

¼ i − δv x; zð Þ
v x; zð Þ k0 þ k0 þ

nk0a
1

n2k20

∂2

∂x2

1þ b
1

n2k20

∂2

∂x2

0
BBBB@

1
CCCCAu x; zð Þ; ðA:4Þ

in which a and b are expansion coefficients and a=1/2, b=1/4 for the
first-order approximation. The wavefield u(x,z) can be decomposed
into a series of plane waves u(kx,z)eikxx, i.e.,

u x; zð Þ ¼
Z

u kx; zð Þeikxxdkx; ðA:5Þ

kx is the horizontal wavenumber and it is related to the vertical
wavenumber kz as

kz ¼ k20−k2x
� �1=2

: ðA:6Þ

After expanding the first-order Padé approximation, Eq. (A.6) has
the form of

kz ¼ k0 1þ aζ
1þ bζ

� �
or k0 ¼ kz−

aζ
1þ bζ

k0 with ζ ¼ −k2x=k
2
0: ðA:7Þ

Substituting Eq. (A.7) into Eq. (A.4), we get

∂u x; zð Þ
∂z ¼ i − δv x; zð Þ

v x; zð Þ k0 þ kz

�
− aζ

1þ bζ
k0 þ

nk0a
1

n2k20

∂2

∂x2

1þ b
1

n2k20

∂2

∂x2

1
CCCCAu x; zð Þ:

ðA:8Þ

Considering Eq. (A.5), we perform the Fourier transform with re-
spect to x on both sides of Eq. (A.8), and then

∂u kx; zð Þ
∂z ¼ i kz−k0

δv x; zð Þ
v x; zð Þ �

� ��
þ k0

a n�ð Þη
1þ bη

−k0
aζ

1þ bζ

�
u kx; zð Þ; ðA:9Þ

where η=−(1/n2*)(kx2/k02); (δv(x,z)/v(x,z)∗), (n∗) and (1/n2∗) are the
Fourier transforms of δv(x,z)/v(x,z), n and 1/n2 and “*” refers to the
wavenumber domain convolution. Eq. (A.9) is already in thewavenum-
ber domain. Combining the latter two terms and omitting high powers
of kx/k0, we have

∂u kx; zð Þ
∂z ≈i kz−k0

δv x; zð Þ
v x; zð Þ �

� ��
−k0

a
1
n
�

� �
−1

� �
k2x
k20

1−b 1þ 1
n2 �
� �� �

k2x
k20

3
77775u kx; zð Þ:

ðA:10Þ

Both Eqs. (A.9) and (A.10) are downgoing wave equations with the
first-order Padé approximation. However, Eq. (A.10) can be implement-
ed more easily.

If the seismicwave propagates from z0 to z1 andΔz=z1−z0 is small
enough, we can neglect the vertical variation of nwithin Δz. Therefore,
Eqs. (A.9) and (A.10) can be integrated with z. For the latter, omitting
the term b[1+(1/n2∗)]kx2/k02 and integrating it with z, we can get

u kx; z1ð Þ ¼ exp i Δzkz−Δzk0ðδv x; z0ð Þ
v x; z0ð Þ �

� �	
−Δzk0A

k2x
k20

)
u kx; z0ð Þ; ðA:11Þ

where A=(1/2)[(1/n*)−1]. To improve the computational efficiency,
the wavenumber domain convolution in Eq. (A.11) can be replaced by
the space domain multiplication and under the approximation of

exp −Δzk0A
k2x
k20

( )
¼ 1−Δzk0A

k2x
k20

; ðA:12Þ

we get the dual-domain expression of GSP for the first-order Padé
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approximation as follows:

u x; z1ð Þ ¼ F−1−iΔzk0AF
−1 k

2
x

k20

 !
eiΔzkzFe

−iΔzk0
δv x;z0ð Þ
v x;z0ð Þ u x; z0ð Þ; ðA:13Þ

in which F denotes the Fourier transform from the space domain to the
wavenumber domain while F−1 denotes the inverse Fourier transform
from the wavenumber domain to the space domain. Moreover, if the
larger velocity perturbations only exist in local regions, Eq. (A.13) can
be modified to the space domain expression as

u x; z1ð Þ ¼ 1þ iΔz
A
k0

∂2

∂x2

" #
� F−1eiΔzkzFe

−iΔzk0
δv x;z0ð Þ
v x;z0ð Þ u x; z0ð Þ: ðA:14Þ

On the right-hand side of Eqs. (A.13) and (A.14), the two exponen-
tial terms refer to the phase screen solution; the term in brackets is
the modification for perturbations of large velocities and large angles.
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