
(1) 阴极射线的发现

19世纪末在研究气体放电现象时发现了阴极射线。

在低气压下(<1mm汞柱),发生辉光放电的同时,发射阴极射线。

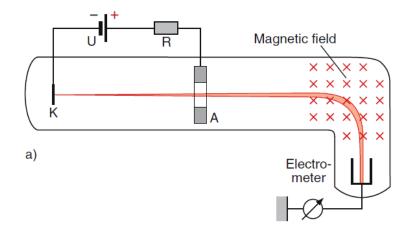
克鲁克斯管

争论: (1) 电磁波;

(2) 带电原子(即离子)。

(2) 阴极射线的性质

>克鲁克斯(W. Crookes, 1832-1919)和列纳德(P. Lenard, 1862-1947) 在19世纪末研究了这些射线的特性,发现射线沿直线传播、可以 投射影子并且还携带充足的动量可使很轻的小转轮转动。



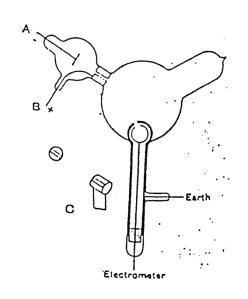
>1895年,佩兰用验电器(electrometer)收集电荷证明射线带负电。

自贈

J.J. Thomson的实验

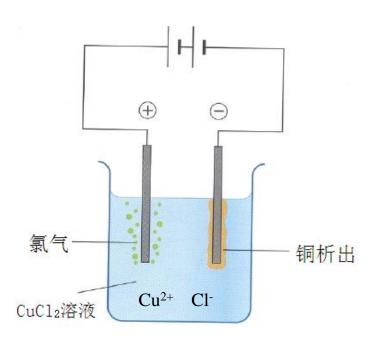
- >利用旋转镜法测量了速度,1.9×10⁵ m/s<<光速。
- >类似佩兰的验电器实验,证明带负电。

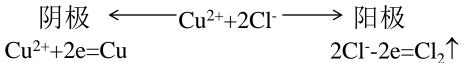
争论: (1) 电微波;


(2) 带电原子(即离子)?

新的带电粒子?

电荷量q?质量m?

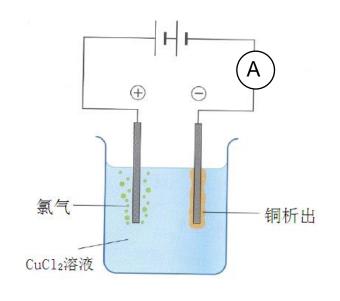

J. J. Thomson (1856-1940)



(3) 法拉第电解实验

当时,对带电粒子的了解基本上来自电解实验。

M. Faraday (1791 -1867)


设电极上析出的物质质量为M,通过的电量为q,发现:

$$M \propto q$$
$$A' \longleftrightarrow F$$

克当量 A' = A/v

A是克原子量(1摩尔物质量),v是化学价。

F= 96484.6 C =1法拉第

法拉第电解定律

电解1克当量的任何物质,所需的电量都相同,约为96484.6 C。

有
$$M = \frac{q}{F}A' = \frac{q}{F}\frac{A}{v}$$

若令v=1, 即单价离子,则有: $A \leftrightarrow F$

析出1摩尔单价离子所需的电量为96484.6℃。

1摩尔任何单价离子所携带的总电量均为96484.6 C。

按照原子分子假说1摩尔任何物质,粒子数都是 N_A

有理由相信,每个单价离子所携带的电量均相等,设为e。

且有: $e = F / N_A$

而v价的离子所携带的电量为e的整数倍,即ve。

"atom of electricity"

1874年,斯托尼利用按照分子运动论对N_A的估计值, 推算出

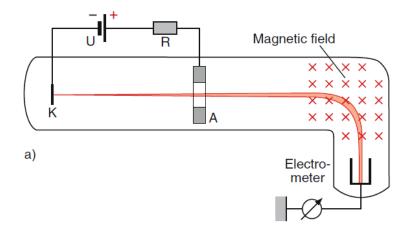
$$e \sim 10^{-20} \text{C}$$

并指出应将电解实验中一个单价离子所带的电荷量作为一个"基本电荷"。

1880年,亥姆霍兹指出,e是一个不可分割的电荷单元,"电荷的原子"。

1891, 斯托尼引入 "electron" 一词称谓 "基本电荷"

G. J. Stoney (1826 -1911)

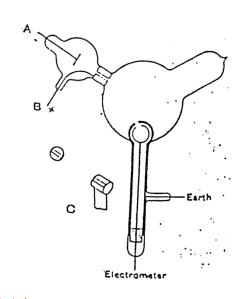


H. Helmholtz (1821-1894)

開開

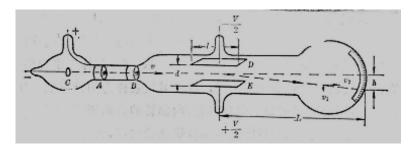
J.J. Thomson的实验

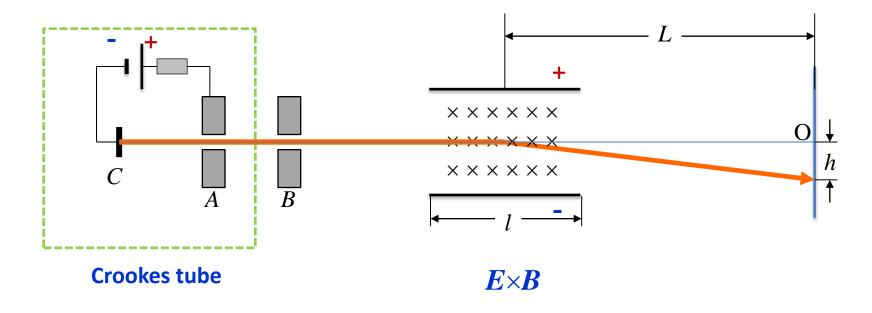
- >利用旋转镜法测量了速度, 1.9×10⁵ m/s<<光速。
- >类似佩兰的验电器实验,证明带负电。


争论: (1) 电微波;

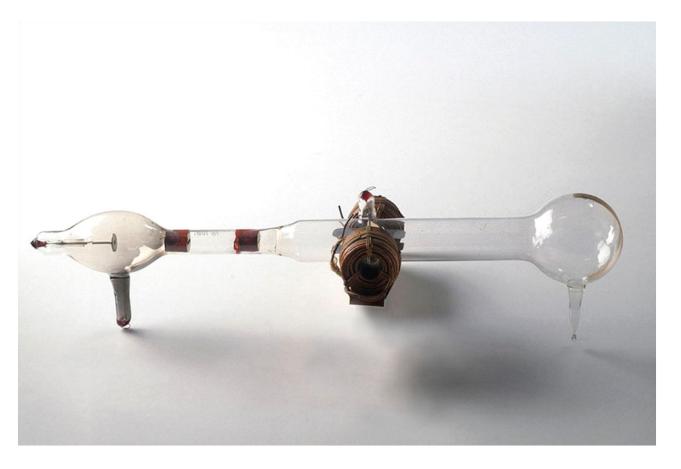
(2) 带电原子(即离子)? 新的带电粒子?

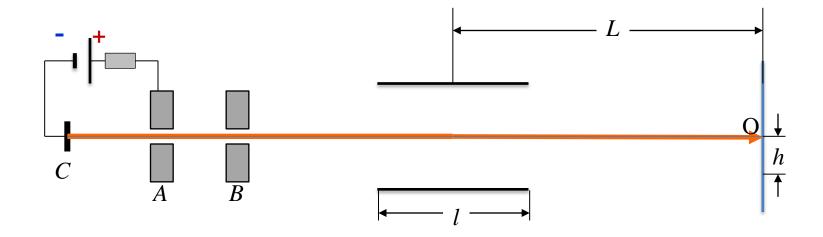
电荷量q?质量m?


J. J. Thomson (1856-1940)

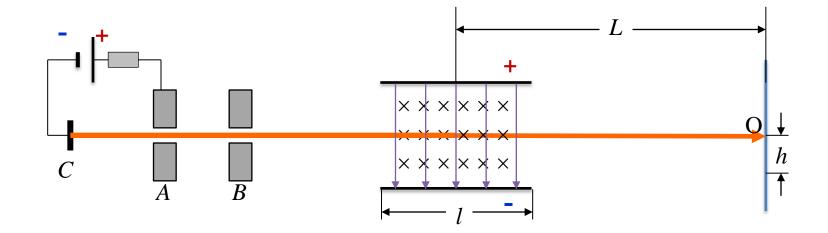


电荷质量比q/m?

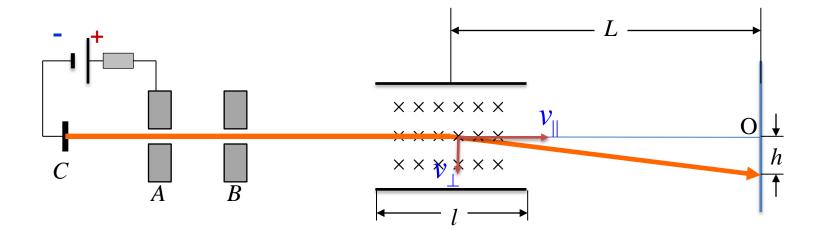

(4) J.J. Thomson 的荷质比q/m测量


(4) J.J. Thomson 的荷质比q/m测量

J J Thomsons cathode ray tube with magnet coils, 1897


(4) J.J. Thomson 的荷质比q/m测量

E = 0, B = 0 射线打在标尺的零点


(4) J.J. Thomson 的荷质比q/m测量

 $E \neq 0, B \neq 0$ 加上垂直纸面向里的<mark>磁场</mark>和由上而下的<mark>电场</mark>,调节大小,使电场力和磁场力抵消,射线仍然打在零点。

(4) J.J. Thomson 的荷质比q/m测量

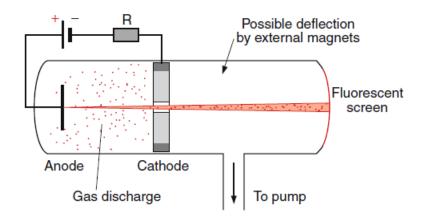
 $E = 0, B \neq 0$ 撤掉电场,只加磁场,射线向下偏转,偏转量为h。

经过偏转板,粒子获得垂直速度: $v_{\perp} = at = \frac{qv_{\parallel}B}{m} \frac{l}{v_{\parallel}} = \frac{qlB}{m}$

所以
$$\frac{h}{L} = \frac{v_{\perp}}{v_{\parallel}} = \frac{qlB}{m} / \frac{E}{B} = \frac{qlB^2}{mE}$$
 \Rightarrow $\frac{q}{m} = \frac{hE}{lLB^2} = \frac{hV}{dlLB^2}$

(4) J.J. Thomson 的荷质比q/m测量

1897年,J.J. Thomson测量结果:

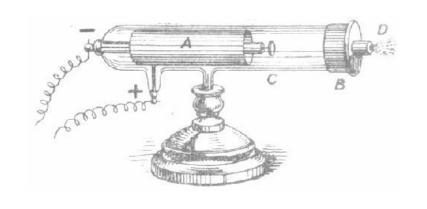

$$q/m = 7.6 \times 10^{10} \text{ C/kg}$$

现代值

$$q/m=1.759\times10^{11} \text{ C/kg}$$

带电原子(离子)的荷质比,如H+

$$q/m_H = 9.57 \times 10^7 \text{ C/kg} \sim 1/1000(q/m)$$


阳极射线管

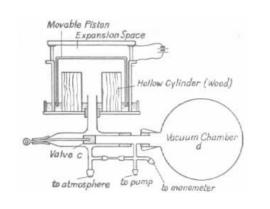
阴极射线粒子

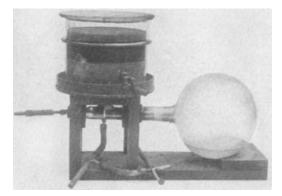
带有千倍基本电荷e的负带电原子。

全新的粒子,带-e电荷,质量是氢原子的千倍。

P. Lenard (1862 -1947)

1893年,列纳德在阴极射线末端镶嵌了一块μm厚度的铝箔作窗口,发现射线可以穿透,并使几厘米外的荧光屏发光。



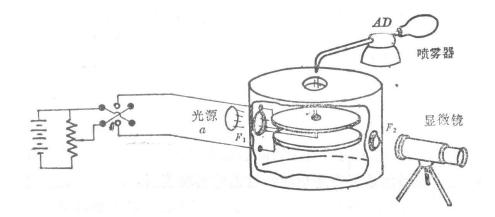

阴极射线粒子是一种全新的粒子,所带的电荷量与H正离子的电荷量大小相等而符号相反,即-e,而其质量是H原子质量的约千分之一,这就是"电子"。

获得了1906年诺贝尔物理奖

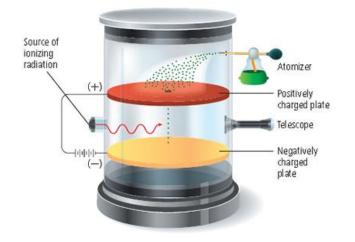
C. Wilson (1869-1959)

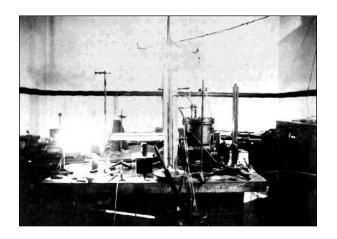
1899年,Thomson和他的学生汤森德和威尔逊利用威尔逊刚刚开始研制的云室,测量了基本电荷e。

离子穿过云室中的过饱和蒸汽,在其路径上形成大量的雾滴,测定了雾滴的数目和总电量,就可以确定e的值。但这样得到的电荷值只是大量离子电荷的平均值。



J.S. Townsend (1868-1957)


密立根油滴实验


Millikan, The isolation of an Ion, a Precision Measurements of its Charge, and the Correction of Stokes's Law, Science 30 (1910) 436-448

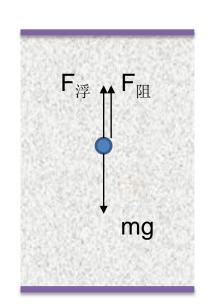
R. A. Millikan (1868-1953)

密立根油滴实验

跟踪一个油滴,设油滴半径r,密度 ρ ;空气密度 ρ_0 ,粘滞系数 η 。

① 电容器上不加电压。

Stokes定律
$$F_{\text{III}} = 6\pi \eta r v$$


v是下降速度

达到平衡时,油滴达到一个收尾速度vg

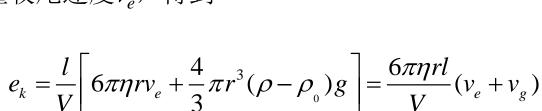
$$\frac{4}{3}\pi r^{3}\rho g = 6\pi \eta r v_{g} + \frac{4}{3}\pi r^{3}\rho_{0}g$$

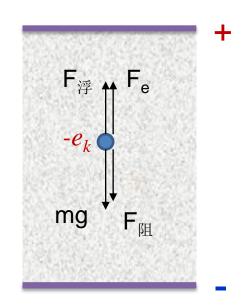
测量收尾速度vg,得到

$$r = \sqrt{\frac{9\eta v_g}{2(\rho - \rho_0)g}}$$

密立根油滴实验

设油滴带负电荷ek


② 电容器上加电压+V,电容器板间距为*l*。油滴在电场力的作用下会掉头往上运动。


电场力
$$F_e = e_k \frac{V}{I}$$

达到平衡时,油滴达到一个收尾速度v。

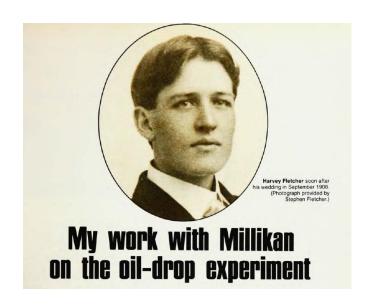
$$\frac{4}{3}\pi r^{3}\rho_{0}g + e_{k}\frac{V}{l} = 6\pi\eta rv_{e} + \frac{4}{3}\pi r^{3}\rho g$$

测量收尾速度火,得到

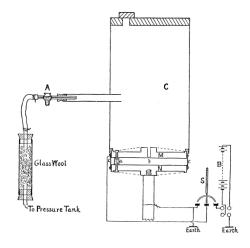
$$e_k = ne$$

最初测量值:

$$e=1.591\times10^{-19}$$
C


1929年,发现1%误差来 自粘滞系数η

修正后: e=1.601×10⁻¹⁹C


	G sec.	F sec.	n	$e_n \times \tau o^{10}$	<i>e</i> ₁ ×10 ¹⁰
	22.8	29.0	7	34.47	4.923
	22.0	21.8	8	39.45	4.931
	22.3	17.2			,
G = 22.28 V = 7950	22.4	[9	44.42	4.936
	22.0	17.3			
	22.0	17.3]			
	22.0	14.2	10	49.41	4.941
	(22.7	21.5	8	39.45	
	C 22.9	11.0	12	59.12	4.927
	22.4	17.4	9	44.42	
:	22.8	14.3	10	49.41	
V = 7920	22.8	12.2 }	11	53.92	4.902
G = 22.80	₹ 22.8	12.3)			1.702
	23.0				
	22.8	14.2)			
F = 14.17		14.0	10	49.41	4.941

现代值: $e=1.602176462(63)\times10^{-19}$ C

...I went out to the drug store that afternoon and bought an atomizer and some watch oil. Then I came back to the laboratory and set up the following apparatus:

... I saw a most beautiful sight. The field was full of little starlets....

Millikan, The isolation of an Ion, a Precision Measurements of its Charge, and the Correction of Stokes's Law, Science 30 (1910) 436

意义:

- (1) 直接测量了基本电荷量e;
- (2) 直接证明了电荷的原子化(量子化),即总是基本电荷量的整数倍。

获得了1923年诺贝尔物理奖

 $e/m=1.758820174\times10^{11} \text{ C/kg}$

Cathode S₁ x S₂

$$e=1.602176462(63)\times10^{-19}$$
C

$$m_e = 9.10938188(72) \times 10^{-31} \text{kg} = 0.510998902(21) \text{MeV}/c^2$$

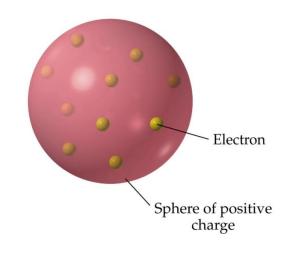
$$M_{\rm H} \approx m_p = 1.67262158 \times 10^{-27} \text{kg}$$

 $m_e / M_{\rm H} \approx 1/1836.15$

电子的大小:

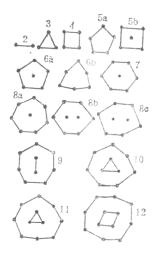
电子的经典半径(Lorentz半径):

$$\frac{e^2}{4\pi\varepsilon_0} = 1.44eV \cdot nm$$


$$m_e c^2 = \frac{1}{4\pi\varepsilon_0} \frac{e^2}{r_c}$$
 $\Longrightarrow r_c = \frac{1}{4\pi\varepsilon_0} \frac{e^2}{m_e c^2} = 1.44eV \cdot nm \frac{1}{0.511MeV}$ $\sim 2.818 \times 10^{-15} m$

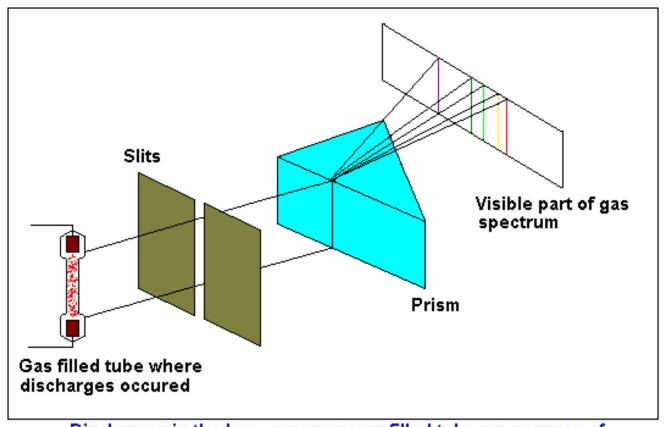
量子电动力学(QED)假设电子是点粒子。高能正、负电子对撞实验表明,到目前为止,电子在10⁻¹⁸m范围外仍可以看作是点粒子。

§ 1.2 电子—Thomson原子模型


plum-pudding model

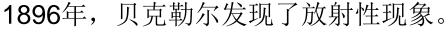
Thomson原子模型

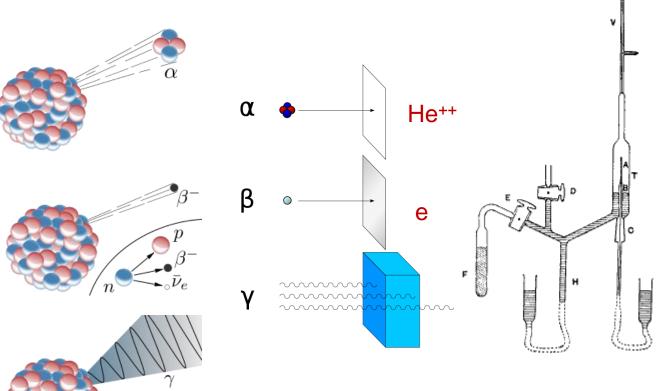
原子中带正电(+Ze)的物质均匀分布在整个原子空间($r\approx10^{-10}$ m),而Z个电子则处在原子球内的平衡位置上。


电子围绕原子中心作简谐振动,辐射电磁波。

- (1) 原子的电中性; (2) 稳定性;
- (3) 定性解释辐射特性。

§ 1.2 电子—Thomson原子模型

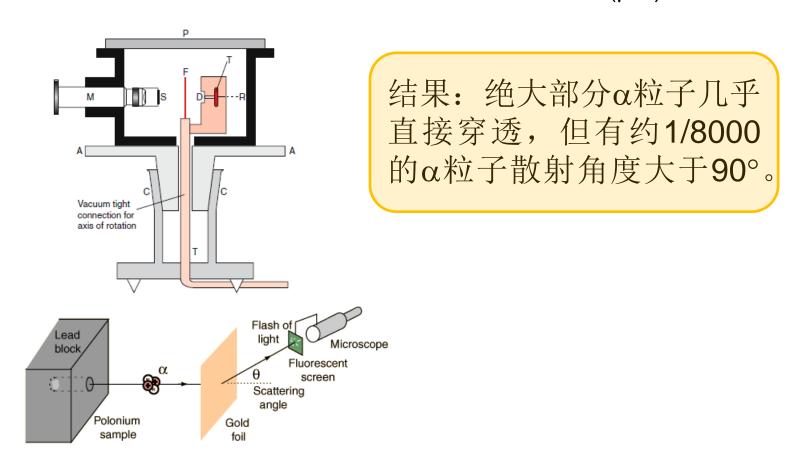



19世纪中叶, 基尔霍夫和本森等人发展了光谱分析技术。

Discharges in the low - pressure gas filled tube are sources of light, which undergo refraction on a prism. We see the line spectrum of the gas.

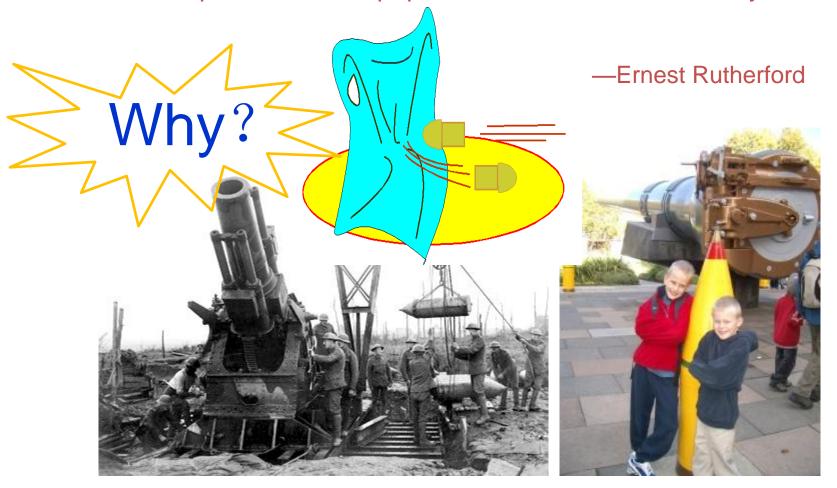
H.Becquerel (1852-1908)

E. Rutherford (1871-1937)



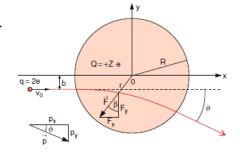
The Nobel Prize in Chemistry 1908

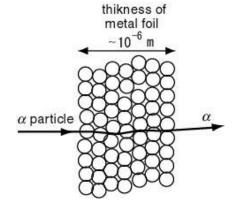
"for his investigations into the disintegration of the elements, and the chemistry of radioactive substances"

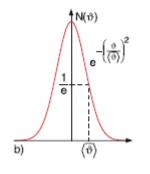

1909年,卢瑟福和他的助手盖革和马斯登做了α粒子与铂箔(μm)的散射实验。

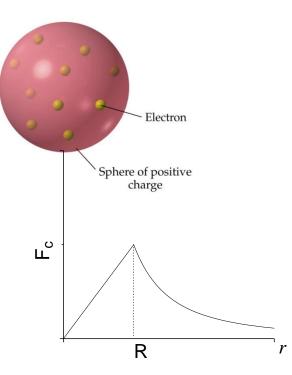
Geiger H. & Marsden E. (1909). "On a Diffuse Reflection of the α -Particles". Proceedings of the Royal Society, Series A 82: 495-500

"It was quite the most incredible event that has ever happened to me in my life. It was almost as incredible as if you fired a 15-inch shell at a piece of tissue paper and it came back and hit you."

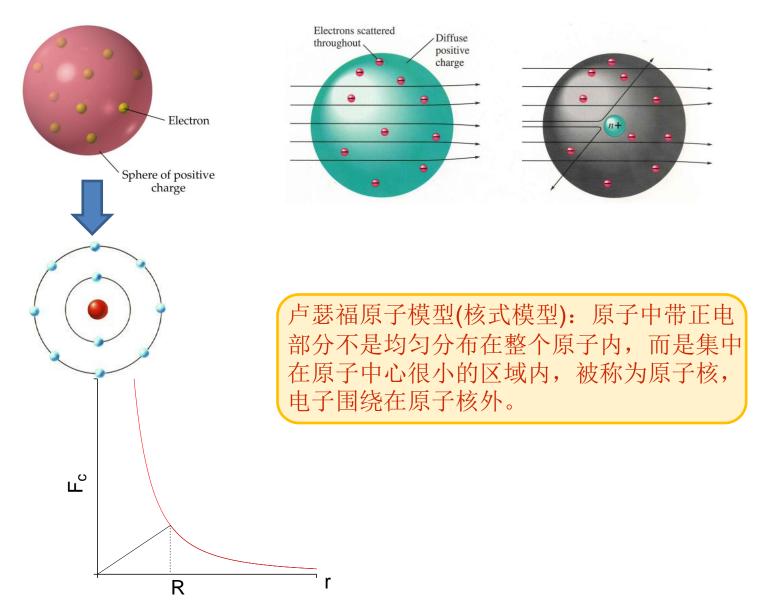



[例] 设入射α粒子的能量为5MeV,散射体是厚度为1μm的铂箔,利用Thomson模型估计散射α粒子的偏转角,以及发生大于90°散射的概率。


解: (略)。


单次散射

多次散射

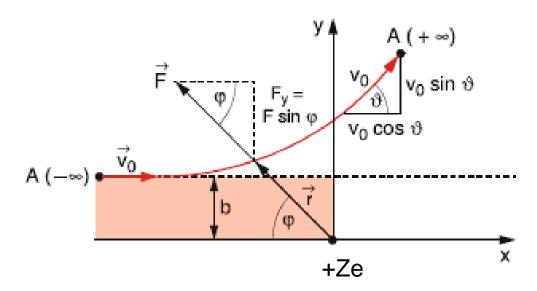


大于90°散射的概率~10-2000 = 0

发生大角度散射几乎不可能!!

§ 1.3.2 卢瑟福原子模型和散射公式--卢瑟福原子模型

§ 1.3.2 卢瑟福原子模型和散射公式--库仑散射公式


假设: (1) 忽略核外电子的作用 $(m_e << m_\alpha)$;

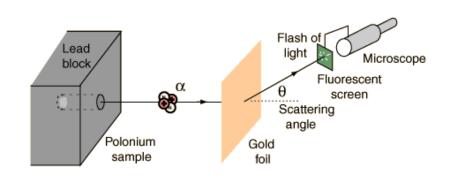
(2) 只有库仑相互作用;

(3) 靶核静止($M>>m_{\alpha}$)。

单次散射

设靶原子核的质量为M,具有+Ze。质量为 m_{α} (推导过程中略去下标),能量为E,带有+2e正电荷的 α 粒子以初始速度 ν_0 从无穷远处以瞄准距离b入射靶原子核,并散射到 θ 角方向无穷远处。

E. Rutherford, *The Scattering of* α *and* θ *Particles by Matter and the Structure of the Atom*, Philosophical Magazine. Series 6, vol. 21. May 1911


§ 1.3.2 卢瑟福原子模型和散射公式--库仑散射公式

$$ctg \frac{\theta}{2} = \frac{2b}{D}$$

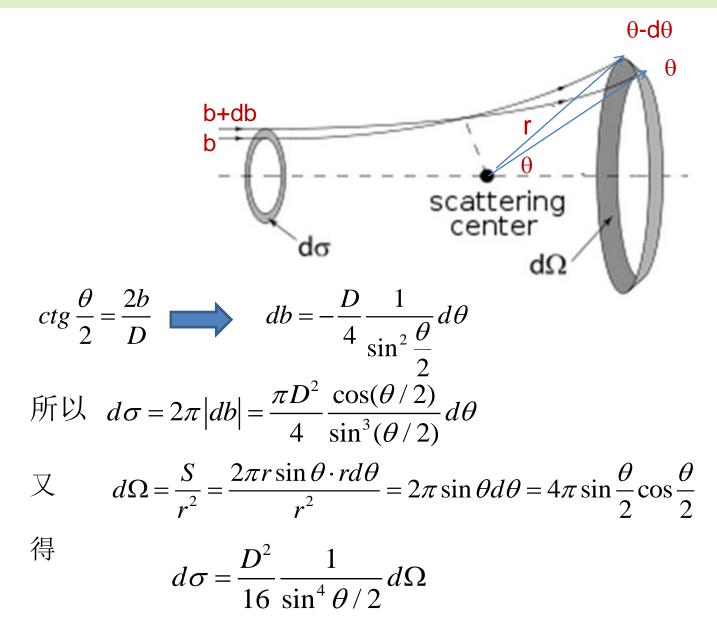
其中
$$D = \left(\frac{1}{4\pi\varepsilon_0}\right) \left(\frac{2Ze^2}{\frac{1}{2}mv_0^2}\right) = \frac{1}{4\pi\varepsilon_0} \frac{2Ze^2}{E}$$
 库仑散射因子

散射公式含有实验上无法测量的量b。

实验上测量的是:对应一定数目n的入射 α 粒子,散射到角度 θ 方向上,探测器所张的立体角 $d\Omega$ 内的粒子数dn。散射的概率

散射的概率
$$\frac{dn}{nd\Omega}$$

§ 1.3.2 卢瑟福原子模型和散射公式--卢瑟福散射公式



一个 α 粒子如果入射到面积元 $d\sigma$ 内,就会散射到 θ 角方向的 $d\theta$ 内 $d\sigma = 2\pi |db|$

描述了概率α粒子散射到θ方向的概率。

§1.3.2 卢瑟福原子模型和散射公式--卢瑟福散射公式

§ 1.3.2 卢瑟福原子模型和散射公式--卢瑟福散射公式

卢瑟福散射公式

$$\frac{d\sigma}{d\Omega} = \left(\frac{1}{4\pi\varepsilon_0}\right)^2 \left(\frac{2Ze^2}{E}\right)^2 \frac{1}{\sin^4(\theta/2)}$$

表征了 α 粒子散射到 θ 角方向上,单位立体角内每个原子的有效<mark>散射截面</mark>。反映了散射到 θ 角方向上单位立体角内的概率。

$$\frac{d\sigma}{d\Omega}$$
 称为微分散射截面,其量纲是面积。