

径向函数满足

$$-\frac{1}{2}\left(\frac{d^2}{dr^2} + \frac{2}{r}\frac{d}{dr} - \frac{l(l+1)}{r^2}\right)R_{nl}(r) + V(r)R_{nl}(r) = E_{nl}R_{nl}(r)$$

$$\begin{cases} n = 1, 2, \dots \\ l = 0, 1, 2, \dots, n-1 \\ m_l = -l, -(l-1), \dots + l \end{cases}$$

V(r) 不是库仑势,所以 $u_{nlm_l}(\mathbf{r})$ 不是类氢函数 $\psi_{nlm_l}(\mathbf{r})$,差别在于径向函数。

V(r) 是球对称势,能量与m,无关,但关于l 的简并撤除了,在中心力场近似下,系统的总 能量为:

在中心力场近似下,每个电子的状态可以用四个量子数(*n*,*l*,*m*, *m_s*)来描述。原子的状态取决于各个独立的电子的状态,称为原子的电子组态。

原子的能量等于N个单电子能量的和

$$E^{(0)} = \sum_{i=1}^{N} E_{n_i l_i}$$

即原子能级取决每个电子的*n*, *l*量子数,通常用小写字母*s*, *p*, *d*, *f*, ...表示单个电子*l*=0,1,2,3,...的态。

原子的电子组态用各电子状态量子数*n*,*l*的集合来表示。 例如,氮原子基态的电子组态为1*s*²2*s*²2*p*³

基态电子组态-轨道填充次序

马德隆规则 Madelung's rule

1. Orbitals are filled in the order of increasing n+l;

2. Where two orbitals have the same value of n+l, they are filled in order of increasing n.

Energy

单电子激发态电子组态能级

非等效电子组态简并度

$$G = \prod_{i=1}^{v} 2(2l_i + 1)$$

等效电子组态(nl)"能级简并度

$$G = \frac{[2(2l+1)]!}{v![2(2l+1)-v]!}$$

多电子原子: N个电子原子的Schrödinger方程为

 $\left[\sum_{i=1}^{N} \left(-\frac{1}{2}\nabla_{i}^{2} - \frac{Z}{r_{i}}\right) + \sum_{i< j=1}^{N} \frac{1}{r_{ij}}\right] \Psi\left(\mathbf{r}_{1}, \mathbf{r}_{2}, \dots \mathbf{r}_{N}\right) = E\Psi\left(\mathbf{r}_{1}, \mathbf{r}_{2}, \dots \mathbf{r}_{N}\right)$

将哈密顿量写作 $H = H_c + H_c$

其中

$$H_{c} = \sum_{i=1}^{N} \left(-\frac{1}{2} \nabla_{i}^{2} - \frac{Z}{r_{i}} + S(r_{i}) \right) = \sum_{i=1}^{N} \left(-\frac{1}{2} \nabla_{i}^{2} + V(r_{i}) \right) = \sum_{i=1}^{N} h_{i},$$

 $h_i = -\frac{1}{2} \nabla_i^2 + V(r_i)$

忽略H₁即为中心力场近似。

修正项:

(1) 剩余静电势 (电子间静电库仑斥力势中的非中心力场部分)

$$H_{1} = \sum_{i < j=1}^{N} \frac{1}{r_{ij}} - \sum_{i} S(r_{i}) = \sum_{i < j=1}^{N} \frac{1}{r_{ij}} - \sum_{i} \left(\frac{Z}{r_{i}} + V(r)\right)$$

$$E_0 \simeq E_0^{(0)} + E_0^{(1)} = -Z^2 + \frac{5}{8}Za.u.$$

(2) 磁相互作用 $H_2 = \hat{H}_{ls} + \hat{H}'_{ls} + \hat{H}_{ss}$ \hat{H}_{ls} 是每个电子自旋-轨道相互作用的和 $\hat{H}_{ls} = \sum_i \xi(r_i) l_i \cdot s_i$

类H离子自旋轨道相互作用能:

$$\Delta E_{ls} = \frac{1}{2m^2c^2} \left(\frac{Ze^2}{4\pi\varepsilon_0}\right) \frac{Z^3}{a_0^3 n^3 l(l+\frac{1}{2})(l+1)}$$

与Z⁴成正比。

随着原子序数的增加, Z⁴迅速变大,因而自旋轨道相互 作用很快变大。

原子	谱项	δ <i>E</i> (meV)	n°	$\Delta_{\pi I}$	Ž	电离能(eV)	第一激发能(eV)
ιH	2°P	4.5 • 10 ⁻²	2	0	1	3.400	1.889
₅Li	2°P	4.2 • 10 ⁻²	1.959	0.041	0.967	5.3917	1.848
11Na	3° <i>P</i> °	2.13	2.117	0.883	2.73	5.1391	2.102
19K	$4^2 P$	7.16	2.232	1.768	3.85	4.3406	1.610
₅₂Rb	5°P	29.5	2.279	2.721	5.57	4.1772	1.560
₅₅Cs	6° <i>P</i> °	68.8	2.329	3.671	7.00	3.8939	1.386

表2.2.3 碱金属原子和氢原子的最低激发² P 态的参量和电离能、第一激发能

 $\hat{H}'_{ls} + \hat{H}_{ss}$ 是电子间的自旋轨道和自旋自旋相互作用

随着原子序数的增加,这两项变化不大。 因此,除了少数情况,如He原子的低激发态, 对于大多数原子, *Ĥ*_k是主要的。

$$H_1 = \sum_{i < j=1}^N \frac{1}{r_{ij}} - \sum_i S(r_i) = \sum_{i < j=1}^N \frac{1}{r_{ij}} - \sum_i \left(\frac{Z}{r_i} + V(r)\right)$$
$$H_2 \sim \hat{H}_{ls} = \sum_i \xi(r_i) \boldsymbol{l}_i \cdot \boldsymbol{s}_i$$

l

这两项修正的重要性要看它们的相对大小。如果两 项的大小相似,称为中间耦合,量子力学上处理比较困 难。

通常讨论两种极端的情形,对于基态原子和轻原子 的低激发态,通常剩余静电势远大于自旋一轨道相互作 用,这称为LS耦合。另一种极端的情形通常发生在重原 子,此时自旋一轨道相互作用远大于剩余静电势,这称 为*jj*耦合。

剩余静电势远大于自旋一轨道相互作用的情形是罗素 (Russell)和桑德尔斯(Saunders)首先研究的,所以又称罗素一 桑德尔斯耦合。 $|H_1| >> |H_2|$

 $H = H_c + H_1 + H_2 - H_c + H_2$

这种情况下,各个电子的*l_i*和*s_i*分别耦合成*L*和*S* (只要计及v个价电子)。

$$L = \sum_{i=1}^{r} l_i$$
 $S = \sum_{i=1}^{r} s_i$

v个价电子的原子态记做

 $\left| \{\gamma\}, LM_{L}SM_{S} \right\rangle$

其中 $\{\gamma\}$ 表示价电子组态 $(n_1l_1)(n_2l_2)...(n_vl_v)$ 反对称化的波函数。

由给定L、S值决定的能级关于 M_L 和 M_s 仍是简并的,简并 度为(2L+1)(2S+1)。

在原子光谱学中将这简并的(2L+1)(2S+1)个态的集合称为 原子的多重态或多重项,简称项(term)或谱项,记作^{2S+1}L, 2S+1称为谱项的多重数。大写字母S、P、D、F等表示L = 0, 1,2,...的状态。

考虑剩余静电势的修正后,中心力场近似下的电子组态能级的简并将部分撤除,能级按照L和S的不同产生分裂。

谱项精细结构

进一步考虑自旋一轨道相互作用的修正: $H = H_c + H_1 + H_2$

L和S耦合成总角动量J

J = L + S $J = L + S, L + S - 1, \dots, |L - S|$

在LS耦合下,原子态记做

 $|\{\gamma\}, LSJM_J\rangle$

多重态能级的(2L+1)(2S+1)重简并将部分撤除,能级按照J的不同产生分裂。

由于自旋-轨道相互作用远 小于剩余静电势,这种分裂是多 重态能级的精细结构。

在原子光谱学中,用^{2S+1}L_J表示 多重态能级的精细结构成分,或称 子项。显然,精细结构能级对于量 子数M_J仍是2J+1重简并的。

在典型的LS耦合中,能级次序的 洪特定则和能级间隔的朗德定则成 立。

$$H_2 = \hat{H}_{ls} + \hat{H}'_{ls} + \hat{H}_{ss} \sim \hat{H}_{ls}$$

 $m_l = 0$ $m_l = +1, -1$

³P态的精细结构(³ $P_{0,1,2}$ 间距为0.0236和0.0482 eV,比值为1:2) 符合洪特定则和朗德间隔定则。

等效电子组态:考虑泡利不相容原理。

$$M_L = \sum m_l, \ M_S = \sum m_s,$$

$$(m_{l_1}^{m_{s_1}}m_{l_2}^{m_{s_2}})$$

表2.5.1 两个p电子可能形成的原子态

M _s M _L	1	0	-1
2	(1+1+)	[1+1-],(1-1+)	(1-1-)
1	[1+0+],(0+1+)	[1+0-],(0-1+), [1-0+],(0+1-)	[1 ⁻ 0 ⁻],(0 ⁻ 1 ⁻)
0	(0+0+),[-1+1+], (1+-1+)	[1+-1-],(-1-1+),[0+0-], (0-0+),[11+],(-1+1-)	(0 ⁻ 0 ⁻),[-1 ⁻ 1 ⁻], (1 ⁻ -1 ⁻)
-1	[0+-1+],(-1+0+)	[0 ⁺ -1 ⁻],(-1 ⁻ 0 ⁺), [0 ⁻ -1 ⁺],(-1 ⁺ 0 ⁻)	[-1 ⁻ 0 ⁻],(0 ⁻ -1 ⁻)
-2	(-1+-1+)	[-1+-1],(-1-1+)	(-1 ⁻ -1 ⁻)

日開

等效电子组态np²,则受到 Pauli原理的限制。

表2.5.1 两个p电子可能形成的原子态

-			
M _s M _L	1	0	-1
2	(1+1+)	[1+1-],(1-1+)	(1-1-)
1	[1+0+],(0+1+)	[1+0-],(0-1+), [1-0+],(0+1-)	[1 ⁻ 0 ⁻],(0 ⁻ 1 ⁻)
0	(0+0+),[-1+1+], (1+-1+)	[1+-1-],(-1-1+),[0+0-], (0-0+),[11+],(-1+1-)	(0 ⁻ 0 ⁻),[-1 ⁻ 1 ⁻], (1 ⁻ -1 ⁻)
-1	[0+-1+],(-1+0+)	[0 ⁺ -1 ⁻],(-1 ⁻ 0 ⁺), [0 ⁻ -1 ⁺],(-1 ⁺ 0 ⁻)	[-1 ⁻ 0 ⁻],(0 ⁻ -1 ⁻)
-2	(-1+-1+)	[-1+-1-],(-11+)	(-1 ⁻ -1 ⁻)

日開

等效电子组态np²,则受到 Pauli原理的限制。

表2.5.1 两个p电子可能形成的原子态

M _s M _L	1	0	-1
2	(1+1+)	[1+1-],(1-1+)	(1-1)
1	[1+0+],(0+1+)	[1+0-],(0-1+), [1-0+],(0+1-)	[1 ⁻ 0 ⁻],(0 ⁻ 1 ⁻)
0	_ (0+0+),[-1+1+], (1+-1+)	[1 ⁺ -1 ⁻],(-1 ⁻ 1 ⁺),[0 ⁺ 0 ⁻], (0 ⁻ 0 ⁺),[1 ⁻ -1 ⁺],(-1 ⁺ 1 ⁻)	(0⁻0), [-1 ⁻ 1 ⁻], (1 ⁻ -1 ⁻)
-1	[0+-1+],(-1+0+)	[0 ⁺ -1 ⁻],(-1 ⁻ 0 ⁺), [0 ⁻ -1 ⁺],(-1 ⁺ 0 ⁻)	[-1 ⁻ 0 ⁻],(0 ⁻ -1 ⁻)
-2	(<u>-1+1+)</u>	[-1+-1],(-1-1+)	<u>(-1-1-</u>)

日開

等效电子组态np²,则受到 Pauli原理的限制。

表2.5.1 两个p电子可能形成的原子态

M _s M _L	1	0	-1
2	(1+1+)	[1 ⁺ 1 ⁻], <mark>(1⁻1⁺)</mark>	(1-1)
1	[1 ⁺ 0 ⁺], <mark>(0⁺1⁺)</mark>	[1 ⁺ 0 ⁻], <mark>(0⁻1⁺)</mark> , [1 ⁻ 0 ⁺], <mark>(0⁺1⁻)</mark>	[1 ⁻ 0 ⁻], <mark>(0⁻1⁻)</mark>
0	_ (0+0+), [-1+1+], (1+-1+)	[1 ⁺ -1 ⁻],(-1 ⁻ 1 ⁺),[0 ⁺ 0 ⁻], (0 ⁻ 0 ⁺),[1 ⁻ -1 ⁺],(-1 ⁺ 1 ⁻)	(0⁻0), [-1 ⁻ 1 ⁻], (1 ⁻ -1 ⁻)
-1	[0 ⁺ -1 ⁺],(-1 ⁺ 0 ⁺)	[0 ⁺ -1 ⁻],(-1 ⁻ 0 ⁺), [0 ⁻ -1 ⁺],(-1 ⁺ 0 ⁻)	[-1 ⁻ 0 ⁻],(0 ⁻ -1 ⁻)
-2	(<u>-1+1+)</u>	[-1 ⁺ -1 ⁻],(-1 ⁻ -1 ⁺)	<u>(-1-1-</u>)

日開

等效电子组态np²,则受到 Pauli原理的限制。

表2.5.1 两个p电子可能形成的原子态

M _s M _L	1	0	-1
2		[1+1-]	
1	[1+0+]	[1+0-], [1-0+]	[1-0-]
0	[-1+1+],	[1+-1-],[0+0-], [11+]	[-1 ⁻ 1 ⁻],
 -1	[0+-1+]	[0 ⁺ -1 ⁻], [0 ⁻ -1 ⁺]	[-1 ⁻ 0 ⁻]
-2		[-1 ⁺ -1 ⁻]	

Slater图解法求np²电子组态的谱项

多电子组态:母项分支法 如Cu的较低的3d激发态: 3d⁹4s4p 先确定离子实的母项(电离极限谱项) 3d94s $l_1 = 2, l_2 = 0; \quad L = 2$ ³D和¹D $s_1 = s_2 = \frac{1}{2};$ S = 1, 0再与4p耦合,例如电子组态3d⁹4s(³D)4p'

Jz

 $\overrightarrow{\mathsf{S}}$

单电子状态

每个电子的*l*和*s*先耦合成单个电子的总角动量*j*(同样只要计及价电子,忽略下标)。

 $\boldsymbol{j} = \boldsymbol{l} + \boldsymbol{s}$ $\boldsymbol{j} = \boldsymbol{l} \pm \frac{1}{2}$

则单电子波函数: $|nljm_j\rangle$

$$\left|nljm_{j}\right\rangle = u_{nlsjm_{j}}(q) = R_{nl}(r)\sum_{m_{l},m_{s}}\left\langle lsm_{l}m_{s} \right| jm_{j}\right\rangle Y_{lm_{l}}(\theta,\phi) \chi_{sm_{s}}(\sigma)$$

原子状态

v个价电子的总波函数:

$$\frac{1}{\sqrt{v!}}\sum_{P}\left(-1\right)^{P}P\left|n_{1}l_{1}j_{1}m_{1}\right\rangle\left|n_{2}l_{2}j_{2}m_{2}\right\rangle..\left|n_{v}l_{v}j_{v}m_{v}\right\rangle$$

原子的总能量: $E = \sum_{i=1}^{N} E_{n_i l_i j_i}$

不同状态的能量差异(电子组态能级劈裂)主要来自价电子:

$$E_{v} = \sum_{i=1}^{v} E_{n_{i}l_{i}}$$

中心力场近似下的电子组态能级的简并部分撤除,能级按照价电子j,的不同组合产生分裂,其中最小的j,组合的能级最低。

对于v个电子的组态,通常用 $(j_1, j_2, ..., j_v)$ 表示在jj耦合下的原子多重态(或谱项)。

谱项精细结构

进一步考虑剩余静电势的作用 $H = H_c + H_2 + H_1$

单电子的j耦合成总角动量:

 $\boldsymbol{J} = \sum_{i=1}^{\nu} \boldsymbol{j}_i$

 ϵ_{jj} 耦合下,原子态记做 $|\{\gamma\}, j_1 j_2 \dots j_v J M_J\rangle$

多重态能级的简并进一步撤除,能级按照J的不同产生分裂。

相应的精细结构子项表示为: (*j*₁, *j*₂, ..., *j*_y)_I

自肆

 $(1/2, 3/2)_1$

 $(1/2, 3/2)_{2}$

 $(1/2, 1/2)_1$

 $(1/2, 1/2)_0$

 $H_{0}+H_{2}+H_{1}$

(1/2, 3/2)

(1/2, 1/2)

 $H_0 + H_2$

nsn'p

 H_0

例如: *s、p*电子分别有: *j*₁=1/2, *j*₂=3/2,1/2, 因此 *sp*组态有(1/2,3/2)_{1,2}, (1/2,1/2)_{0,1}四个谱项。它 们形成的原子态由于自 旋轨道耦合很强,因此 (1/2,3/2)与(1/2,1/2)分得 很开,由弱的非中心静 电力产生的精细结构分 裂则较小。

形成两对能级: (1/2,1/2)₀, (1/2,1/2)₁和 (1/2,3/2)₁, (1/2,3/2)₂。

非等效电子组态

npn'p 组态: $j_1=3/2, 1/2; \ j_2=3/2, 1/2$ 有: $(3/2,3/2)_{0,1,2,3}, (1/2,3/2)_{1,2}, (3/2,1/2)_{1,2}, (1/2,1/2)_{0,1}$

共10个精细结构谱项。

§2.2 多电子原子 微扰修正—jj耦合

等效电子组态

如等效电子组态: np²,则同样受到 Pauli原理的限制。 (3/2,3/2)态中, $j_1 = j_2$, 则 $m_{i1} \neq m_{i2}$, 其中: J = 1的态中, 必 有 $m_{i1} = m_{i2} = 1/2$ 或-1/2, J = 3的态中, 必有 $m_{i1} = m_{i2} =$ 3/2或-3/2, 同样(1/2, 1/2)态中, $j_1 = j_2$, 其J = 1的态中, 必有 $m_{i1} =$ $m_{i2} = 1/2$ 或-1/2。 而(1/2,3/2)12, (3/2,1/2)12 只是两个电子交换,对于等效电 子是不可区分的。

 $(3/2,3/2)_{0,1,2,3}, (1/2,3/2)_{1,2}, (3/2,1/2)_{1,2}, (1/2,1/2)_{0,1}$

 $(3/2,3/2)_{0,2}, (1/2,3/2)_{1,2}, (1/2,1/2)_{0}$

多电子组态: 母项分支法

先去掉耦合最弱的一个电子,离子实的N-1个电子耦合得到 总角动量J',确定母项的量子数J'

剩余电子的l和s耦合成j,确定量子数j

J' 再与j耦合 J' + j = J

确定总角动量量子数J

谱项表示为: (J', j),