Topic : Geo Opt

lonic Optimization



Why we need Geometric Optimization?

Structure : Reasonable



molecule

CSD: CIWKEYO1

Question:

How do we know these parameters?

To describe the structure, we need to
know the coordination of atoms in space

Cartesian coordinates
1. choose the xyz direction

2. write down the coordination

O 0.000 0.000 0.000
H 0.906 0.641 0.000
H-0.906 0.641 0.000

3. Display the structure with software

Materials Studio, Gauss View,



What is ionic optimization?

search for the local minimum in the energy potential landscape
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What is ionic optimization?

search for the local minimum in the energy potential landscape

Two steps: 1. Energy evaluation
The energy expression must be defined and evaluated for a given
conformation, sometimes including external restraining terms

2. Conformation adjustment
to reduce the value of the energy expression. A minimum may be
found, depending on the nature of the algorithm, the form of the
energy expression, and the size of the structure.

The efficiency of the optimization is judged by both the time needed to evaluate the
energy expression and the number of structural adjustments (iterations) needed to
converge to the minimum.
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A geometry optimization example E(x,y) = ¥ + 5};2
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a minimizer must determine both the direction toward a minimum and the distance to the
minimum in that direction.

A good initial direction is simply the slope or derivatives of the function at the current point.

The derivatives are a two-dimensional vector: VE = (2x,10y)



ionic optimization algorithms

search for the local minimum in the energy potential landscape

mathematical problem : find the minimum of a function f(x1, x2...)

Simply: f{:?’}:n+5f+%ﬂﬁ’:c?v%(E’—i”DJB(f—i‘U}
where B is the Hessian matrix
22
Bij a.Tféi i
for a stationary point, one requires
g(X) = %ZB(T—‘* )
() = 2L - - X8y

at the minimum the Hessian matrix must be additionally positive definite



Linear Search

E{x,¥)

X LA
- OE OE The energy must be
(xy) = (xo tass xDJyD’J’o + “ay . ) evaluated at 3-10 points to

precisely locate the one-

_— - : dimensional minimum
O The derivative vector from the initial point a (x,, y,)

defines the line search direction.

O a line search amounts to a one-dimensional optimization
along a direction vector determined at each iteration.



Newton algorithm

start with an arbitrary start point ¥!
calculate the gradient g(¥!)
multiply with the inverse of the Hessian matrix and perform a step
2o B lg
by inserting g(¥') = % = B(+! — 3°). one immediately recognises that ¥2 = ¥°

hence one can find the mmimum in one step

1n practice, the calculation of B is not possible in a reasonable time-span, and one
needs to approximate B by some reasonable approximation



Steepest descent

approximate B by the largest eigenvalue of the Hessian matrix —+ steepest descent
algorithm (Jacobi algorithm for linear equations)

1. initial guess ¥!
2. calculate the gradient g(¥!)

3. make a step imnto the direction of the steepest descent
¥ =¥~ 1/Thm(B)gF")
4. repeat step 2 and 3 until convergence is reached

for functions with long steep valleys convergence can be very slow




Speed of convergence

for ionic relaxation, the eigenvalues of the Hessian matrix correspond to
the vibrational frequencies of the system

the highest frequency mode determines the maximum stable step-width
("hard modes limit the step-size")

but the soft modes converge slowest



Variable-metric schemes, Quasi-Newton scheme

variable-metric schemes maintain an iteration history
they construct an implicit or explicit approximation of the inverse Hessian matrix

B—l

approx’

search directions are given by
—]_ =+ & =¥
Bappmxg (T) ’
the asymptotic convergence rate is give by

[ inax

number of iterations o< T

nun



Simple Quasi-Newton scheme, DIIS

direct inversion in the iterative subspace (DIIS)

e set of points
(¥li=1,.,N} and {&|i=1,...N}

e search for a linear combination of ¥ which minimises the gradient, under the
constraint
Z o; = 1._
I

e s ) ol 34

= ZEI;B(T—‘{‘ _ ;g

gradient 1s linear in it’s arguments for a quadratic function



steepest descent step from 1o it (arrows correspond to gradients gp and g1)
gradient along indicated red line is now know. determine optimal position fépt
another steepest descent step form ."x:'épt along gopt = E(i‘épt}

calculate gradient x> = now the gradient is known in the entire 2 dimensional space

(linearity condition) and the function can be minimised exactly

Ca% @ gl q0egl=g
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Conjugate gradient

first step 1s a steepest descent step with line minimisation
search directions are “‘conjugated” to the previous search directions
1. gradient at the current position g(*")
2. conjugate this gradient to the previous search direction using:
F gy g1y B —EEY)E@
(&EFN1))-g(xV)

3. line minimisation along this search direction 5%

4. continue with step 1). 1f the gradient is not sufficiently small.
the search directions satisfy:
SBM =8y YN M

the conjugate gradient algorithm finds the minimum of a quadratic function with &
degrees of freedom in &+ 1 steps exactly



steepest descent step from x°. search for minimum along gy by performing several trial

steps (crosses. at least one triastep is required) — X!

. determine new gradient g¢; = g(x) and conjugate it to get §7 (green arrow)
for 2d-functions the gradient points now directly to the minimum

. minimisation along search direction §y
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Damped molecular dynamics

instead of using a fancy minimisation algorithms it 1s possible to treat the
minimisation problem using a simple “simulated annealing algorithm™

e regard the positions as dynamic degrees of freedom

e the forces serve as accelerations and an additional

e cquation of motion (¥ are the positions)

friction term

is infroduced

X = —2%0g(¥) — u¥

using a velocity Verlet algorithm this becomes

virn = (1= /2 10— 20y ) /(14 1/2)

XN+1=XN+1+Vny1)2

for g = 2. this 1s equivalent to a simple steepest descent step



behaves like a rolling ball with a friction
1t will accelerate initially, and then deaccelerate when close to the minimum

if the optimal friction is chosen the ball will glide right away into the minimum
for a too small friction 1t will overshoot the mimmum and accelerate back

for a tool large friction relaxation will also slow down (behaves like a steepest
descent)

T




Asymptotic convergence rate

e asymptotic convergence rate is the convergence behaviour for the case that the
degrees of freedom are much large than the number of steps

e.g. 100 degrees of freedom but you perform only 10-20 steps
e how quickly, do the forces decrease?

e this depends entirely on the eigenvalue spectrum of the Hessian matrix:

—  steepest descent: I'pax /T imin J steps are required to reduce the forces to a

fraction &

—  DIIS. CG. damped MD: /T jax /T imin } steps are required to reduce the

forces to a fraction ¢

{ [max. [ 'min are the maximum and minimal eigenvalue of the Hessian matrix




Methodology for optimization calculations

Prerequisites
One of the most important steps: properly preparing the structure to be simulated.

It is impossible to provide a single recipe for a successful model

Considerations

When to use constraints and restraints.

When to use different algorithms.

What criteria to use for judging convergence of the optimization.



file:///D:/Program Files (x86)/Accelrys/Materials Studio 7.0/share/doc/content/core/theory/thapplying_constraints.htm
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Applying constraints and restraints

Constraints allow you to restrict a calculation to the region or conformation of
interest in a molecule

Fixed constraints
Fixed atoms or beads are constrained to a given location in space, so they cannot move

at all

Restraints
A restraint is an energetic bias that tends to force the calculation toward a certain
restriction but not requiring that it is met absolutely as in the case of constraints
1. Distance restraints
2. Angle restraints

3. Torsion restraints



Examples in Molecules and Solids Calculations

MS Examples



When to use different algorithms

Structure size and distance from the minimum

O The conjugate gradient and steepest descents methods can be used with
models of any size.

O Most Newton methods cannot be used with very large models, need
sufficient disk space to store a second-derivative matrix.

(Newton, Conjugated gradient algorithms ...) assumes surface is quadratic
Newton method : sensitive to the surface due to the inverse of Hessian matrix

a general rule, steepest descents is often the best optimizer to use for the first 10-100
steps, after which the conjugate gradient and/or a Newton optimizer



When to use different algorithms

Starting structures and choice of force field

Pre-procedure with a highly distorted system (examples with MS)



decision chart

: yes
Really. this is too complicated ' CG
I no yes
yes -
~ close to minimum — ==~ 1-3 degrees of freedom
‘ no ‘ o
L yes _—very broad vib. spectrum
damped MD or QUICKMIN - _>20 degrees of freedom._-

‘ no

N

DIIS




Storage requirement for different algorithms

Algorithm Variant Memory needed for Scales as '
Steepest descents First derivatives 3N
Conjugate gradient Polak-Ribiere First derivatives, gradient from previous 3N
iteration
Fletcher-Reeves First derivatives, gradient from previous 3N
iteration
Powell First derivatives, gradient from previous 3N
iteration
: : : : 2
Newton-Raphson Full, iterative Hessian, eigenvectors (3N)
BFGS First derivatives, Hessian update, scratch vectors (3N)2
DFP First derivatives, Hessian update, scratch vectors (3N)2
. 2
Truncated Hessian (3N)

General storage requirements of optimization algorithms
1 N=number of atoms (number of degrees of freedom).



Bad Conditions

e the convergence speed depends on the eigenvalue spectrum of the Hessian matrix
— larger systems (thicker slabs) are more problematic (acoustic modes are very
soft)
— molecular system are terrible (week intermolecular and strong intramolecular
forces)

— rigid unit modes and rotational modes can be exceedingly soft

might be required { ionic relaxation can be painful

e to model the behaviour of the soft modes. you need very accurate forces since
otherwise the soft modes are hidden by the noise in the forces

EDIFF must be set to very small values (10~9) if soft modes exist



Convergence criteria

Mathematical definition

Mathematically, a minimum is defined as the point at which the derivatives of the
function are zero and the second-derivative matrix is positive definite. Numerical
calculations.

Application to chemical models

In a molecular optimization, the atomic derivatives may be summarized as an average, a
root-mean-square (rms) value, or the largest value. An rms derivative is a better
measure than the average, because it weights larger derivatives more

should always check that the maximum derivative is not unreasonable.

How close to absolute convergence is good enough?

simply want to relax overlapping atoms before beginning a dynamics run, minimizing to
a maximum derivative of 1.0 kcal mol A1 is usually sufficient.

to perform a normal mode analysis, the maximum derivative must be less than 10~
Local or global minimum?

Other termination criteria

Generally, set a maximum number of iterations. That is, the run ends when either the
convergence criteria or the maximum number of iterations is reached, whichever
occurs first.



Optimization of Molecule

Building initio structure

Symmetry?

Some parameters control the Convergence tolerance of geometry optimization
Max Iterations, Max Step Size, Energy, Max. Force, Max Displacement ...

Other parameter: charge, strain, functional of DFT ...

Step by Step Process

coarse, medium, fine ... ... force-field, molecular mechanic, first-principles

Examples ...



Optimization of 1D nanotube

Two tasks: optimization of lattice constants and atomic positions.

1D system: Scan of lattice constant “c” and optimize structure at each point of “c”

Examples: optimization of 1D carbon nanotubes



Energy (eV)

Example of 1D MoTe, Nanotubes
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Possible distortion of MoTe, nanotubes




Optimization of 3D crystals

Optimization of lattice constants (a, b, c, alpha, beta, gamma) and atomic positions

Symmetry?

a=b=c, alpha=beta=gamma=60

Examples: Diamond




