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N-Particle System Problem

Remember
the good old days of the
I-glectron H-atomd?

Hy = Ev e wi_
2m dmepr

N 12 N - 2 2 0 N omooeo2
Ko, 1 222 W &oa z& 1
H=—22M VN.*:EE: 2 EV-,‘E +2
i=1 i i=1 =1 [T i 1 = i=
kinetic energy of ions

kinetic energy of electrons electron-ion interac

potential energy of ions electron-lectron interaction

tion

Multi-Atom-Multi-Electron Schrodinger Equation

H(Rj,...Ryin,..n) Y(R, . Ryin,..r)=E¥ R, .Run,.r)

2

Born-Oppenheimer
Approximation (skinless version)

* mass of nuclei exceeds that of the
electrons by a factor of 1000 or
more

* we can neglect the kinetic energy
of the nuclei

* treat the ion-ion interaction
classically

« significantly simplifies the
Hamiltonian for the electrons:

Born Oppenheimer

This term is just an external potential Vir)
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Write wavefunction as a simple product of single
particle states:  Hartree B (HPSHHER)
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Hartree Approximation: the electrons do not interact
explicitly with the others, but each electron interacts
with the medium potential given by the other electrons
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Solution: Self-Consistent
Field (SCF)

1 |e(l) o
e (2) @(2)

1r 5 1 o
wom—mle (e (2) - (2)e (1) | m— W ==
2" = N2

Fock, Slater 1930

NEEL T R 5 B B B
o (1) e.(1) oy (1)
Wap (a1 Fy ) = 7]\—, = fh} L e :[‘] S LY
2 (N) e, (N) oy (N)
B E T BRI BT

Hartree-Fock Solution
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exchange operator:
K_i(l)cb,(l):{ | d>,(2>ri¢,(2>dr2}d>j(1)

Hartree-Fock equations:
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Fock operator:
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Hartree-Fock-Roothann Equation

Roothann Linear Combination of Atomic Orbital — Molecular Orbital (LCAO-MO)
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Multiplying by o,'(r;) on the left and integrating we get
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Restricted or Unrestricted HF

Restricted HF restricted wave-function

2,(x)=g1(r)a(w)  5(x)=91(r)p(w)

Restricted wave-function for Li atom
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But: Kiswas(a)*0 and Kisgpzs=0

1s(@) and 1s(B) electrons will experience different

Restricted or Unrestricted HF

Unrestricted HF

No restriction on spatial wavefunction for spin orbit

2(x)=0"(ra(w)  2(x)=¢P(r)p(w)

Unrestricted wave-function for Li atom
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UHF solution: possible spin containment

Closed Shell System

RHF is good
RHF and UHF present same results

Open Shell System

UHF
f=: High efficient with two sets of spatial function
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For an UHF wave-function, the expectation value of 5% is:

28
{vmF exact

How to check?

Gaussian software, use iop(5/14)=2 i <S2>

Number of unpaired electrons % 5
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Recommended Solution

Restricted Open-Shell HF (ROHF)

BB £ slaterfT FI AL A&
1. Good for energy and wavefunction
2. Bad for spin-dependent properties
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— |22 - exact deublet state
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|45 - exact quartet stote
= goproximately a doublet |62 - exact sextet state
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Unrestricted HF (UHF)

R H R A slaterfT HI R AL A
1. Energy: Eywr < Egyr of Egonr
2. Good for spin-dependent properties

M. W, Wong, L. Radom, J. Phyx Chene 99, 8582 (1995
). Baker, A, Scheiner, J. Andechm, Chom, Mhvs Len, 206, 350 (1993

Basis Set (#48)
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Slater Type Orbitals (STO)
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- similar to atomic orbitals of the hydrogen atom
- more convenient (from the numerical calculation point of view) than AO,
especially when n-1>2 (radial part is simply r2, r3, ... and not a polinom)
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Advantages:

+ Physically, the exponential dependence on distance from the nucleus is
very close to the exact hydrogenic orbitals.

* Ensures fairly rapid convergence with increasing number of functions.
+Use only one zeta parameter to fit the orbital

Disadvantages:

* Three and four center integrals cannot be performed analytically.

* No radial nodes. These can be introduced by making linear combinations
of STOs.

Practical Use:
+ Calculations of very high accuracy, atomic and diatomic systems.
+ Semi-empirical methods where 3- and 4-center integrals are neglected.

Gaussian Type Orbitals (6TO)
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Contracted Gaussian Type Orbitals (C6TO)
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Treating Core Electrons (ECP, RECP)

CREN Available for SC(4s) through Hs(0s6p6d )., A shape consistent basis set developed by
Ermler and coworkers that has a large core region and small valence.

SBKJIC VDZ Available for Li(4s4p) through Hg(7s7p5d ), a relativistic basis set created by
Stevens and coworkers to replace all but the outermost electrons. The double-zeta valence
contraction is designed to have an accuracy comparable to that of the 3-216 all-electron basis
sef.

Hay-Wadt MB Available for K(5s5p) through Au(5s6p5d ), this basis set contains the valence
region with the outermost electrons and the previous shell of electrons. Elements beyond Kr
are relativistic core potentials. This basis set uses a minimal valence contraction scheme.

Hay-Wadt VDZ Available for K(5s5p) through Au(5s6p5d ), this basis 84 10 USING
EXISTING BASIS SETS set is similar to Hay+Wadt MB, but it has a double-zeta valence
contraction. This set is popular for transition metal modeling.

LANL2DZ Available for H(4s) through Pu(7s6p2d2f ), this is a collection of double-zeta basis
sets, which are all-electron sets prior to Na.

CRENBL Available for H(4s) through Hs(0s3p6d5f ), this is a collection of shape-consistent
sets, which use a large valence region and small core region.

Dolg Also called Stuttgart sets, this is a collection of ECP sets currently under development
by Dolg and coworkers. These sets are popular for heavy main group elements.
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d(H-H) Ang 0.732 0.741
D.(H-H) eV 3.49 4.75




What will be the next?

Schrt'idingcr Equation
Hy=Ey

Solwtion with a single Slater
determinant —» HF caleulation,

Additional approximation to HF Addition of more determinants —»ab-
limit —+ Semi Empirical initio converging to exact solution

Semi-empirical method
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Simplify this part with either experimental data fitted parameter
or with ab initial fitting data fitted parameter

Advantage: very fast compared with ab initio method
Disadvantage: can be erratic, fewer properties can be predicted

Semiempirical methods are parameterized to reproduce various results:
geometry, energy (usually the heat of formation), dipole,
heats of reaction, ionization potentials

A few methods have been parameterized to reproduce a specific properties
NMR chemical shifts, electronic spectra ...

Most Commonly Used Methods
Huckel

Earliest and Simplest, models only pi electrons in planar organic system
Only considering the nearest interaction, method used in class

Extended Huckel (or tight bonding)

Modeling the valence orbitals
Hamiltonian is built based on the orbital overlaps and experimental electron
affinities and ionization energies.

H; = KS; (H; + Hy)/2
Oribtal overlap comes from the simple STO representation
Can be used for simulation of organic and inorganic materials

Can be used for band structure calculation, especially in physics NOW!
Fairly poor at predicting molecular geometries

ppp (Pariser-Parr-Pople) method

An extended Huckel method to deal with heteroatom
Can be used for less demanding for electronic effect (molecular mechanics)

Most Commonly Used Methods - 2
CNDO
Complete Neglect of Differential Overlap, the simplest one
Models valence orbitals with a minimal basis set of Slater Type Orbitals
Useful for hydrocarbon results, but little else
CNDO/2 method, an improved CNDO method

CNDO/s parameterized to reproduce electronic spectra, excited state

MINDO

Modified Intermediate Neglect of Differential Overlap
MINDO/1, MINDO/2, MINDO/3
most reliable one

Some times used to obtain an initial guess for ab initio calculations.

Most Commonly Used Methods - 3

MNDO

Modified Neglect of Diatomic Overlap
Reasonable qualitative results for many organic systems, widely used

Some qualitatively or quantitatively incorrect results:
« Underestimate electronic excitation energies
* Overestimate activation barrier
¢ Underestimate the barriers to bond rotation SFs
*  Wrong prediction of the unstability of hypervalent compounds and
sterically crowded molecules
*  Wrong prediction of the stability of four-member ring
* The prediction of structures is bad.
Extended: MNDO/d including d orbital
can predict the stability of hypervalent compounds
MNDOC  including electron correlation

Most Commonly Used Methods - 4

INDO

Intermediate Neglect of Diatomic Overlap
‘Was used for Organic compounds at one time.. History...

ZINDO

Zerner’s INDO method: Spectroscopic INDO method
The method is reparameterized for the purpose of reporducing electronic
spectra results.
Can be used for: electronic spectra, UV transitions, and transition metal
Bad for Geometry Optimization.

SINDO

Symmetrically orthogonalized intermediate negloect of differential overlap
Design for binding energy and geometry of the 1%, 2" elements and 3™ row
transition metals




Most Commonly Used Methods - 5

AM1

Austin Model 1 (AM1)
Advantages:
Generally predicts the heats of formation more accurately than MNDO
Activation energies are improved over MNDO
Limitations:
1. It tends to poorly predict nitrogen pyramidalization
2. Limitation on energy:
Prediction of heat formation may inaccurate for molecules with large
amount of charge localization
Prediction of rotational barrier to be one-third the actual barrier
Predicting five-member ring be too stable
3. Geometries involving phosphorus are predicted poorly
4. Systematic errors in alkyl group energies (too stable)
5. Hydrogen bond length correct, but wrong in direction...
AM1 predicts energies and geometries better than MNDO, but not as well as
PM3.

Most Commonly Used Methods - 6

PM3

Use same questions as AM1 with an improved set of parameters
Most popular method for organic systems
More accurate than AM1 in hydrogen bond angle, but less in energy

Advance:
The formation energies are more accurate than MNDO and AM 1
Hypervalent compounds are predicted more accurately.

Limitation:
The rotation barrier around C-N bond in peptides is too low.
Bonds between Si and the halide atoms are too short.
Tend to predict incorrect electronic stats for germanium compounds.
Tends to predict sp3 nitrogen being pyramidal
Protons affinities are not accurate.
The predicted charge on nitrogen is incorrect
Nonbonded distances are too short.
Hydrogen bond are too short by 0.1 angstrom

PM3 predicts engeries and bond lengths more accurately than AM1 or MNDO

Most Commonly Used Methods - 7

PM3/TM

Extended PM3 method to include d orbitals
PM3/TM’s parameterization isbased on reproducing geometries from Xray
diffraction results, its results may be either reasonable or not.

TNDO

Typed Neglect of Differential Overlap
Parameterized for reproducing NMR chemical shift.

SAM1

Semi-ab initio method 1

It still neglects some of the integrals in HF, but including more than other
semiempirical methods.

SAMI are more accurate than AM1 and PM3 with more CPU times.
Vibrational frequencies computed are significantly more accurate than other
semiempirical methods.

Parameter :' AM1 | PM3| HF | MP2
R(H-F) | 0.83 | 0.94 0.92_: 0.92

R(HgFy) | 209 | 1.74 | 1.88 |
R(F-F) | 2.87 | 2.65| 2.79 |

1.84

2.76

h § gl St Bl
A(F—H“-Fq 159.3| 159.8| 168.3| 170.6
143.8'143.1111?.?1111.3

A(Hj-F-F) ,

Recommendation:
Semi-empirical methods may only be used for systems where parameters have
been developed for all of their component atoms.

Types of problems: hydrogen bonding, transition structures, molecular containing
atoms for which they are poorly parameterized, and so on,
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Excited Slater Determinants (ESD)
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Practical Solutions

RO LT A BOR IO, AT LUK K-> ESD#H

y Density

Bl FXERRE Functional
Complete Active Space | g Theory
Multiconfiguration SCF
(MC-SCF) (DFT)

Configuration Moller-Plesset
Interaction theory perturbation theory
Cl MP2

Couple Cluster theory
CCSD(T)

Configuration Interaction (CI)

Ye = agWscr + Zas‘l‘s + ZaD‘}’D + ZaT‘I‘T +...
S D T
-based on the variational principle, including the slater determinant of excited states

The expansion coefficients are determined by imposing that the energy should be a minimum.
The MOs used for building the excited determinants are taken from HF calculation and held
fixed

In the large basis set limit, all electron correlation methods scale at least as N®

Molecule: H,O
Basis set: 6-316(d) => 19BF => 38 spin MOs (10 occupied, 28 virtual)

The total number of excited determinants will be Ci{ =398637556

Many of them will have different spin multiplicity and can therefore be left out in
the calculation.

Generating only the singlet Configurational State Functions (CSF) we still obtain
1002001 determinants

=> Full CI method is only feasible for very small systems!!!

Configuration State Functions

T F

Consider a single excitation from the RHF
reference.

Both ®pye and @M have S,=0, but @M is not an
eigenfunction of S2.

Linear combination of singly excited
determinants is an eigenfunction of S2.

Configuration State Function, CSF
- (Spin Adapted Configuration, SAC)

H H Only CSFs that have the same
multiplicity as the HF reference
Singlet CSF

©(1.2) = () $,8(2) - ¢a2)$,(0)

Truncated CI methods HEHREEE
Yo, =agWser + 2. asWs + Y ap¥p + > ar¥r +...
s D T
Truncating the expansion given above at level one =>

CIs - CI with only single excited determinants

CID - CI with only doubly excited determinants

CISD - CI with Singles and Doubles (scales as N¢)

CISDT - CI with Singles, Doubles and Triples (scales as N&)

CISDTQ - CI with Singles, Doubles, Triples and Quadruples (scales as N'©)
- gives results close to the full CT
- can only be applied to small molecules and small basis sets

CISD - the only CI method which is generally feasible for a large variety of
systems
- recovers 80-90% of the available correlation energy

HF determinant £~ £x & 4454k
CI's results can vary with the software, due to the HF reference state.

CT valid for excited state, however not for the energy of ground state

Multi-Configuration Self-Consistent Field Method (MCSCF)

CI method with the MOs are also varied, along with the coefficients of the CI expansion

MCSCF methods - are mainly used for generating a qualitatively correct wave-function
- recover the static part of the correlation (the energy lowering is
due to the greater flexibility in the wave-function)

dynamic correlation - the correlation of the electrons' motions

In MCSCF methods the necessary configurations must be selected

=> CASSCF (Complete Active Space SCF)

- the selection of the configurations is done by partitioning the MOs into
active and inactive spaces

active MOs - some of the highest occupied and some of the lowest unoccupied MOs
Within the active MOs a full CT is performed

A more complete notation for this kind of methods is:  [n,m]-CASSCF
- nelectrons are distributed in all possible ways in m orbitals

9 T Carry out Full CI and orbital optimization within a smal
s [— active space.

Six-electron in six-orbital MCSCF is shown (written as
7 | — [6,6]-CASSCF)
6 | — Complete Active Space Self-consistent Field (CASSCF:

H,0 MOs

Why
1. To have a better description of the ground or excited
state. Some molecules are not well-described by a
single Slater determinant, e.g. Os.

2. To describe bond breaking/formation; Transition
States.

Open-shell system, especially low-spin.

Low lying energy level(s); mixing with the ground state
produces a better description of the electronic state.

sw
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Alternative to CASSCF > Restricted Active Space SCF (RASSCF)
RASSCF - the active MOs are further divided into three sections: RAS1, RAS2 and RAS3

E— RAS1 space - MOs doubly occupied in the HF reference determinant

RAS2 space - both occupied and virtual MOs in the HF reference
RASS . deferminant

RAS3 space - MOs empty in the HF reference determinant

RASSCF combines a full CI in a small number of MOs (RAS2)
and a CISD in a larger MO space (RAS1 and RAS3)

- Configurations in RAS2 are generated by a full CT
RAS2 Additional configurations are generated by allowing for
+ example a maximum of two electrons to be excited from RAS1
= and a maximum of two electrons to be excited to RAS3
| —H
Rast| | —J ﬁ
—H—
—4—
—H—

Multi-Reference Configuration Interaction (MRCI)

The Configuration Interaction calculation uses MCSCF calculation wave-function,
not HF wave-function

More costly

Some notations for denoting this type calculations:

MCSCF+1+2  a MRCI calculation with single and double CT excitations
out of an MCSCF reference space
CASSCF+1+2

Coupled Cluster (CC) Methods

The idea in CC methods is to include all corrections of a given type to infinite order.
The wave-function is written as: .
Y, =e¥,

where: e =1+T+T +..=

with the cluster operator given by:
T=T+T,+T,+..+ T

Acting on the HF reference wave function, the T, operator generates all i-th excited Slater
determinants:
oce it
aga
T, =2 2
T
wur
a
T =2 2t
i 2
The exponential operator may be rewritten as:

e =1+T, +(T, +lT,3j+[T,+T,T2 +iTl’)+...
2 6

First term generates the reference HF wave-function

Second term generates all singly excited determinants

First parentheses generates all doubly excited states (true doubly excited states by T, or product of
singly excited states by the product T,T;

The second parentheses generates all triply excited states, true (T3) or products triples (T;T,,
TTT)

The energy is given by:

occ vir
B =Eo+, Z(t,j‘b +7th 4,*’1?X<cp,cpj |®,p) — (D0 | (Dbtba>)
i<ja<b
So, the coupled cluster correlation energy is determined completely by the singles and doubles
amplitudes and the two-electron MO integrals

Truncated Coupled Cluster Methods

If all Ty operators are included in T the CC wave-function is equivalent to full CI wave-function,
but this is possible only for the smallest systems.
=—=> Truncationof T

Including only the T, operator there will be no improvement over HF, the lowest level of
approximation being T=T, (> CCD=Coupled Cluster Doubles)

If T=T;+T, > CCSD > scales as K8 the only generally applicable model
If T=T;+Tp+T, > CCSDT > scales as K?

Moller-Plesset Perturbation Theory

- a perturbational method in which the unperturbed Hamiltonian is chosen as a sum over Fock operators

Correlation was added as a perturbation N

N N N
Ho=> F= Z[hi +2 (3 —Kjj )]:Zh. +2(Vee)
i=l i=l j=l =
Zero order wave-function is the HF determinant

Zero order energy is the sum of MO energies

First order energy is exactly the HF energy

The correlation energy is recovered starting with the second order correction (MP2
method)
The first contribution to the correlation energy involves a sum over doubly excited
determinants which can be generated by promoting two electrons from occupied
MOs /and j to virtual MOs a and b. The explicit formula for the second order
Moller-Plesset correction is

=53, [0 10,0) (00, |oy0,)F

i<jad

Ei+Ej—Ea—&p
MP2 method - scales as N®
- accounts for cca. 80-90% of the correlation energy
- is fairly inexpensive (from the computational resources perspective) for
systems with reasonable number of basis functions (100-200)

mp3, mp4 similar
mp5 is seldom done (N° fime complexity or worse)

& A
B A
(s]
B8
e I |
1 1
" WP Ps
o
a
= A

Some systems: energies successively close to the total energy from mp2 to mp5
Some systems: energies occillattedly close to the total energy from mp2 to mp5
Some systems: energies diverse - single determinant reference is bad




Relative accuracy of energy

HF « MP2 < CISD = MM = CCSD < CCSD(T) < CCSDT < Full CI

Error in ab initio calculations:
1. The Born-Oppenheimer
approximation
2. The use of an incomplete basis set
3. Incomplete correlation
4. The omission of relativistic effects

Calculation Cost
HF method scales as  N* (N - # of basis functions)
CI methods scale as  Né-N1©
MPn methods scale as >N
CC methods scale as  >N®¢
mmmp Correlated methods are not feasible for medium
and large sized molecules!

) _._|_.-u-:;.a|- j_l‘l_rr.".|l'ﬂ|-.| ST DY 4

Density functional theory (DFT)

1920s: Introduction of the Thomas-Fermi model.

1964: Hohenberg-Kohn paper proving existence of exact DF.

1965:  Kohn-Sham scheme introduced.

1970s and early 80s: LDA. DFT becomes useful.

1985: Incorporation of DFT into molecular dynamics (Car-Parrinello)
(Now one of PRL’s top 10 cited papers).

1988: Becke and LYP functionals. DFT useful for some chemistry.

1998: Nobel prize awarded to Walter Kohn in chemistry for development of

DFT.

Basic Theory: The electron density is the essential

Hohenberg-Kohn Theorems

I Hohenberg, W. Kohn, Plivs. Rev. 136, B 804 {1964)

The electronic Hamiltonian is

N N N
~1 - ~ 1
) s 5 PN e+
Ho=T+ V4V, 2V 3>
' p(r)
where the external patential is
olr j p(rdPEN
N
First HK Theorem (HK1) N v(r)
The external potential V,,,(r) is (fo within a constant) a
unique functional of p(r).
Since, in turn V,(r) fixes H, the full many particle ground state is a J
uniquefunctional of p(r). H
Thus, the electron density uniquely determines the Hamiltonian operator ~
and thus all the properties of the system. HY +EY

Elp] = Ex.lol + Tlol + E..lo) f,-[.-)t:-..(r',\..'.-+:-'m[a-i-

Fulo] = Tlol + Eee.

Eglpo] = Tpgl + Eelpol _"/E_\'c[po]-

P
EolPol= [Po@Vidi + Tipol + Ewlpel

system dependemt unrpgially valid

Eqglpo] = | polf)Visdf + Fugclpo)

Baclp] = Tlo] + Eo] = (¥]T + ¥,

Eulpl=3]] "";ﬁ A, + Eoglp] = 0] + Eqalp]

El ] = Exse [0] + TIp]+ Een ] = [ p(F)Vase ()dF + Fiac[e]

e
plryJolr:) e
JECCEREIe ,

nown!

The explicit form of T[p] and E,_, ,[p] is the major challenge of DFT

m contaies all the effects of seif-intevaction correction and exechange and Coulomb corelstion

Variational Principle in DFT
Second HK Theorem

The functional that delivers the ground state energy of the
system, delivers the lowest energy if and only if the input density
is the true ground state density.

Total energy function:  E, . [pl=< W|T + VIl =+« U1, T =

Eo < Elf) = TIA + Exalfl + Eelfl - variational principle

For any trial density p(r), which satisfies the necessary boundary conditions such as:
p(r20and [ srmir=x

and which is associated with some external potential V., the energy obtained from the
functional of Fy represents an upper bound to the true ground state energy E,.
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First attempt: Thomas-Fermi model (1927)

LH. Thomas, Proc. Camb. Phil. Soc., 23, 542-548 (1927)

‘I‘T,:[p(rF)]:%(3112)2/3J‘p5‘/3(rF)ch"F E. Fermi, Rend. Acad, Lincei, 6, 602-607 (1927)

k.
Errlp(P)]= o (3n2)/* [ (Paf -2 [P aF L ] Md Rdfy

Problem in TF approximation: ignore correlation, and use local density approximation

Kohn and Sham (1965)
Tlp] - kinetic energy of the system

Kohn and Sham proposed to calculate the exact kinetic energy of a non-interacting
system with the same density as for the real interacting system.
N - kinetic energy of a fictitious non-interacting
Tks = 72 <W, ‘Vz‘ ‘V,> system of the same density p(r)
24 i - are the orbitals for the non-interacting system
(KS orbitals)

Tys is not equal fo the true kinetic energy of the system, but contains the major fraction of it
T= T+ (T-Ti)

Hohenberg-Kohn (1964) and Kohn-Sham (1965) ---Modern DFT

F[p]=Tslpl+ T [Pl +E,,n.lF]
Elpl=

Exe[P]+ Ts[pl+ T [p]+E, []=
N M Z 2
-ZIZ}P—"\%(G)\ dn
A= 1A
N
-3 2(# Vo)
i=1

N N

1 2
+52 2 [fln()

i1 1

+E.[p]

- I

é\%(m\zdndrz

E,[p] includes everything which is unknown:
- exchange energy
- correlation energy

- correction of kinetic energy (T-Tys)

Question:

How can we uniquely determine the orbitals in our non-interacting reference system?
How can we define a potential such that it provides us with a slater determinant which
is characterized by the same density as our real system?

Kohn-Sham Equations:

Minimize Elp] with the conditions: | P()dr=N
(o ‘WJ> =3;
n V4
- { J‘P(z)dr‘z +ve () ZTA},‘:W 0 . )
A1 Na Kohn-Sham - —\ )+ [ ) =gy [7EV2 +v(r)+j“:7r,‘ dr'- ZK’W 0j =50,
with: equations ) :
: ] Hartree-Fock equations
5 e
v () el <>
3 fres
2 Caladete
p(r) =2l (r) ke
i g

Kohn-Sham Formalism

W. Kohn, L1 Sham, Pins. Rev

14 A 133D

s

Exlp]=??

Local Density Approximation (LDA) - uniform electron gas
E..[p]= [p(r)e..(p(r))dr

The exchange energy is about ten times larger
than correlation in “standard” systems

€, - the exchange-correlation energy per particle of a uniform electron gas of density p(r)|
- depends on the density at r

exclp(r)) = ex(p(F)) + ec(p(7)

P - 1

3 £ 3p(7)
"_'4(_ x )
r.\..f\[,.' e Oy =

For the correlation part:
Monte-Carlo simulations of the homogenous electron gas - Ceperly and Alder
--- interpolation of these results - analytical expressions of ¢,

split into exchange and correlation contributions
represents the exchange energy of an electron in a uniform
electron gas of a particular density

e

q[) [Diac]

Slater exchange functional (S)

Vosko, Wilk & Nusair (1980) most widely used LDA —~ SVWN
Perdew &Wang (1992)

Local Spin Density Approximation (LSDA)
- variant of LDA for unrestricted formalism (open-shell systems)
T in- ities: " .
wo spin-densities Pe(f) and py(F)

P(r)=pgu(r) + pglr)
EEPlp,. Ppl= j'pi DExc(Pa (1), pg(r)) di

Performance of LDA (LSDA)

for atoms and molecules the exchange energy is usually
underestimated by 10%, but this is compensated by an
overestimation of correlation by 2 or 3 times.

underbind core electrons and overbind atoms in molecules

not able to reproduce the effects of bond breaking and forming

Molecules do not resemble a uniform electron gas!
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Generalized Gradient Approximation (66A)

E.lo]=[p(re. (p(r). Vo(r),...)dr

£, depends on the density and its gradient at r

to account for the non-homogeneity of
the true electron density — gradient

GGA Ey is usually split into its exchange and correlation contributions:
E:i?_.\ E;m.-\ v Egﬁ.—\
R, BRBREFGEH EHE HER

E§A =ERPA-F J Fisg) pa (1) di

a
- the reduced gradient density
) Vpgs(1) - interpreted as a local inhomogeneity parameter
Sqll) = ST P - it has large values for large gradients and in
Pa (T) regions of small densities

- it is zero for the homogenous electron gas

(1) Adjust g, such that it satisfies all (or most) known properties of the exchange-correlation hole and
energy.
PW91, PBE..
(2) Fit g, to alarge data-set own exactly known binding energies of atoms and molecules.
BLYP, OLYP, HCTH...

GGA F# T #2HLDABBELF I

Forms of F for exchange functionals
First class (A.D. Becke, Phys. Rev. A, 38, 3098, 1988)
i
1+ s, sinli™' s,
p=0.0042 - empirical
Derived functionals: FT97, PW91, CAM(A) and CAM(B)

P

Second class (A. D. Becke, J. Chem. Phys 84, 4524, 1986; J. P. Perdew, Phys.

Rev. B 33,8822, 1986.J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev.
Lett 77, 3865, 1996)

( .
=14+ 1.296] —
| | 2

P + 14| —"e

| (24n

Derived functionals: B86, P, PBE

Correlation functionals
P86, PW91,LYP

Exchange-Correlation functionals

BLYP

B __LDA il
€ =6 1- LA A 1 2 fAmeinbh—d7011
2UBA (1 + G6dx sinh ™ x))

PW91

14 say sinh =" saz) + (ag + ae= 190

W ]
WO = LAY el Pl o
1 + saysinh ™" (saz) + ass

ap = 010645 , ax=T.7056 , ay;=02743 , ay= 01508 , a5 = 0004
2137 N E R
= H"'l A= 4( ) . A= 00042
/- T e )
f ' WO o LDAL & oHp,5.1]
Lyp o =2 | e ! Lo op— 13
[ = s {;J + by [f”.l 2y + {l”" t 2\_ ol e 5 At o e
H=_‘;In 1+ 4 AT + CalCelp) + Carlte
1 |WpP 2 . 3 a 212/ g LDA 3 -! AR
to, = ( I Via] , Cp= ]”m.. ) A exp (~20el0(p) /(o5 |} |] ot (—J W
2 = 004018 b=0.132 o= 09531 4= 0240 a=000 | F=0066T265212 | Cn= 157550 | ) = 00035521
Hybrid Functionals
Meta-GGAs

Since EX>EC, an accurate expression for the exchange functional is a
prerequisite for obtaining meaningful results from density functional theory.
Exc = EF +ES  EMlp]=aEf +(1-a)ES"

E,*S-the exact exchange calculated with the exact KS wave function
a- fitting parameter

Cuthens in Cach

riribution of a Siat

B3LYP, BILYP, mPWO, PBEO,
HSE03/06

.

The natural next step is to introduce higher derivatives into the functional, namely

the density Laplacian, ¥ and the kinetic energy density, = =%, |V |*

In the meta-GGA's, the exchange-correlation potential becomes

orbital-dependent !

£, =£.(p(r)|Vp(r) . Vp(r). Y [Vo )
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Jacob's ladder of DFT frivres %

In Pursuit of the
“Divine” Functional

Chemical accuracy,

l dependenca on local density alone I

Hartree world

Classification of Density Functionals: GGA, hybrid,

Hybrid GGA functionals
B3LYP, H3PB6
BIPWI1, PREIPEE

A Tunctionals: TPSSH, BMK, MPWIK, MPWELYP
6, BLYP BriandH, BHandHLYP
BPWSL, OLYP, XLYR BHandHHYH, HSE2PBE
GI6LYP, PBEPEE HSELPAE, CAM-A3LYP
HCTH, BPDE
GIELYP, MPWLYF, MPWPWO1,

Py ChamUA, 111, 10439 (2007)
7-10872

Exchange and Correlation Functionals

E | E,
LDA GGA LDA GGA
Silater) BS6 ] i
ks (VBH) Pis6)
i LYP
POWEG) VWN
(L] N 'RE
Pl
PBE WY
ol PRE
rev P
RPBI ab-initio functionals:
fitted to theoretical data

semiempirical functionals:
In practice: BLYP, B3LYP, BPW9L, ... fitted to experimental data

Comparison of methods: e.g. H,0

E,., H-0 | £ZHOH vibrational modes [em!] ipole moament
method [a.u] 1A] 11 bending sy streteh  asym. sireich | (18]}
HF 06.2 1751
MP2 [[ITKT] 1643
COSINT) | - ho4.1 1639
SVWN 4.9 1571
104.0 1635
104.1 1613
105.1 1629 Jons
exp 76438 | 0058 1045 1645 3043

Different functionals for different properties

- Structure: bond lengths, bond angles, dihedrals

- Vibrational frequencies: wavenumbers, IR intensity, Raman activity

- Kinetics: barrier heights

- Thermochemistry: atomization energies, binding energies, ionization
potentials, electron affinities, heats of formation

- Non-bonded interactions: stacking, hydrogen bonding, charge transfer, weak
interactions, dipole interactions, = - interactions

What functional should I use?!
Depends on:
- your problem (system, the property investigated)
- availability and the computational costs

Atomization energies: S\WVN<<BP86<'BI;YPkBP\V9]< <B3P86-B3LYP=B3PW91
lonization energy: - B3LYP — the best!

Electron afinities: BLYP = BPW91 = BILYP

Vibrational frequencies: - (BLYP), B3LYP, ...

MO5-2X - bond dissociation energies, stacking and hydrogen-bonding
interactions in nucleobase pairs

Exchange-Correlation Functional

THARZ RN 47 5 “AU” FFEAETZEAS,
TIE T A FAIZERIR & 3E i s R A IEA B0 IZ BB
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Some known limitations of DFT

Unknown the exact functional - an intrinsic uncertainty in energy
between DFT and true ground state energy , and there is no direct way
to estimate the magnitude of this uncertainty

Limited accuracy in the calculation of excited states.

Underestimated the band gaps of semiconductor

Inaccurate results in week van der Waals attractions

Failure to describe some strong-correlated system

Some recent developments
Linear scaling techniques (O(n))
LDA+U for strong correlated system
LDA+vdw for van der waals interaction

Non-collinear calculation

Practical Solutions

Semiempirical

method Hartree-Fock theory

/

Density

Quantum Functional
" Chemistry -— Theory
Complete Active Space
Multiconfiguration SCF * (DFT)
(MC-SCF)

Configuration Moller-Plesset
Interaction theory perturbation theory
Cl MP2

Couple Cluster theory
CCSD(T)

Some tools for Quantum Chemistry

Expert-level quantum chemical codes:

Name Capabilities Ease of use Environment
GAMESS"  Mainstream + cutting edge Reasonable Unix/Linux.
Gaussian® Mainstream Easy Unise/Lin

DALTON Manstream + cutfing edge Unforgiving Unioe/Tamux

Mid-level quantum « he mistry programs (many more ¢

Name Capabilities Ease of use Environment
HyperChem'  Limited mainstream Easy Windows
Chem3iD Lumted manstream Easy Windows
Visualization and post-processing

Name Capabilities Eave of use Environment
GanssView'  Lumted maunstream Easy All
MOLDEN Lumited mastream Easy Une/Lanux.
MATLAR"  Sky's the limit Reasonable All

Modeling software

name license basis functions profcon
ABINIT free plane very
waves structured
Wannier linear
NETEP
OhETE pay functions scaling
+
Wien2k pay Yim yery
PI!HE waves accurate
plane
VASP pay s fast
PWscf free phe fast
waves

Kohn-Sham Orbitals
The orbitals satisfying the Kohn-Sham orbitals have no physical significance. Their only
connection to the real world is that the sum of their squares add up to the exact density.

However, many authors recommend the KS orbitals as legitimate tools in qualitative MO
considerations and this is due to the fact that the KS orbitals are not only associated with a
one electron potential which includes all non-classical effects, but they are also consistent
with the exact ground state density. Thus, in a sense, these orbitals are in a sense much
closer to the real systems than the HF orbitals that neither reflect correlation effects nor
do they yield the exact density.

On the other hand, the Slater determinant generated from the KS orbitals will not be
confused with the true many-electron wave function! The exact wave function of the target
system is simply not available in density functional theory! Accordingly, the eigenvalues ci
connected to the KS orbitals do not have a strict physical meaning. In Kohn-Sham theory
there is no equivalent of Koopmans' theorem, which could relate orbital energies to ionization
energies. There is one exception though: as a direct consequence of the long range behavior
of the charge density (its asymptotic exponential decay for large distances from all nuclei)

p(r) o= exp[-2y/21 [i[]

the eigenvalue of the highest occupied orbital, ¢, of the KS orbitals equals the negative of
the exact ionization energy. This holds strictly only for &, resulting from the exact VXC, not
for solutions obtained with approximations to the exchange-correlation potential.

What Do the Kohn—=Sham Orbitals and Eigenvalues Mean

Ealf Stawasier and foai Hoffmans
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