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N-Particle System Problem

Remember o2
the good old days of the
| -electron H-atom?? m 471- €oT
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kinetic energy of ions kinetic energy of electrons electron-ion interaction

potential energy of ions electron-electron interaction

Multi-Atom-Multi-Electron Schrodinger Equation
H(R,,...R;r,....r,) P(Ry,...R 1y, ...r, ) = E¥(R,,...Ryi1y,....T, )
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Born-Oppenheimer
Approximation (skinless version)

* mass of nuclei exceeds that of the
electrons by a factor of 1000 or
more

* we can neglect the kinetic energy
of the nuclei

e treat the ion-ion interaction
classically

— i Born Oppenheimer
e significantly simplifies the
Hamiltonian for the electrons: This term is just an external potential V(rj)
2 R N
h ) Z (:’
i A
I
2m i3 i1 j-1 R ‘ ,ld,lr—r‘

!;ﬂj



BN PRFIEM

Interacting
e® o
o®
@
FZ=Hamilton={g{t
n N hZ
H:zhi h=———V, -

,,- 2m. 7
HHEFEESHIE h o, = &, HFHE:
@, N T IBREL or 73 1 EILIE(MO) SRR
KAEIL & R 6950 1 e 2 LA |

BFRAEERE |
LiEEE

HIE MR A BER e 2 HEINE 2K

(n, |, m,s) EHrfs = +1/2

hEE 2K

v,

i

Non-Interacting



FTHREERZ R A ?

VWrite wavefunction as a simple product of single
particle states:  Hartree } (HPEUEEL)

LP(rl, A rn) = 1 (T1)€02 (7"2) (pn(rn)
Hard Product of Easy

Total energy E :ZS
i
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Hartree Approximation: the electrons do not interact
explicitly with the others, but each electron interacts
with the medium potential given by the other electrons
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Hartree B3E
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In order to find & we need
&, = SCF procedure
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Solution: Self-Consistent

Field (SCF)

Converged?
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Fock, Slater 1930
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Hartree-Fock Solution
BRI
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exchange operator:
Kj(l)q)i(l)z{ [ cpj(g)ri q)i(2)dt2}q)j(1)

Hartree-Fock equations:
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Fock operator:
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Hartree-Fock-Roothann Equation

Roothann  Linear Combination of Atomic Orbital — Molecular Orbital (LCAO-MO)

CI)i — Z Cﬂi §9ﬂ i=1,2,...K {(p“} — a set of known functions

f (7‘1 )Z C,P, (7‘1 y=& - Z C..o, (7‘1) matrix equation for the c,; coefficients

Multlplymg by 0, (r1) on the left and integrating we get:

2 eu] 9L Oe (r)dr = 8,3 | @ (r)e, (r)dr,

Fyv — 3 ¢y (r)f e, (r)dr,

- Fock matrix (KxK Hermitian matrix)
x
S = j ¢,1)e, (r)dr,

- overlap matrix (KxK Hermitian matrix)

- Z uv M_SZSm Ciis i=12,...K

- Roothaan equatlons
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Restricted or Unrestricted HF

Restricted HF restricted wave-function

& (x)=pi(r)a(w)  @,(x)=9,(r)p(w)

Restricted wave-function for Li atom

H \IJIE ‘\PRHF> = ‘ ¢13¢13¢25>

But: Kls(oc)Zs(oc )-""O and KlS(B)ZS(G):O

I1s(a) and 1s(B) electrons will experience different
potentials so that it will be more convenient to describe
the two kind of electrons by different wave-functions



Restricted or Unrestricted HF

Unrestricted HF

No restriction on spatial wavefunction for spin orbit

®;(x)=9%(r)a(w)  &x(x)=¢F;(r)p(w)

Unrestricted wave-function for Li atom

— s _
(lof) =8y (oPlpl)=8;  (pr|ol) =S




UHF solution: possible spin containment

Closed Shell System

RHF is good
RHF and UHF present same results

Open Shell System

UHF
fs5: High efficient with two sets of spatial function
R FAT A1 U PR AN 2« S B AL I R Y

m H ISR E > 3G



For an UHF wave-function, the expectation value of 52 is:

N N 2
<S2>L?IF :<Sz>exacr +N” _ZZ‘S;ﬁ‘ <‘?°’iE1
i

¢?>:6rx <¢1B

o5 ) =9, <‘pim

o5)=85

5 )i 245" )

How to check? Gaussian software, use iop(5/14)=2 #iH <S2>

Number of unpaired electrons s (8%
0 0 0

l 0.5 0.75
: MRREZE<10% ok | 2.0
3 [.5 3.75
4 2 6.0
5 2.5 8.75




Recommended Solution

Restricted Open-Shell HF (ROHF)

R EH 2 > slaterfT I A MEH G
1. Good for energy and wavefunction
2. Bad for spin-dependent properties

o of
— — W)= 3] 2)+c]4)+ ¢z 6)+ .
—t —— |2> - exact doublet state
—— — |4> - exact quartet state
- approximately a doublet |6> - exact sextet state

X7 L

Unrestricted HF (UHF)

W PR B slaterdT A1 U2k 2 A
1. Energy: Eyur < Epyr or Exopp
2. Good for spin-dependent properties

M. W. Wong, L. Radom, J. Phys. Chem. 99, 8582 (1995).
J. Baker, A. Scheiner, J. Andzelm, Chem. Phys. Lett. 216, 380 (1993).




Basis Set (£4£H)

o=(N)T2
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if , = A0 — LCAO-MO
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Slater Type Orbitals (STO)
RAHIE
o (&0, m;r,0,0) = Nr'"'e™Y, (6, ¢)
< BHUETRH
- similar to atomic orbitals of the hydrogen atom

- more convenient (from the numerical calculation point of view) than AO,
especially when n-122 (radial part is simply r2, r3, ... and not a polinom)

) 513 1/2 i ) 525 1/2 _ﬁ ) 525 1/2 fzr
(DIS_(;j exp(—¢,r) ¢2S_(967Z’J rexp( 2) ¢2px—(32ﬂ_j Xexp(—Tj

John C. Slater (1900-1976)

WNFE , WCGERH, §RRIEH (RALFLD)



STO

Advantages:

* Physically, the exponential dependence on distance from the nucleus is
very close to the exact hydrogenic orbitals.

* Ensures fairly rapid convergence with increasing number of functions.
Use only one zeta parameter to fit the orbital

Disadvantages:

- Three and four center integrals cannot be performed analytically.

* No radial nodes. These can be introduced by making linear combinations
of STO:s.

Practical Use:
- Calculations of very high accuracy, atomic and diatomic systems.
- Semi-empirical methods where 3- and 4-center integrals are neglected.



Gaussian Type Orbitals (6TO)
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Contracted Gaussian Type Orbitals (C6TO)
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SRBEAESHME (split-valence multi-D) :

- — ' MNEFINERJINSTOERERT.
- NEHMERLUBIT— ) STORERFEA , MTBERBER
FHBERS , FEJLSTOERETR.

3-21G
WER=1Gaussian¥l&HI—NSTORHA
NEBRTFR2NSTOREIA |, 23lH21MF011NGaussianEREHLS
6-311G
WEBFB— 1 STOHA , EH6- gaussianiiEHIE
MEBRFRA=STOHA , 238 3,1F011 N gaussianRERIUE



AL E4H (Polarization function):

- WTFEERENRFHNRT , FEERARUESR
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DRI KB (Diffusion function):
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Treating Core Electrons (ECP, RECP)

CREN Available for SC(4s) through Hs(Osépéd )., A shape consistent basis set developed by
Ermler and coworkers that has a large core region and small valence.

SBKJC VDZ Available for Li(4s4p) through Hg(7s7p5d ), a relativistic basis set created by
Stevens and coworkers to replace all but the outermost electrons. The double-zeta valence
contraction is designed to have an accuracy comparable to that of the 3-216G all-electron basis
set.

Hay-Wadt MB Available for K(5s5p) through Au(5sé6p5d ), this basis set contains the valence
region with the outermost electrons and the previous shell of electrons. Elements beyond Kr
are relativistic core potentials. This basis set uses a minimal valence contraction scheme.

Hay-Wadt VDZ Available for K(5s5p) through Au(5s6p5d ), this basis 84 10 USING
EXISTING BASIS SETS set is similar to Hay = Wadt MB, but it has a double-zeta valence
contraction. This set is popular for transition metal modeling.

LANL2DZ Available for H(4s) through Pu(7s6p2d2f ), this is a collection of double-zeta basis
sets, which are all-electron sets prior to Na.

CRENBL Available for H(4s) through Hs(0s3p6d5f ), this is a collection of shape-consistent
sets, which use a large valence region and small core region.

Dolg Also called Stuttgart sets, this is a collection of ECP sets currently under development
by Dolg and coworkers. These sets are popular for heavy main group elements.



HF 753
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What will be

the next?

7

Schrodinger Equation
Hvy =Evy

\

A4

Solution with a single Slater
determinant — HF calculation.

|

Additional approximation to HF Addition of more determinants —ab-
limit — Semi Empirical

initio converging to exact solution

]




Semi-empirical method

Fm,=<,u V>—ZZI<;1
7

Simplify this part with either experimental data fitted parameter
or with ab /nitial fitting data fitted parameter

ﬁi

2m

e

1

2

VE

V> + ZR,G |:(;!V |/10') —%(,u/l |VO')}

Advantage: very fast compared with ab /nitio method
Disadvantage: can be erratic, fewer properties can be predicted

Semiempirical methods are parameterized to reproduce various results:
geometry, energy (usually the heat of formation), dipole,
heats of reaction, ionization potentials

A few methods have been parameterized to reproduce a specific properties
NMR chemical shifts, electronic spectra ...



Most Commonly Used Methods
Huckel

Earliest and Simplest, models only pi electrons in planar organic system
Only considering the nearest interaction, method used in class

Extended Huckel (or tight bonding)

Modeling the valence orbitals

Hamiltonian is built based on the orbital overlaps and experimental electron
affinities and ionization energies.

Oribtal overlap comes from the simple STO representation

Can be used for simulation of organic and inorganic materials

Can be used for band structure calculation, especially in physics NOW!
Fairly poor at predicting molecular geometries

ppp (Pariser-Parr-Pople) method

An extended Huckel method to deal with heteroatom
Can be used for less demanding for electronic effect (molecular mechanics)



Most Commonly Used Methods - 2
CNDO

Complete Neglect of Differential Overlap, the simplest one

Models valence orbitals with a minimal basis set of Slater Type Orbitals
Useful for hydrocarbon results, but little else

CNDO/2 method, an improved CNDO method

CNDO/s parameterized to reproduce electronic spectra, excited state

MINDO

Modified Intermediate Neglect of Differential Overlap
MINDO/1, MINDO/2, MINDO/3

most reliable one

Some times used to obtain an initial guess for ab initio calculations.



MNDO

Most Commonly Used Methods - 3

Modified Neglect of Diatomic Overlap
Reasonable qualitative results for many organic systems, widely used

Some qualitatively or quantitatively incorrect results:

Underestimate electronic excitation energies S
Overestimate activation barrier

Underestimate the barriers to bond rotation SFg
Wrong prediction of the unstability of hypervalent compounds and
sterically crowded molecules

Wrong prediction of the stability of four-member ring

The prediction of structures 1s bad.

Extended: MNDO/d including d orbital

can predict the stability of hypervalent compounds
MNDOC including electron correlation



Most Commonly Used Methods - 4

INDO

Intermediate Neglect of Diatomic Overlap
Was used for Organic compounds at one time.. History...

ZINDO

Zerner’s INDO method: Spectroscopic INDO method
The method 1s reparameterized for the purpose of reporducing electronic
spectra results.
Can be used for: electronic spectra, UV transitions, and transition metal
Bad for Geometry Optimization.

SINDO

Symmetrically orthogonalized intermediate negloect of differential overlap

Design for binding energy and geometry of the 15, 2" elements and 3™ row
transition metals



Most Commonly Used Methods -5

AM1

Austin Model 1 (AM1)
Advantages:
Generally predicts the heats of formation more accurately than MNDO
Activation energies are improved over MNDO
Limitations:
1. It tends to poorly predict nitrogen pyramidalization
2. Limitation on energy:
Prediction of heat formation may inaccurate for molecules with large
amount of charge localization
Prediction of rotational barrier to be one-third the actual barrier
Predicting five-member ring be too stable
3. Geometries involving phosphorus are predicted poorly
4. Systematic errors in alkyl group energies (too stable)
5. Hydrogen bond length correct, but wrong in direction..
AMI predicts energies and geometries better than MNDO, but not as well as
PM3.



Most Commonly Used Methods - 6

PM3

Use same questions as AM1 with an improved set of parameters
Most popular method for organic systems
More accurate than AM1 in hydrogen bond angle, but less in energy

Advance:
The formation energies are more accurate than MNDO and AM 1
Hypervalent compounds are predicted more accurately.

Limitation:
The rotation barrier around C-N bond in peptides 1s too low.
Bonds between Si and the halide atoms are too short.
Tend to predict incorrect electronic stats for germanium compounds.
Tends to predict sp3 nitrogen being pyramidal
Protons affinities are not accurate.
The predicted charge on nitrogen is incorrect
Nonbonded distances are too short.
Hydrogen bond are too short by 0.1 angstrom

PM3 predicts engeries and bond lengths more accurately than AM1 or MNDO



Most Commonly Used Methods - 7

PM3/TM

Extended PM3 method to include d orbitals
PM3/TM’s parameterization isbased on reproducing geometries from Xray
diffraction results, its results may be either reasonable or not.

TNDO

Typed Neglect of Differential Overlap
Parameterized for reproducing NMR chemical shift.

SAM1

Semi-ab initio method 1

It still neglects some of the integrals in HF, but including more than other
semiempirical methods.

SAMI1 are more accurate than AM1 and PM3 with more CPU times.
Vibrational frequencies computed are significantly more accurate than other
semiempirical methods.



Recommendation:
Semi-empirical methods may only be used for systems where parameters have
been developed for all of their component atoms.

Types of problems: hydrogen bonding, transition structures, molecular containing
atoms for which they are poorly parameterized, and so on,
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MRS
Excited Slater Determinants (ESD)

Z[S—"Closed-Shell System (RHF) , KNEREMEIET FHIE , KRBT
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Practical Solutions

SO B 7 HOBOR RS, m] LUK K8 ESDEH

— Density

Functional
Theory
(DFT)

B X BXAE

Complete Active Space

Multiconfiguration SCF
(MC-SCF)

Configuration Moller-Plesset Couple Cluster theory

CCSD(T)

Interaction theory perturbation theory
ClI MP2




Configuration Interaction (CI)

S D T

-based on the variational principle, including the slater determinant of excited states

The expansion coefficients are determined by imposing that the energy should be a minimum.
The MOs used for building the excited determinants are taken from HF calculation and held
fixed

In the large basis set limit, all electron correlation methods scale at least as N

Molecule: H,O
Basis set: 6-316(d) => 19BF => 38 spin MOs (10 occupied, 28 virtual)

The total number of excited determinants will be C3g =398637556

Many of them will have different spin multiplicity and can therefore be left out in
the calculation.

Generating only the singlet Configurational State Functions (CSF) we still obtain
1002001 determinants

==> Full CT method is only feasible for very small systemsl!!



Configuration State Functions

Consider a single excitation from the RHF

< _ _T_ reference.

H % Both @y and ®W have S,=0, but ®® is not an
H H eigenfunction of S2.
() M. o)

S S Linear combination of singly excited
determinants is an eigenfunction of S2.

Configuration State Function, CSF
(Spin Adapted Configuration, SAC)

H H Only CSFs that have the same
multiplicity as the HF reference

Singlet CSF

®(1,2) = ga()$,82) - a2)$,50)



Truncated CI methods % EHREAES
\PC| — aOLPSCF + Z aS\PS + Z aDLPD + Z aT\PT +...
S D T

Truncating the expansion given above at level one =>

CIS - CI with only single excited determinants

CID - CT with only doubly excited determinants

CISD - CI with Singles and Doubles (scales as N°)

CISDT - CI with Singles, Doubles and Triples (scales as N&8)

CISDTQ - CI with Singles, Doubles, Triples and Quadruples (scales as N°)
- gives results close to the full CI
- can only be applied to small molecules and small basis sets

CISD - the only CI method which is generally feasible for a large variety of
systems
- recovers 80-90% of the available correlation energy

HF determinant A~< & 4484k,

CT's results can vary with the software, due to the HF reference state.

CT valid for excited state, however not for the energy of ground state



Multi-Configuration Self-Consistent Field Method (MCSCF)

CI method with the MOs are also varied, along with the coefficients of the CI expansion

MCSCF methods - are mainly used for generating a qualitatively correct wave-function
- recover the static part of the correlation (the energy lowering is
due to the greater flexibility in the wave-function)

dynamic correlation - the correlation of the electrons' motions

In MCSCF methods the necessary configurations must be selected

—> CASSCF (Complete Active Space SCF)

- the selection of the configurations is done by partitioning the MOs into
active and inactive spaces

active MOs - some of the highest occupied and some of the lowest unoccupied MOs
Within the active MOs a full CI is performed

A more complete notation for this kind of methods is:  [n,m]-CASSCF

- n electrons are distributed in all possible ways in m orbitals



9 Carry out Full CI and orbital optimization within a small
active space.

8 —

Six-electron in six-orbital MCSCF is shown (written as
7 | — [6,6]-CASSCF)
6 | — Complete Active Space Self-consistent Field (CASSCF)

H,O MOs

Why

1.  To have a better description of the ground or excited
state. Some molecules are not well-described by a
single Slater determinant, e.g. O;.

2. To describe bond breaking/formation; Transition

States.

Open-shell system, especially low-spin.

Low lying energy level(s); mixing with the ground state

produces a better description of the electronic state.

B w

st rfrrT



Alternative to CASSCF - Restricted Active Space SCF (RASSCF)
RASSCF - the active MOs are further divided into three sections: RAS1, RAS2 and RAS3

RAS1 space - MOs doubly occupied in the HF reference determinant

RAS2 space - both occupied and virtual MOs in the HF reference

RAS3 determinant

RAS3 space - MOs empty in the HF reference determinant

Configurations in RAS2 are generated by a full CT

Additional configurations are generated by allowing for
example a maximum of two electrons to be excited from RAS1
and a maximum of two electrons to be excited to RAS3

— J

RASSCF combines a full CI in a small number of MOs (RAS2)
and a CISD in a larger MO space (RAS1 and RAS3)

RASZ

0,1 or2 excitations

all E}{citatinnsT
| 0,1 or2 excitations

RAST

trrrrrsl ][] ]



Multi-Reference Configuration Interaction (MRCI)

The Configuration Interaction calculation uses MCSCF calculation wave-function,
not HF wave-function

More costly

Some notations for denoting this type calculations:

MCSCF+1+2 a MRCTI calculation with single and double CT excitations
out of an MCSCF reference space
CASSCF+1+2



Coupled Cluster (CC) Methods

The idea in CC methods is to include all corrections of a given type to infinite order.

The wave-function is written as: T
LIjcc =€ LIJo

where: eT:1+T+T2+...:ZlT"
o K!

with the cluster operator given by:
T=T,+T,+T, +..+ T,
Acting on the HF reference wave function, the T, operator generates all i-th excited Slater

determinants:
occ Vvir

T, => D i

occ vir

LY, = Z Zti?bqji? ;

i<j a<b
The exponential operator may be rewritten as:

e' =1+T, +(T2 +%T12)+(T3 +T,T, +%Tfj+...

First term generates the reference HF wave-function

Second term generates all singly excited determinants
First parentheses generates all doubly excited states (true doubly excited states by T, or product of

singly excited states by the product T;T,



The second parentheses generates all triply excited states, true (T3) or products triples (T, T,
T TTy)

The energy is given by:

occ Vir
ECC = EO +Z Z(tl?b +tiattj3 —tlbt?x<q)|q)1 | (DacDb>_<(Di(Dj | (Db(Da>)
I<ja<b

So, the coupled cluster correlation energy is determined completely by the singles and doubles
amplitudes and the two-electron MO integrals

Truncated Coupled Cluster Methods

If all Ty operators are included in T the CC wave-function is equivalent to full CI wave-function,
but this is possible only for the smallest systems.

——>  Truncationof T

Including only the T, operator there will be no improvement over HF, the lowest level of
approximation being T=T, (- CCD=Coupled Cluster Doubles)

If T=T+T,> CCSD - scales as K¢ the only generally applicable model
If T=T+T,+T;> CCSDT - scales as K&



Moller-Plesset Perturbation Theory

- a perturbational method in which the unperturbed Hamiltonian is chosen as a sum over Fock operators

Correlation was added as a perturbation N

i=1 i=1 =

Ho=>F =%{hi +%(Jij - Kij)jzihi +2(Vee )

Zero order wave-function is the HF determinant
Zero order energy is the sum of MO energies

First order energy is exactly the HF energy

The correlation energy is recovered starting with the second order correction (MP2

method)

The first contribution to the correlation energy involves a sum over doubly excited
determinants which can be generated by promoting two electrons from occupied
MOs / and j to virtual MOs a and b. The explicit formula for the second order
Moller-Plesset correction is

MP2 method

occ vir [<(I)icDj |(I)aCDb>—<CDiCDj |(qu)a>]2

E(MP2)=> >

I<ja<b

& +6'j — &3 &

- scales as N®

- accounts for cca. 80-90% of the correlation energy

- is fairly inexpensive (from the computational resources perspective) for
systems with reasonable number of basis functions (100-200)



mp3, mp4 similar
mp5 is seldom done (NI time complexity or worse)

A
&
> A
e
0 O
O
° =
exact I I I I
MP2 MP3 MP4 MP5
O
A
N A

FIGURE 3.2 Possible results of increasing the order of Moller—Plesset calculations.
The circles show monotonic convergence. The squares show oscillating convergence. The
triangles show a diverging series.

Some systems: energies successively close to the total energy from mp2 to mp5
Some systems: energies occillattedly close to the total energy from mp2 to mp5
Some systems: energies diverse -> single determinant reference is bad



Relative accuracy of energy

HF « MP2 < CISD =~ MP4 =~ CCSD < CCSD(T) < CCSDT < Full CI

Error in ab initio calculations:
1. The Born-Oppenheimer
approximation
2. The use of an incomplete basis set
3. Incomplete correlation
4. The omission of relativistic effects

Calculation Cost

HF method scales as N*# (N - # of basis functions)
CI methods scale as  N°-N10

MPn methods scale as >N°

CC methods scale as  >N¢

mmmp Correlated methods are not feasible for medium
and large sized molecules!
2

oo b)) st s Ay
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Density functional theory (DFT)

1920s: Introduction of the Thomas-Fermi model.

1964: Hohenberg-Kohn paper proving existence of exact DF.

1965: Kohn-Sham scheme introduced.

1970s and early 80s: LDA. DFT becomes useful.

1985: Incorporation of DFT into molecular dynamics (Car-Parrinello)
(Now one of PRL’s top 10 cited papers).

1988: Becke and LYP functionals. DFT useful for some chemistry.

1998: Nobel prize awarded to Walter Kohn in chemistry for development of

DFT.

Basic Theory: The electron density is the essential



Hohenberg-Kohn Theorems
P. Hohenberg, W. Kohn, Phys. Rev. 136, B 864 (1964)

The electronic Hamiltonian is

N N N
. . , . 1 . - - 1
H=T+Voet Ve == Vit o)+ —
i C i i<j p(r)
where the external potential is
O e [e(rigrN
A
First HK Theorem (HK1) N v(r)

The external potential V_ .(r) is (to within a constant) a

unique functional of p(r).

ext

Since, in turn V,,,(r) fixes H, the full many particle ground state is a \
uniquefunctional of p(r). H
Thus, the electron density uniquely determines the Hamiltonian operator A

and thus all the properties of the system. HY + EY

E[p] = Enelp] + Tlp] + Eeelp] = f p(F)VNe(F)dr + Fuk[p).

Fuklp] = Tlp] + Eee.



Eglpol = Tlpgl + EeelPo] + Ene[Po]-

Eolpol = Jpﬂ(f}vﬂedf + T[Pol+ EeelPol -
system -:iep-endenr unIv: a-;l-l‘r vahd

Eolpol = | po@)Vaeedt + Fe[Po]

- \
Fexlp] = T[] + E_[p] = i ‘{"T + VW)

dfy + Eqlp] = JIp] + Eqlp]

| p(r) p(n) di

2




E[P] = Ene [P]+ T[P]+Eece [P] = | P(F Ve (F)dF +Fiig [P

Only J[p] is known!
The explicit form of T[p] and E___,lp] is the major challenge of DFT

m - contains all the effecits of self-interaction correction and exchange and Coulomb correlation




Variational Principle in DFT
Second HK Theorem

The functional that delivers the ground state energy of the
system, delivers the lowest energy if and only if the input density
is the true ground state density.

Total energy function:  Ey .., [pl=< U|T + V|U >+< U|V,,, | >

Fo < E[f] = T[f] + En.[7] + Ew.[7] - variational principle

For any trial density p(r), which satisfies the necessary boundary conditions such as:
p(l")ZO and /P(?T)dﬁ' = N

and which is associated with some external potential V,,,, the energy obtained from the
functional of F, represents an upper bound fo the true ground state energy E,.



First attempt: Thomas-Fermi model (1927)

F 3 2.2/3¢ 5/3,F\ ,F L.H. Thomas, Proc. Camb. Phil. Soc., 23, 542-548 (1927)
Trele(r)]= 5(311 ) j p”3(P)dr  E.Fermi, Rend Acad, Lincei, 6, 602-607 (1927)

Fli_ 3 2\2/3 [ 5/3 (ENyE P(fj?) P(f'1)P(f‘2) F F
Errlp(r)]=75(3m)*> [p (r)dr—Zder ﬂ drydr;

Problem in TF approximation: ignore correlation, and use local density approximation

Kohn and Sham (1965)
T[p] - kinetic energy of the system

Kohn and Sham proposed to calculate the exact kinetic energy of a non-interacting
system with the same density as for the real interacting system.

1N , Tes - kinetic energy of a fictitious non-interacting
——Z<Wi ‘V ‘LV,-> system of the same density p(r)
23 V. - are the orbitals for the non-interacting system

(KS orbitals)

T\ is not equal to the true kinetic energy of the system, but contains the major fraction of it
T= T+ (T-Ty)

Hohenberg-Kohn (1964) and Kohn-Sham (1965) ---Modern DFT



FHK [p] — T|<s [p] + \T[p] + Enon—cl [p]

Elp] = Ex.[P1+ Tys[p]l+ T[] +E, [P] =
N M 5
3 ) dn

i—1 ~ A=1 Na

13 (0e)
2 = | |
1N 1

52, 2 [l o) dridr,

i=1 j 12

J=1

24
+E..[r]
E..[p] includes everything which is unknown:

- exchange energy

- correlation energy

- correction of kinetic energy (T-Tys)



Question:

How can we uniquely determine the orbitals in our non-interacting reference system?
How can we define a potential such that it provides us with a slater determinant which
is characterized by the same density as our real system?

Kohn-Sham Equations:

Minimize E[p] with the conditions: jp(r')dr' =N
<¢i ‘¢J> :6ij

1 .. rp() A
‘ —5 Vot dr, +v,.(n) -~ o =¢€0,
{ 2 '[ e 1 EGA

with:

V. (r)= —EE;; Ll

p(r) = J ()



Kohn-Sham Formalism

Guess ¢
]
W. Kohn, L.J. Sham, Phys. Rev. 140, A 1133 (1965)

Assume

v C(r']I =

1 2 p(PI) I _ 1
Kohn-Sham [—EV +v(r)+J“r‘_rl‘dr +uxc(r)}gﬁ = ¢ [_E +v(r)+j‘p( )‘ dr’ _ZK*(P)J —&ip

equations oy i g
= ¥j.§] Hartree-Fock equations

No

Converged?

Yes

| Calculate .

molecular
properties [




E..[p]=??

Local Density Approximation (LDA) - uniform electron gas

E..[p]= _‘-p(r').sxC (o(r))dr  The exchange energy is about ten times larger
than correlation in "standard” systems

€. - The exchange-correlation energy per particle of a uniform electron gas of density p(r)
- depends on the density at r

exc(p() = ex(p(7)) + ec(p(¥))  split into exchange and correlation contributions

= 3 (3p(7) 1/3 represents the exchange energy of an electron in a uniform
- 4 - electron gas of a particular density

s f 3/3\"* '
Ex=Cx [ pPmde ox= -7 (= [Dirac] Slater exchange functional (S)

For the correlation part:
Monte-Carlo simulations of the homogenous electron gas - Ceperly and Alder
--- interpolation of these results - analytical expressions of ¢,

Vosko, Wilk & Nusair (1980) most widely used LDA — SVWN
Perdew &Wang (1992)



Local Spin Density Approximation (LSDA)

- variant of LDA for unrestricted formalism (open-shell systems)

Two spin-densities: o, (7) and IJBU:)
P(I) =Pg (1) + pp(r)

E LSD

P Ppl = | PHExC(Pe (). pp(D)) di

Performance of LDA (LSDA)

« for atoms and molecules the exchange energy is usually
underestimated by 10%, but this is compensated by an
overestimation of correlation by 2 or 3 times.

 underbind core electrons and overbind atoms in molecules

* not able to reproduce the effects of bond breaking and forming

Molecules do not resemble a uniform electron gas!



Generalized Gradient Approximation (GGA)

to account for the non-homogeneity of
Elp]= jp(r')exc(p(r'),Vp(r'),...)dr' the true electron density — gradient

£, depends on the density and its gradient at r

GGA Ey. is usually split into its exchange and correlation contributions:

ESc™ = ESO% + EZ9A GGA A& 2 HLDA BB ELFH 4%
B, B RESFZE EFERE 19555

ES%* = ER> - 3 [ Fis) pg (D) di
4]

- the reduced gradient density

_ | Vp,(T) | - interpreted as a local inhomogeneity parameter
S(I) = 2 {i - - it has large values for large gradients and in
Ps (1) regions of small densities

- it is zero for the homogenous electron gas

(1) Adjust g, such that it satisfies all (or most) known properties of the exchange-correlation hole and
energy.
PWO91, PBE...
(2) Fit g, to alarge data-set own exactly known binding energies of atoms and molecules.
BLYP, OLYP, HCTH...



Forms of F for exchange functionals
First class (A.D. Becke, Phys. Rev. A, 38, 3098, 1988)
EB _ Bsé
1 + 6Ps, sinh™' s

p= 0.0042 - empirical
Derived functionals: FT97, PW91, CAM(A) and CAM(B)

4]

Second class (A. D. Becke, J. Chem. Phys 84, 4524, 1986; J. P. Perdew, Phys.
Rev. B 33, 8822, 1986.J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev.
Lett 77, 3865, 1996)

> 4 g
FP% = |141296|— 0 _|+14]— %0 40250 _
| (Zan™y™? (24n*)"° (24n*)!3

Derived functionals: B86, P, PBE

Correlation functionals
P86, PW91, LYP



Exchange-Correlation functionals

BLYP
Bx?
(BS8 _ (LDA | _ |
. * 21/3 A, (1 4 63z sinh~!(x))
21/3|%7 p| 3 /3\Y¢ _

EL}"P‘ _ o , {,ﬂ“|— b,ﬂ 2/3 GFPE“HS o Qtw 4+ l(tw 4+ ETEP)] E_cp—lfa}

) 1+ dp=1/3 Tl

i 8 ;"3" 3 F 10

a=0.04918 | b=0.132 , ¢=0.2533 , d=0.349



PW91

1 + saq sinh~!(sas) + (a5 + a. e_lmszjgz

PWO1 _ _LDA
. =€, 7 —— 1
1 + saqsinh™" (saq) + axs

I

Pl

a; = 019645 |, ax =7.7956 |, a3 =0.2743 | ay = —0.1508 | a5 = 0.004

PWO1 _ LDA
€e [

pl+ pH|p, s.1]

H=5a 1M s v ae - Az

32 [ 20(t? + Atd)
1
20y

] + CTCﬂ[CTc[:p) + Cﬂl]tﬂe— 10052

Yo V)
4 p’.’;“ﬁ

A= %ﬁ [exlzv( QQELM(PV(P-SEJ) - 1]_1 , V= (%)
1

a=009 . 3=0.0667263212 | Cygn=

5.75569 | . = 0.0035521



Hybrid Functionals

Since EX>>EC, an accurate expression for the exchange functional is a
prerequisite for obtaining meaningful results from density functional theory.

Eye = ES™ + EES  E™[p]=aEX + (1-a)ES

E,*5-the exact exchange calculated with the exact KS wave function
a- fitting parameter

(A. D. Becke, J. Chem. Phys. 98, 5648, 1993)
EBLYP - (1-a) EXP +a B + b EB®® 4+ ¢ EEYP + (1 - o) EED R D N W2t R X3

Citations in Each Year

corresponds to the exchange contribution of a Slater determinant

dl"““lll B3LYP, BILYP, mPWO, PBEO,
HSE03/06

(Perdew, 1. P., Burke, K. & BErnzerhof, M. 1996 Phys. Rev. Left. 77, 3865—3868, 1996)

EyM . jEEA 1 025EE - ES GGA = PBE




Meta-GGAs

The natural next step is to introduce higher derivatives into the functional, namely

the density Laplacian, V?p and the kinetic energy density, 7 = 5", |[V;|*

In the meta-GGA'’s, the exchange-correlation potential becomes
orbital-dependent !

e, =€.(p(0).Vp()| .V p(r). Y |Vo )



Jacob’s ladder of DFT

In Pursuit of the
“Divine” Functional

Ann E. Mattsson

Gorling-Levy, 1994;
Engel-Dreizler, 1999;

Bartlett et el., 2005;

B2-PLYP (Grimme et el., 2006)

PKZB, TPSS

Proynov-Salahub-95

B88-P86,
PW91, PBE

Hartree world




Exchange and Correlation Functionals

E

X

LDA

GGA

S(later)

BR6

Becke, JCP 84, 4524 *86
B(R&)

Becke, PRA 38, 3098 “RBR

P(W&6)

Perdew, Wang, PRB 33, 8800 *86

I)‘L}l

Perdew et al., PRB 46, 6671 *92
PBE

Perdew, Burke, Ernzerhof,

PRL 77,3865, 96

revPBE

Zhang, Yang, PRL 80, 890 “98
RPBE

Hammer, Hansen, Norskov,
PEB 59, 7413 99

LDA

GGA

(VBH)

von Barth, Hedin,
J. I’hj. 5. C 5, 1629 72

VWN

Vosko, Wilk, Nusair.,

Can. J. Phys. 58, 1200, *80
PWOI

Perdew, Wang,
PRB 45, 13244 92

P(%6)

Perdew, PRB 33, 8822 "B6
LYP

Lee, ¥Yang, Parr,

PRB 37, 785 88’

PO

i siehe links)

PBE

i siehe links)

In practice: BLYP, B3LYP, BPWI1, ...

ab-initio tfunctionals:
fitted to theoretical data

semiempirical functionals:

fitted to experimental data




Classification of Density Functionals: GGA, hybrid,
meta...

A Hybrid GGA functionals
L(S)DA functionals: B3LYP, B3P86

SVWN, SVWN3, SVWNS, it e
SPWL O3LYP, KMLYP

B98, B971, B972

M052X, THCTH-HYB
Pure GGA functionals: TPSSH, BMK, MPW1K, MPW3LYP
BPS6, BLYP BHandH, BHandHLYP
BPW91 OLYP. XLYP BHandHHYB, HSE2PBE
G96LYP, PBEPBE HSE1PBE, CAM-B3LYP

HCTH, BPBE
GY6LYP, MPWLYP, MPWPW91,

Pure meta GGA (1) functionals: Hybrid meta-GGA functionals:

BB95, MPW1K B1B95, BB1K

THCTH, VSXC, PBEKCIS PBE1KCIS, VS98,

TPS5, TPSSKCIS, mPWB95 PKZB, BMK, TPSS1KCIS, TPSSh
MO5, MO5-2X, MPW1B95
MPWE1K, MPW1KCIS
PW6B95, PWBGK

S.F. Sousa, P.A. Femandes, M.). Ramos, 1.Phys.Chem.A, 111, 10439 (2007)
Yi-Gui Wang, 7 Phys. Chamn. A 2009, 113, 1086710872
Gaussian 03




Comparison of methods: e.g. H,O

E.. H-O |ZHOH vibrational modes [cm!| dipole moment

method [a.u.] [A] [7] bending svm. stretch  asyvm. stretch [D]
HF -76.065 | 0.940 | 106.2 1751 4229 4130 1.984
MP2 -76.408 | 0,958 | 104.0 1643 3978 3835 [.852
COSD(T) | -76.421 | 0958 | 104.1 1659 3952 3845 [.839
SVWN 75911 | 0.970 | 104.9 157 3832 3737 1.930
RPBE 76,465 | 0.968 | 104.0 163 5 3RS 3722 [.863
BPR6 “76.477 | 0,970 104.1 1613 3789 3690 [.88O
B3LYP |-76.472 | 0.901 [05.1 1629 3905 3804 [.848
exp. -76.438 | (L9588 | 104.5 1648 3943 3832 [.854

= —1'::'t||| = 1% = | W = :‘1' il > 1%




Different functionals for different properties

- Structure: bond lengths, bond angles, dihedrals

- Vibrational frequencies: wavenumbers, IR intensity, Raman activity

- Kinetics: barrier heights

- Thermochemistry: atomization energies, binding energies, ionization
potentials, electron affinities, heats of formation

- Non-bonded interactions: stacking, hydrogen bonding, charge transfer, weak
interactions, dipole interactions, = -ninteractions

What functional should I use?!
Depends on:
- your problem (system, the property investigated)
- availability and the computational costs

Atomization energies: SVWN-=-<BP86<BLYP=BPW91=<B3P86<B3ILYP=B3PW91
lonization energy: - B3LYP — the best!

Electron afinities: BLYP = BPW9] = B3LYP

Vibrational frequencies: - (BLYP), B3LYP, ...

MO5-2X - bond dissociation energies, stacking and hydrogen-bonding
Interactions in nucleobase pairs



Exchange-Correlation Functional
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Some known limitations of DFT

Unknown the exact functional = an intrinsic uncertainty in energy
between DFT and true ground state energy , and there is no direct way
to estimate the magnitude of this uncertainty

Limited accuracy in the calculation of excited states.

Underestimated the band gaps of semiconductor

Tnaccurate results in week van der Waals attractions

Failure to describe some strong-correlated system

Some recent developments

Linear scaling techniques (O(n))

LDA+U for strong correlated system

LDA+vdw for van der waals interaction

Non-collinear calculation



Practical Solutions

Semiempirical
method Hartree-Fock theory

Density

Quantum Functional
i P Theor
Complete Active Space C hem ISt ry (D FT)y

Multiconfiguration SCF
(MC-SCF)

Moller-Plesset

Configuration
Interaction theory
ClI

Couple Cluster theory
CCSD(T)

perturbation theory
MP2




Some tools for Quantum Chemistry

Expert-level quantum chemical codes:
Name Capabilities Ease of use
GAMESS®  Mainstream + cufting edge Reasonable
Gaussian” Mainstream Easy

DATTON Mainstream + cutting edge Unforgiving

Environment
Umx/Linux
Umx/Linux

Umix/Linux

Mid-level quantum chemistry programs (many more ¢

Name Capabilities Ease of use
HyperChem® Limited mainstream Easy
Chem3D Limited mainstream Easy

Visualization and post-processing:

Name Capabilities Ease of use
GaussView™  Limited mainstream Easy
MOLDEN Limited mainstream Easy

MATLAB®  Sky’s the limit Reasonable

Environment
Windows
Windows

Environment
All
Unmix/Linux
All



Modeling software

name license basis functions pro/con
ABINIT free plane very
waves structured
ONETEP ) Wannier linear
Pay functions scaling
Wien2k pay Yim very
plane waves | accurate
VASP pay plane fast
waves
PWscf free plane fast

waves




Kohn-Sham Orbitals

The orbitals satisfying the Kohn-Sham orbitals have no physical significance. Their only
connection to the real world is that the sum of their squares add up to the exact density.

However, many authors recommend the KS orbitals as legitimate tools in qualitative MO
considerations and this is due to the fact that the KS orbitals are not only associated with a
one electron potential which includes all non-classical effects, but they are also consistent
with the exact ground state density. Thus, in a sense, these orbitals are in a sense much
closer to the real systems than the HF orbitals that neither reflect correlation effects nor
do they yield the exact density.

On the other hand, the Slater determinant generated from the KS orbitals will not be
confused with the true many-electron wave function! The exact wave function of the target
system is simply not available in density functional theory! Accordingly, the eigenvalues ¢i
connected fo the KS orbitals do not have a strict physical meaning. In Kohn-Sham theory
there is no equivalent of Koopmans' theorem, which could relate orbital energies to ionization
energies. There is one exception though: as a direct consequence of the long range behavior
of the charge density (its asymptotic exponential decay for large distances from all nuclei)

p(1) o exp[—2+/ 21 [£]]

the eigenvalue of the highest occupied orbital, ¢, of the KS orbitals equals the negative of
the exact ionization energy. This holds strictly only for ¢, resulting from the exact VXC, not
for solutions obtained with approximations to the exchange-correlation potential.

J. Am. Chem. Soc. 1999, 12], 3414—3420

What Do the Kohn—Sham Orbitals and Eigenvalues Mean?

Ralf Stowasser and Roald Hoffmann*



