
第七章：密度泛函理论方法

1 Chapter 7 DFT



Why DFT

Density Functional Theory (DFT)

DFT is an alternative approach to the theory of electronic structure; 
electron density plays a central role in DFT.

Why a new theory?

HF method scales as N4 (N - # of basis functions)
CI methods scale as N6-N10

MPn methods scale as >N5

CC methods scale as >N6

Correlated methods are not feasible for medium and large sized molecules!





Background
 1920s:  Introduction of the Thomas-Fermi model.

 1964:    Hohenberg-Kohn paper proving existence of exact DF.

 1965:    Kohn-Sham scheme introduced. 

 1970s and early 80s:  LDA.  DFT becomes useful.

 1985:  Incorporation of DFT into molecular dynamics (Car-Parrinello)

(Now one of PRL’s top 10 cited papers).

 1988:  Becke and LYP functionals.  DFT useful for some chemistry.

 1998:  Nobel prize awarded to Walter Kohn in chemistry for

development of DFT.



Basic Theory:   The electron density is the essential



Properties of the electron density

Function:  y=f(x) ρ= ρ(x,y,z)

Functional:  y=F[f(x)] E=F[ρ(x,y,z)]
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First HK Theorem (HK1)

Hohenberg–Kohn Theorems

The external potential Vext(r) is (to within a constant) a 
unique functional of ρ(r).

Since, in turn Vext(r) fixes H, the full many particle ground state is 
a uniquefunctional  of ρ(r).
Thus, the electron density uniquely determines the Hamiltonian 
operator and thus all the properties of the system.



Ψ’ as a test function for H:

Ψ as a testfunction for H’:

Summing up the last two inequalities:

Proof:

Contradiction!







Variational Principle in DFT
Second HK Theorem
The functional that delivers the ground state energy of the system, 
delivers the lowest energy if and only if the input density is the true 
ground state density.

- variational principle

For any trial density ρ(r), which satisfies the necessary boundary conditions such as:

ρ(r)≥0 and 

and which is associated with some external potential Vext, the energy obtained from the 
functional of FHK represents an upper bound to the true ground state energy E0. 

Total energy function:



First attempt:  Thomas-Fermi model (1927)

= r)dr(ρ)(3π
10
3)]r([ρT 5/32/32

TF


21
12

215/32/32
TF rdrd

r
)r()ρr(ρ

2
1rd

r
)r(ρZr)dr(ρ)(3π

10
3)]r([ρE








 +−=

L.H. Thomas, Proc. Camb. Phil. Soc., 23, 542-548 (1927)
E. Fermi, Rend. Acad., Lincei, 6, 602-607 (1927)

Problem in TF approximation: ignore correlation, and use local density approximation 

Kohn and Sham (1965)
T[ρ] – kinetic energy of the system
Kohn and Sham proposed to calculate the exact kinetic energy of a non-interacting 
system with the same density as for the real interacting system.
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TKS – kinetic energy of a fictitious non-interacting 
system of the same density ρ(r)

Ψi - are the orbitals for the non-interacting system
(KS orbitals)

Tks is not equal to the true kinetic energy of the system, but contains the major fraction 
of it
T = Tks + (T-Tks)

Hohenberg-Kohn (1964) and Kohn-Sham (1965) ---Modern DFT
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Exc[ρ] includes everything which is 
unknown:

- exchange energy

- correlation energy

- correction of kinetic energy (T-TKS)



Minimize E[ρ] with the conditions: 
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Kohn-Sham Equations:
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with:

Question:
How can we uniquely determine the orbitals in our non-interacting reference system?
How can we define a potential such that it provides us with a slater determinant which 
is characterized by the same density as our real system?



Kohn-Sham Formalism
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Hartree-Fock equations

Kohn-Sham 
equations



Exc[ρ] = ??

Local Density Approximation (LDA) – uniform electron gas 

(r))dr(ρρ(r)ε][ρE xcxc =

εxc – the exchange-correlation energy per particle of a uniform electron gas of density ρ(r)
- depends on the density at r

For the correlation part: 
Monte-Carlo simulations of the homogenous electron gas – Ceperly and Alder

--- interpolation of these results  analytical expressions of εc

The exchange energy is about ten times larger 
than correlation in “standard” systems

split into exchange and correlation contributions

represents the exchange energy of an electron in a uniform
electron gas of a particular density

Slater exchange functional (S)

Vosko, Wilk & Nusair (1980) most widely used LDA → SVWN
Perdew &Wang (1992) 



Local Spin Density Approximation (LSDA)

• for atoms and molecules the exchange energy is usually underestimated 
by 10%, but this is compensated by an overestimation of correlation by 2 
or 3 times.

• underbind core electrons and overbind atoms in molecules
• not able to reproduce the effects of bond breaking and forming

Molecules do not resemble a uniform electron gas!

- variant of LDA for unrestricted formalism (open-shell systems)

Two spin-densities:

Performance of LDA (LSDA)



LDA

 Used by physicists for 40 years.

 εxc(n) for homogenous electron gas.
 exchange-correlation energy per electron

 Assumption: grad n is small in some sense.
 Accurate for nearly homogeneous system and for 

limit of large density.

(r))dr(ρρ(r)ε][ρE xcxc =



Limitations
 Band gap problem
 Overbinding (cohesive energies 10-20% error).
 High spin states.
 Hydrogen bonds/weak interactions
 Graphite



- the reduced gradient density
- interpreted as a local inhomogeneity parameter
- it has large values for large gradients and in 
regions of small densities
- it is zero for the homogenous electron gas

Generalized Gradient Approximation (GGA)
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to account for the non-homogeneity of 
the true electron density → gradient

εxc depends on the density and its gradient at r

GGA EXC is usually split into its exchange and correlation contributions:

(1) Adjust εxc such that it satisfies all (or most) known properties of the exchange-
correlation hole and energy.

PW91, PBE…
(2)    Fit εxc to a large data-set own exactly known binding energies of atoms and molecules.

BLYP, OLYP, HCTH…

GGA 并不总是比LDA得到更好的结
果，有时候会得到”更糟糕”的结果



Atomisation energies (kcal/mol)
HF LSD PBE EX

H2 84 113 105 109
CH4 328 462 420 419
C2H2 294 460 415 405
C2H4 428 633 571 563
N2 115 267 243 229
O2 33 175 144 121
F2 -37 78 53 39



Hybrid functionals

 Correct XC hole is localised. 
 Exchange and correlation separately are delocalised.
 DFT in LDA and GGA give localised expressions for 

both parts.
 Sometimes simpler is better!

• Why not just add correlation to HF calculations? We 
could write EXC=EX[exact]+EC[LSD]



Hybrid Functionals

Since EX>>EC, an accurate expression for the exchange functional is a 
prerequisite for obtaining meaningful results from density functional theory.
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EX
KS-the exact exchange calculated with the exact KS wave function

α- fitting parameter

B3LYP,  B1LYP, mPW0, PBE0, HSE03/06



Meta-GGAs

• Perdew 1999
• Better total energies.
• Ingredients:        , KE density
• Very hard to find potential, so cannot do SCF with this.
• Therefore structural optimisation not possible.

n2∇



HSE03/06
Recent development. Several motivations:
 B3LYP more accurate than BLYP. Some 

admixture of exchange needed.
 Exact exchange is slow to calculate.
 Linear scaling K-builds don’t scale linearly in 

general.
 Plane wave based (physics) codes can’t easily 

find exact exchange.



Screened Exchange

 Key idea (Heyd, Scuseria 2003):

 First term is short-ranged; second long ranged.
 w=0 gives full 1/r potential.
 How to incorporate into a functional?
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How about the accuracy?
 Enthalpies of formation (kcal/mol):

MAE(G2) MAE(G3)
B3LYP 3.04 4.31
PBE 17.19 22.88
PBE0 5.15 7.29
HSE03 4.64 6.57

Conclusion: competitive with hybrids.



How about the accuracy?
 Vibrational freqs (cm-1); 82 diatomics

MAE(G2)
B3LYP 33.5
PBE 42.0
PBE0 43.6
HSE03 43.9

Conclusion: competitive with hybrids.



How about the accuracy?

 Band Gaps (eV)

LDA PBE HSE EXP
C 4.23 4.17 5.49 5.48
Si 0.59 0.75 1.28 1.17
Ge 0.00 0.00 0.56 0.74
GaAs 0.43 0.19 1.21 1.52
GaN 2.09 1.70 3.21 3.50
MgO 4.92 4.34 6.50 7.22





Exchange and Correlation Functionals

In practice: BLYP, B3LYP, BPW91, …







MO5-2X - bond dissociation energies, stacking and hydrogen-bonding 
interactions in nucleobase pairs

Different functionals for different properties

Atomization energies:
Ionization energy: - B3LYP – the best!
Electron afinities:

Vibrational frequencies: - (BLYP), B3LYP, …

What functional should I use?!
Depends on:
- your problem (system, the property investigated)
- availability and the computational costs

- Structure:  bond lengths, bond angles, dihedrals
- Vibrational frequencies: wavenumbers, IR intensity, Raman activity
- Kinetics: barrier heights
- Thermochemistry: atomization energies, binding energies, ionization 
potentials, electron affinities, heats of formation
- Non-bonded interactions: stacking, hydrogen bonding, charge transfer, weak
interactions, dipole interactions,  π -π interactions



Exchange-Correlation Functional

交换相关泛函的“好”与“不好”并不在于泛函本身，
而在于如何在描述合适的体系使用正确的泛函


