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Chapter 7 DFT




Why DFT
Density Functional Theory (DFT)

DFT is an alternative approach to the theory of electronic structure;
electron density plays a central role in DFT.

Why a new theory?

HF method scales as N4 (N - # of basis functions)
Cl methods scale as N6-N10

MPn methods scale as >N?>

CC methods scale as > N6

mm= > Correlated methods are not feasible for medium and large sized molecules!
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Background

4

4

1920s: Introduction of the Thomas-Fermi model.

1964: Hohenberg-Kohn paper proving existence of exact DF.

1965: Kohn-Sham scheme introduced.

1970s and early 80s: LDA. DFT becomes useful.

1985: Incorporation of DFT into molecular dynamics (Car-Parrinello)
(Now one of PRL's top 10 cited papers).

1988: Becke and LYP functionals. DFT useful for some chemistry.

1998: Nobel prize awarded to Walter Kohn in chemistry for

development of DFT.



Basic Theory: The electron density is the essential

Probability of finding electron 1 in dx,, electron 2 in dx,, ... , electron N in dxy:
W (xy, %5, ..., x5)|?dxdx, ...dxy

Integrating over the space and spin coordinates of electron 2, 3, ..., N and the spin
coordinate of electron 1 one obtaines the probability of finding electron 1 in volume
element dr, whilst the other electrons are anywhere:

(f ...fl‘l’(xl,xz, ., Xy)|?d s, dx, ...de) dr;

Multiplying by N one obtaines the probability of finding any electronindr;:

N (f ...fll'p(xl,xZ, ...,XN)lzdsldxz .dXN) dTl = p(Tl)drl

The quantity p(r,) is the electron density:

Nf ...fl‘li(xl,xz,...,x,\,)lzdsld;!c2 ..dxy



Properties of the electron density

p(7) is a non-negative function depending on only three variables

p(7) vanishes at infinity and integrates to the total number of electrons N:

lim p(7) =0 fp(?)d? =N

Tr—C0

p(7) can be measured experimentally (e.g. by X-ray diffraction)
at the position of atoms, the gradient of p(7') has a discontinuity:

lim |— + ZZA] p(r¥) =0

Z being the nuclear charge and p(7) the spherical average of p(7)
decays exponentially for large distances from nuclei
p(7)~exp (—ZJZIFI)

| being the exact first ionization energy of the system

Function: y=f(x) p= p(x.y,z)
Functional: y=F[f(x)] E=F[p(x.y.2)]



Hohenberg-Kohn Theorems
P. Hohenberg, W. Kohn, Phys. Rev. 136, B 864 (1964)

The electronic Hamiltonian is

N N N
H=T+Voet Vee==) Vit ) vlr)+) —
i i i<j W p(r‘)
where the external potential is
Z p(r)dr=N
7 I
Ai rAi
First HK Theorem (HK1) N v(r)

The external potential V_,.(r) is (to within a constant) a
unique functional of p(r).

Since, in turn V_,(r) fixes H, the full many particle ground state is

a uniquefunctional of p(r). H

Thus, the electron density uniquely determines the Hamiltonian ~

operator and thus all the properties of the system. HY =EY
Elp] = Exelp] + Tlol + Eclpl = [ pVie(@)ar+ Fuslpl,  E

FHK [P] — T[p] + Eee—-



Proof:

\"/ext V;\t
| l l
=T+V. +V =W =[pF)|= WI=sH =T+V_ +V,
l B

V' as a test function for H:

E, < (¥ ’):
R
E,< E; ‘T-i- \7 -T-V_-

EO < +jp(l ){ ext e\t}

Y as a testfunction for H"

En<  Eo— | p(i){V,— V. }d7
Summing up the last two inequalities:

EO+E:) <E:)+Eo Contradiction!




EglPo]l = Tlpo] + EeelPo] + EnelPo]-

Eqglpo] = |Po(f)\wedf + T[p01+ E [Po]

-

system dependent

Eolpo] = | po(F) Vawedr + Fi[Po]

fJ g -- ‘.n
Fix[P] = TIP] + Eo[p] = (W[T + V. |¥)

Eulp) = [ [2RLPE) i, + E,yfp) = Jlp] + Enal]
11




E[p] = Ene [P]+ T[] +Eee [P] = [ P(F)Ve (F)dF +Fg [f]
with

e.lo1= 2 ([ 2 Darar, v, (o115

Only J[p] is known!
The explicit form of T[p] and E__, 4l p] is the major challenge of DFT

Enon_cl [P] - contains all the effects of self-interaction correction and exchange and Coulomb correlation




Variational Principle in DFT
Second HK Theorem

The functional that delivers the ground state energy of the system,
delivers the lowest energy if and only if the input density is the true

ground state density.

Total energy function: Evenlpl=< U|T + V|¥ >+< U|Vp | T >

Eo < E[p] = T[p] + ENe[p] + Eee[7] - variational principle

For any trial density p(r), which satisfies the necessary boundary conditions such as:

p(r)=0 and [ p(F)di = N

and which is associated with some external potential V,,,, the energy obtained from the
functional of Fy represents an upper bound to the ftrue ground state energy E,,.



First attempt: Thomas-Fermi model (1927)

- 3 232/3 [ 5/3 p=x 4= L.H. Thomas, Proc. Camb. Phil. Soc., 23, 542-548 (1927)
TTF[p(F)]=ﬁ(31T ) j 0”3(F)dF  E.Fermi, Rend. Acad., Lincei, 6, 602-607 (1927)

.. 3 e r) 1 cep(rde(rz) . -
ETF[p(r')]=E(31T2)2/3_[p5/3(r)dr—Zj@drwgﬂ 1"12 2 drydr,

Problem in TF approximation: ignore correlation, and use local density approximation

$

Kohn and Sham (1965)
Tlp] - kinetic energy of the system

Kohn and Sham proposed to calculate the exact kinetic energy of a non-interacting
system with the same density as for the real interacting system.

1N , Tes - kinetic energy of a fictitious non-interacting
Tes = ——Z<Wi ‘V ‘Wi> system of the same density p(r)
23 : - are the orbitals for the non-interacting system

(KS orbitals)
T,s is not equal to the true kinetic energy of the system, but contains the major fraction

of it
T= Tks + (T"Tks)

Hohenberg-Kohn (1964) and Kohn-Sham (1965) ---Modern DFT



Fle]l= Teslpl+J [p]+E,,n.cilP]

Elp] = E\.[p]+ Tyslpl+ I [p]+E, [p] =

3 E pm)f

i-1 °~ a-1 Na
-5 2.8V 9)
i=1
1d N 1
#2222 [l o) dridr,
i=1 12

i=1 j=1

+E,.[P]
E,.[p] includes everything which is

unknown:
- exchange energy
- correlation energy

- correction of kinetic energy (T-Tys)



Question:

How can we uniquely determine the orbitals in our non-interacting reference system?

How can we define a potential such that it provides us with a slater determinant which
is characterized by the same density as our real system?

Kohn-Sham Equations:

Minimize E[p] with the conditions: _[p(r‘)dr' =N
<¢i ‘¢J> =0

M
> {_IVZ +Ip(r2) dr, "‘ch(ri)—zé Q. =&Q,
2 N2 A=l

A
with: v, (l") — 6Exc [p]
op

p(r) = fp ()



Kohn-Sham Formalism

Guess ¢
J
W. Kohn, L.J. Sham, Phvs. Rev. 140, A 1133 (1965)

Assume

OB, [p(r)]

op(r)

v c(r) =

1

1 P
[—EVZ'FV('")"'IF)( )dP'+VXC(P)J?j=€j¢J [ ; +V(P)+J.p( )dr —ZK(P)J =&

Kohn-Sham P-r r—r]
equations N
== Vot Hartree-Fock equations
Converged? L
Yes

~Calculate

molecular
proper'fies




E.[p]=7??

Local Density Approximation (LDA) - uniform electron gas

E — [ o(r)e rNdr  The exchange energy is about ten times larger
el I p(r)ec(e(r)) than correlation in "standard” systems

£, - The exchange-correlation energy per particle of a uniform electron gas of density p(r)
- depends on the density at r

exc(p(™) = ex(p(7¥)) + ec(p(7¥))  split into exchange and correlation contributions

€EX =

n

_ 3 (3p(7) L represents the exchange energy of an electron in a uniform
4 electron gas of a particular density

2

. _ 3 /3 1/3 .
Ex = Cx / pBryde O = — (—) [Dirac] Slater exchange functional (S)

For the correlation part:
Monte-Carlo simulations of the homogenous electron gas - Ceperly and Alder
--- interpolation of these results - analytical expressions of ¢,

Vosko, Wilk & Nusair (1980) most widely used LDA — SVWN
Perdew &Wang (1992)



Local Spin Density Approximation (LSDA)

- variant of LDA for unrestricted formalism (open-shell systems)

Two spin-densities:

P (r) and pg(T)

pP(r)=pq(r) + pg(r)

EXlPa-Ppl = | PHExc(Py (D). pp(D)) di

Performance of LDA (LSDA)

« for atoms and molecules the exchange energy is usually underestimated

by 10%, but this is compensated by an overestimation of correlation by 2
or 3 times.

« underbind core electrons and overbind atoms in molecules
 not able to reproduce the effects of bond breaking and forming

Molecules do not resemble a uniform electron gas!



LDA

» Used by physicists for 40 years.
E..[p]=[p(r)e,.(o(r))dr
» €,.(n) for homogenous electron gas.
exchange-correlation energy per electron
» Assumption: grad n is small in some sense.

» Accurate for nearly homogeneous system and for
limit of large density.



Limitations

» Band gap problem

» Overbinding (cohesive energies 10-20% error).
» High spin states.

» Hydrogen bonds/weak interactions

» Graphite



Generalized Gradient Approximation (6GGA)

to account for the non-homogeneity of
Ecle]= jp(r')exc(p(r'),Vp(r'),...)dr' the true electron density — gradient

£, depends on the density and its gradient at r

GGA Ey. is usually split into its exchange and correlation contributions:

Bra = [REeag. B GGA H A& 2 HILDA BB E L7 HI 4%
‘ K, BWRESFZE BT #9555

EX®A = R - 3 [ FGso) pg (1) dr
o

- the reduced gradient density

_ | Vpgo(T) | - interpreted as a local inhomogeneity parameter
So(I) = P - it has large values for large gradients and in
P (1) regions of small densities

- it is zero for the homogenous electron gas

(1) Adjust €, such that it satisfies all (or most) known properties of the exchange-
correlation hole and energy.
PWO1, PBE...
(2) . Fit ¢, o alarge data-set own exactly known binding energies of atoms and molecules.
BLYP, OLYP, HCTH...



Atomisation energies (kcal/mol)

H2
CH4
C2H2
C2H4
N2
02

F2

HF
84
328
294
428
115
33

LSD
113
462
460
633
2067
175
/8

PBE
105
420
415
571
243
144
53

EX

109
419
405
563
229
121
39



Hybrid functionals

v VvV Vv

Why not just add correlation to HF calculations? We
could write Eyc=Ex[exact]+E [LSD]

Correct XC hole is localised.

Exchange and correlation separately are delocalised.

DFT in LDA and GGA give localised expressions for
both parts.

Sometimes simpler is better!



Hybrid Functionals

Since EX>>EC, an accurate expression for the exchange functional is a
prerequisite for obtaining meaningful results from density functional theory.

Eye = B +EXS  E™[p]=aE® +(1-a)EL"

E,KS-the exact exchange calculated with the exact KS wave function
a- fitting parameter

(A. D. Becke, J. Chem. Phys. 98, 5648, 1993)

3 SR B i S S-S SRR (S 5 - 0.20, b = 0.72, and ¢ = 0.81

Citations in Each Year
3000 -

corresponds to the exchange contribution of a Slater determinant

‘iif I|III||||||| B3LYP, BILYP, mPWO, PBEO, HSE03/06

2500
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Meta-GGAs

« Perdew 1999

« Beftter total energies.

* Ingredients: Vn , KE density

« Very hard to find potential, so cannot do SCF with this.
« Therefore structural optimisation not possible.

The natural next step is to introduce higher derivatives into the functional, namely
|2

the density Laplacian, V?p and the kinetic energy density, 7 =" [V,

[n the meta-GGA’s, the exchange-correlation potential becomes
orbital-dependent !

)

E.=E_(p(r),Vp(r)

Vp(r). X Vo,



HSEO3/06

Recent development. Several motivations:

» B3LYP more accurate than BLYP. Some
admixture of exchange needed.

» Exact exchange is slow to calculate.

» Linear scaling K-builds don't scale linearly in
general.

» Plane wave based (physics) codes can't easily
find exact exchange.



Screened Exchange

» Key idea (Heyd, Scuseria 2003):

1 erfc(ar) ~ert (cr)

I I I
» First term is short-ranged; second long ranged.
» w=0 gives full 1/r potential.
» How to incorporate into a functional?




HSEO3

E, =aE, +(l-a)E;~
_ aE)'jF’SR n aE)I(—lF,LR n (1 . a)E)I(DBE,SR n
(1 _ a)E )I:’BE,LR
~aEMF R4 (1 - Q)EPPESR 4 EPEELR

— E;BE + a‘_E)I(_IF,SR . E)I;’BE,SR]




How about the accuracy?
» Enthalpies of formation (kcal/mol):

MAE(G2) MAE(G3)
B3LYP 3.04 4.31
PBE 17.19 22.88
PBEO 5.15 7.29
HSEO3 464 6.57

Conclusion: competitive with hybrids.



How about the accuracy?
» Vibrational freqs (cm-1); 82 diatomics

MAE(G2)
B3LYP 33.5
PBE 42.0
PBEO 43.6
HSEO3 43.9

Conclusion: competitive with hybrids.



How about the accuracy?

» Band Gaps (eV)

Si

Ge
GaAs
GaN
MgO

LDA
423
0.59
0.00
0.43
2.09
4.92

PBE

417
0.75
0.00
0.19
1.70
4.34

HSE
5.49
1.28
0.56
1.21

3.21
6.50

EXP

5.48
1.17

0.74
1.52
3.50
7.22



Jacob’s ladder of DFT

In Pursuit of the
“Divine"” Functional

Ann E. Mattsson

Gorling-Levy, 1994;
Engel-Dreizler, 1999;

unocc. {(;} [ g dependence onunoccupied orbitgs § LTS

B2-PLYP (Grimme et el., 2006)

OCC. {991} : ' ' " PKZB, TPSS

Proynov-Salahub-95

B88-P86,
PWO1, PBE

Hartree world




Exchange and Correlation Functionals

E

b

LDA

GGA

S(later)

B86
Becke. JCP 84. 4524 86
B(88)

Becke, PRA 38, 3098 ‘8%

P(WS86)

Perdew, Wang. PRB 33, 8800 86

I)() |

Perdew et al., PRB 46, 6671 ‘92
PBE

Perdew, Burke. Ernzerhof,

PRL 77. 3865. ‘96

revPBE

Zhang, Yang, PRL 80, 890 ‘98
RPBE

Hammer. Hansen. Norskov,
PRB 59,7413 ‘99

LDA GGA

(VBH) P(R6)

von Barth, Hedin, Perdew, PRB 33, 8822 *86
J. Phys. C 5, 1629 “72 [ YP
T\\/ )
VWN Lee, Yang, Parr,
Vosko, Wilk, Nusair. PRB 37, 785 8%’
Can.J. P

PWOI
Perdew.
PRB 45,

hys. 58, 1200, *80 P91
(siehe links)

Wang, PBE

13244 ‘92 .
(siehe links)

In practice: BLYP, B3LYP, BPWOI1, ...

ab-initio functionals:

fitted to theoretical data
semiempirical functionals:
fitted to experimental data




Classification of Density Functionals: GGA, hybrid,
meta...

I Hybrid GGA functionals
L(S)DA functionals: B3LYP, B3P86

SVWN, SVWN3, SVWNS, B3PWOL, PBE1PBE
SPWL O3LYP, KMLYP

B98, B971, B972

M052X, THCTH-HYB
Pure GGA functionals: TPSSH, BMK, MPW1K, MPW3LYP
BP86, BLYP BHandH, BHandHLYP
BPW91, OLYP, XLYP BHandHHYB, HSE2PBE
G96LYP, PBEPBE HSE1PBE, CAM-B3LYP

HCTH, BPBE
G96LYP, MPWLYP, MPWPW91,

Pure meta GGA (1) functionals: Hybrid meta-GGA functionals:

BB95, MPWI1K B1B95, BB1K

THCTH, VSXC, PBEKCIS PBE1KCIS, V598,

TPSS, TPSSKCIS, mPWB95 PKZB, BMK, TPSS1KCIS, TPSSh
MO5, M05-2X, MPW1B95
MPWBIK, MPWI1KCIS
PW6B95, PWB6K

S.F. Sousa, P.A. Fernandes, M.]. Ramos, J.Phys.Chem.A, 111, 10439 (2007)
Yi-Gui Wang, J. Phys. Chemn. A2009, 113, 10867-10872
Gaussian 03




Comparison of methods: e.g. H,O

E.. H-O | ZHOH vibrational modes [cm™] dipole moment

method [a.u.] [A] [7] bending sym. stretch asym. stretch [D]

HF -76.065 | 0.940 | 106.2 1751 4229 4130 |.OR4
MP2 -76.408 | 0958 | 104.0 1643 3978 3855 1.852
CCSID(T)| -76.421 | 0.958 | 104.1 1659 3952 3845 1.839
SVWN 75911 | 0970 104.9 1571 3832 3737 1.930
RPBE -76.465 | 0.968 104.0 1635 38135 3722 1.863
BP86 -76.477 | 0970 | 104.1 1613 3789 3690 |.889
B3LYP |[-76.472 | 0.961 | 105.1 1629 3905 3804 |.848
exp. -76.438 | 0.958 | 104.5 1648 3943 3832 1.854

4”(::» > 1% > 1% > 3”0 > 1%




Different functionals for different properties

- Structure: bond lengths, bond angles, dihedrals

- Vibrational frequencies: wavenumbers, IR intensity, Raman activity

- Kinetics: barrier heights

- Thermochemistry: atomization energies, binding energies, ionization
potentials, electron affinities, heats of formation

- Non-bonded interactions: stacking, hydrogen bonding, charge transfer, weak
interactions, dipole interactions, = -ninteractions

What functional should I use?!
Depends on:
- your problem (system, the property investigated)
- availability and the computational costs

Atomization energies: SVWN <:i-:i.BP86<iiBLYP==BP\\? 91<<B3P86<B3LYP~=B3PW91
Ionization energy: - B3LYP — the best!

Electron afinities: BLYP = BPW91 = B3LYP

Vibrational frequencies: - (BLYP), B3LYP, ...

MO5-2X - bond dissociation energies, stacking and hydrogen-bonding
interactions in nucleobase pairs




Exchange-Correlation Functional
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