HAE R GRS B

HA% Threads 1 (Z8FE1)

MRy =
R AR b

October 28, 2009

BAE RG]

@ Overview

© Multithreading Models
© Thread Libraries
@ Threading Issues

@ A FIEL

BAE RG]

Overview

Outline

@ Overview

Overview

Thread concept |

@ A thread is a basic unit of CPU utilization

e a thread ID

@ a program counter
@ a register set

e and a stack

@ It shares with other threads belonging to the same process

e code section
e data section
e and other OS resources

@ open files, signals, etc

U e

Overview

Thread concept |l

@ Single threaded VS. Multithreaded processes

thread ——> ;

| code ‘ | data ‘ ‘ files | | code ‘ | data ‘ | files. |
| registers ‘ stack registers ||| registers || registers
stack stack stack

:

:

EH

single-threaded process

multithreaded process

T thread|

Overview

Motivation |

@ On modern desktop PC, many APPs are multithreaded.

o a seperate process + several threads

@ Example 1: A web browser

e one for displaying images or text;
e another for retrieving data from network

@ Example 2: A word processor

e one for displaying graphics;
e another for responding to keystrokes from the user;

e and a third for performing spelling & grammer checking in the
background

g B

Overview

Motivation Il

@ Motivation, think about

e a web server,
e an RPC server
e and Java's RMI systems

e PARTICULAR, many OS systems are now
multithreaded.

o Solaris, Linux({4)

Overview

Benefits

@ Responsiveness (7857)

e Example: an interactive application such as web browser, while
one thread loading an image, another thread allowing user
interaction

@ Resource Sharing
e address space, memory, and other resources

© Economy
e Solaris:
creating a process is about 30 times slower then creating a
thread;
context switching is about 5 times slower

Q Utilization of MP Architectures

e parallelism and concurrency T

Multithreading Models

Outline

© Multithreading Models

Multithreading Models

Two Methods |

@ Two methods to support threads
e User threads
o Kernel threads

@ User threads

e Thread management done by user-level threads library
without kernel support

e Kernel may be multithreaded or not.
e Three primary thread libraries:

o POSIX Pthreads
@ Win32 threads
@ Java threads

BAE R G 5

Multithreading Models

Two Methods Il

o Kernel Threads

o Supported by the Kernel, usually may be slower then user
thread

e Examples

Windows XP /2000

Solaris

Linux (£4)

Tru64 UNIX (formerly Digital UNIX)
Mac OS X

BAE R G 5

Multithreading Models

Multithreading Models |

@ The relationship between user threads and kernel threads

e Many-to-One
e One-to-One
e Many-to-Many

e Many-to-One

o Many user-level threads
mapped to single kernel
thread

o Examples:

@ Solaris Green Threads
o GNU Portable Threads

P

k

<«— user thread

<«— kernel thread

BAE RG]

Multithreading Models

Multithreading Models I

@ One-to-One

o Each user-level thread maps to a kernel thread
o Examples

e Windows NT/XP /2000
e Linux
o Solaris 9 and later

«—— user thread

g B

Multithreading Models

Multithreading Models Il

e Many-to-Many Model § ;

o Allows many user level threads to be
mapped to many kernel threads

o Allows the operating system to create a
sufficient number of kernel threads

o Examples

§<— user thread

@ Solaris prior to version 9 £) k) \¥)=kemelthread
e Windows NT /2000 with the ThreadFiber
package

UL

Multithreading Models

Multithreading Models [V

o Two-level Model, a popular variation ; ;
on many-to-many model ; ; «—— userthread

o Similar to M:M, except that it allows
a user thread to be bound to a
kernel thread

o Examples

@ <«—kernel thread|
IRIX

HP-UX
Tru64 UNIX
Solaris 8 and earlier

BAE RG]

Thread Libraries

Outline

© Thread Libraries

Thread Libraries

Thread Libraries

@ A thread library provides the programer an API for creating
and managing threads.
@ Two primary ways

@ to provide a library entirely in user space with no kernel

support
@ to implement a kernel-level library supported directly by the
oS
‘ library ‘ code & data API invoking method inside API
user-level entirely in user space | user space a local function call
kernel-level kernel space user space system call

@ Three main thead libraries

o POSIX Pthreads
o Win32 threads
o Java threads

Thread Libraries

e A POSIX standard (IEEE 1003.1c) API for thread creation
and synchronization

@ API specifies behavior of the thread library, implementation is
up to development of the library

@ Common in UNIX OSes (Solaris, Linux, Mac OS X)

BAE R G 5

Thread Libraries

Multithreaded C program using the Pthreads API |

#include <pthread.h>
#include <stdio.h>

int sum; /* this data is shared by the thread(s) */
void *runner(void *param); /* the thread */

int main(int argc, char *argv[])

{
pthread_t tid; /* the thread identifier */
pthread_attr_t attr; /* set of attributes for the thread */

if (argc = 2)
{

fprintf(stderr,"usage: a.out <integer value>\n");
return -1;

}

BAE R G 5

Thread Libraries

Multithreaded C program using the Pthreads API Il

if (atoi(argv[l]) < 0)
{

fprintf(stderr,” Argument %d must be non-negative\n",atoi(argv[1]));
return -1;

}

pthread_attr_init(&attr); /* get the default attributes */
pthread_create(&tid,&attr,runner,argv[l]); /* create the thread */
pthread_join(tid, NULL); /* now wait for the thread to exit */

printf("sum = %d\n",sum);

BAE R G 5

Thread Libraries

Multithreaded C program using the Pthreads API Il

/* The thread will begin control in this function */
void *runner(void *param)

{
int i, upper = atoi(param);
sum = 0;
if (upper > 0)
for (i = 1; i <= upper; i++)
sum += i;
}
pthread_exit(0);
}

g B

Thread Libraries

pthread_attr_init

NAME

pthread_attr_init, pthread_attr_destroy - initialise and destroy threads attribute
object

SYNOPSIS

##include <pthread.h>

int pthread_attr_init(pthread_attr_t *attr);

int pthread_attr_destroy(pthread_attr_t *attr);

DESCRIPTION

The function pthread_attr_init() initialises a thread attributes object attr with
the default value for all of the individual attributes used by a given
implementation.

The pthread_attr_destroy() function is used to destroy a thread attributes
object.

RETURN VALUE

Upon successful completion, both return a value of 0.

Otherwise, an error number is returned to indicate the error.

U e

Thread Libraries

pthread _create()

NAME

pthread_create - thread creation

SYNOPSIS

#include <pthread.h>

int pthread_create(pthread_t *thread, const pthread_attr_t *attr, void
*(*start_routine)(void*), void *arg);

DESCRIPTION

The pthread_create() function is used to create a new thread, with attributes
specified by attr, within a process. ... Upon successful completion,
pthread_create() stores the ID of the created thread in the location referenced
by thread.

The thread is created executing start_routine with arg as its sole argument. ...

If pthread_create() fails, no new thread is created and the contents of the
location referenced by thread are undefined.

RETURN VALUE

If successful, the pthread_create() function returns zero.

Otherwise, an error number is returned to indicate the error.

Thread Libraries

pthread_join

NAME

pthread_join - wait for thread termination

SYNOPSIS

#include <pthread.h>

int pthread_join(pthread_t thread, void **value_ptr);

DESCRIPTION

The pthread_join() function suspends execution of the calling thread until the
target thread terminates, unless the target thread has already terminated. ...
The results of multiple simultaneous calls to pthread_join() specifying the same
target thread are undefined. ...

RETURN VALUE

If successful, the pthread_join() function returns zero.

Otherwise, an error number is returned to indicate the error.

U e

Thread Libraries

pthread_exit

NAME

pthread_exit - thread termination

SYNOPSIS

#include <pthread.h>

void pthread_exit(void *value_ptr);

DESCRIPTION

The pthread_exit() function terminates the calling thread and makes the value
value_ptr available to any successful join with the terminating thread. ...

RETURN VALUE
The pthread_exit() function cannot return to its caller.

U e

Thread Libraries

Win32 Threads |

@ Similar to the Pthreads technique.
@ Multithreaded C program using the Pthreads API

#include <stdio.h>
#include <windows.h>
DWORD Sum; /* data is shared by the thread(s) */

/* the thread runs in this separate function */
DWORD WINAPI Summation(PVOID Param)

{
DWORD Upper = *(DWORD *)Param;
for (DWORD i = 0; i <= Upper; i++)
Sum +=i;
return 0;
}

BAE R G 5

Thread Libraries

Win32 Threads Il

int main(int argc, char *argv[])
{
DWORD Threadld;
HANDLE ThreadHandle;
int Param;

// do some basic error checking

if (arge 1= 2){
fprintf(stderr,”An integer parameter is required\n");
return -1;

}

Param = atoi(argv[1]);

if (Param < 0){
fprintf(stderr, “an integer >= 0 is required \n");
return -1;

}

U e

Thread Libraries

Win32 Threads llI

// create the thread
ThreadHandle = CreateThread(NULL, //default security attribute
0, //default stack size
Summation, //thread function
&Param, //parameter to thread function
0, //default creation flags
&Threadld);
if (ThreadHandle != NULL)
{
WaitForSingleObject(ThreadHandle, INFINITE);
CloseHandle(ThreadHandle);

printf(“sum = %d\n”,Sum);

BAE R G 5

Thread Libraries

Java Threads

@ Threads are the fundamental model for program execution
in a Java program.

@ Java threads may be created by:
e Extending Thread class

o to create a new class that is derived from the Thread class
and override its run() method.

o Implementing the Runnable interface Java

U e

Thread Libraries

Example |

class Sum

{

private int sum;

public int get() {
return sum;
}

public void set(int sum) {
this.sum = sum;

}
}

class Summation implements Runnable

{

private int upper;
private Sum sumValue;

Thread Libraries

Example Il

public Summation(int upper, Sum sumValue) {
if (upper < 0) throw new lllegalArgumentException();
this.upper = upper;
this.sumValue = sumValue;

}

public void run() {

int sum = 0;
for (int i = 0; i <= upper; i++)
sum += i;

sumValue.set(sum);

}
}

public class Driver {
public static void main(String][] args) {

U e

Thread Libraries

Example Ill

if (args.length |=1) {
System.err.println(“Usage Driver <integer>");
System.exit(0);

}

Sum sumObject = new Sum();
int upper = Integer.parselnt(args[0]);
Thread worker = new Thread(new Summation(upper, sumObject));
worker.start();
try {
worker.join();
} catch (InterruptedException ie) { }

System.out.printIn(“The sum of” + upper + “ is * 4+ sumObject.get());

U e

Threading Issues

Outline

@ Threading Issues

Threading Issues

Threading Issues |

e Semantics of fork() and exec() system calls

o Does fork() duplicate only the calling thread or all threads?
e Some UNIX system have chosen to have two versions
e Which one version to use? Depend on the APP.

@ Thread cancellation

e Terminating a thread before it has finished
e Two general approaches:

e Asynchronous cancellation terminates the target thread
immediately

o Deferred cancellation allows the target thread to periodically
check if it should be cancelled

U e

Threading Issues

Threading Issues I

e Signal Handling

e Signals are used in UNIX systems to notify a process that a
particular event has occurred :

@ Synchronous: illegal memory access, division by 0
o Asynchronous: Ctrl+C

o All signals follow the same pattern:

@ Signal is generated by particular event
@ Signal is delivered to a process
@ Signal is handled

e Signal handler may be handled by

o a default signal handler
o a user-defined signal handler

o When multithread, where should a signal be delivered?

U e

Threading Issues

Threading Issues Il

Deliver the signal to the thread to which the signal applies
Deliver the signal to every thread in the process

Deliver the signal to certain threads in the process

Assign a specific threa to receive all signals for the process

@ Thread Pools

o Create a number of threads in a pool where they await work
e Advantages:

@ Usually slightly faster to service a request with an existing
thread than create a new thread

@ Allows the number of threads in the application(s) to be
bound to the size of the pool

e Thread Specific Data

o Allows each thread to have its own copy of data

Threading Issues

Threading Issues |V

e Useful when you do not have control over the thread creation
process (i.e., when using a thread pool)

@ Scheduler Activations

e Both M:M and Two-level models require communication to
maintain the appropriate number of kernel threads allocated to
the application

o Scheduler activations provide upcalls - a communication
mechanism from the kernel to the thread library

e This communication allows an application to maintain the
correct number kernel threads

U e

NGEAEE,

Outline

Q@ IR

BAE RG]

NGEAEE,

@ Overview

© Multithreading Models
© Thread Libraries

@ Threading Issues

@ A FIEL

e I 5 B

NGEAEE,

i ! |

BAE RG]

	Overview
	Multithreading Models
	Thread Libraries
	Threading Issues
	小结和作业

