B 1R G50 5 Bt

675 Processe Synchronizationl (HEFE[A]2P1)

R =
VR HR K2 U SERLE

2009410 28 H

= el

Je

@ Background
@ The Critical-Section Problem
© Peterson's Solution

@ Synchronization Hardware
@ TestAndSet Instruction
@ Swap Instruction

© Semaphores
Q MR

BAE RG]

Background

Outline

@ Background

Background

allowframebreaksBackground

@ The processes are cooperating with each other directly or
indirectly.
e Independent process cannot affect or be affected by the
execution of another process

e Cooperating process can affect or be affected by the
execution of another process

@ Concurrent access to shared data may result in data
inconsistency
o for example: printer, shared variables/tables/lists

@ Maintaining data consistency requires mechanisms to ensure
the orderly execution of cooperating processes

BAE R G 5

Background

Producer-Consumer Problem

@ Paradigm for cooperating processes, producer process
produces information that is consumed by a consumer process

e unbounded-buffer

places no practical limit on the size of the buffer
e bounded-buffer y/

assumes that there is a fixed buffer size

Background

Bounded-Buffer — Shared-Memory Solution |

@ Solution is correct, but can only use BUFFER_SIZE-1
elements

@ Shared data
#define BUFFER _SIZE 10

typedef struct { ... } item;
item buffer[BUFFER _SIZE];
intin =0;

int out = 0;

BAE RG]

Background

Bounded-Buffer — Shared-Memory Solution I

o Insert() Method
while (true) {

/* Produce an item */

while (((in + 1) % BUFFER SIZE) == out)
; /* do nothing — no free buffers */

buffer[in] = item;

in = (in + 1) % BUFFER SIZE;

BAE RG]

Background

Bounded-Buffer — Shared-Memory Solution Il

@ Remove() Method
while (true) {

while (in == out)
; // do nothing — nothing to consume
/l remove an item from the buffer
item = buffer[out];
out = (out + 1) % BUFFER SIZE;

return item;

BAE RG]

Background

another solution using counting value |

@ Suppose that we wanted to provide a solution to the
producer-consumer problem that fills all the buffers (not
BUFFER_SIZE-1).

@ using an integer count that keeps track of the number of full
buffers.

o Initially, count is set to 0.
e incremented by the producer after it produces a new buffer
e and is decremented by the consumer after it consumes a buffer.

@ Producer

Background

another solution using counting value Il

while (true) {
/* produce an item and put in nextProduced */
while (count == BUFFER _SIZE)
; // do nothing
buffer [in] = nextProduced;
in = (in + 1) % BUFFER _SIZE;

count++;

UL

Background

another solution using counting value Il|

o Consumer
while (true) {

while (count == 0)

; // do nothing
nextConsumed = buffer[out];
out = (out + 1) % BUFFER_SIZE;
count—;

/* consume the item in nextConsumed

UL

Background

Race Condition |

@ count++ could be implemented as

register] = count
register] = register] + 1

count = register1l

° could be implemented as

o Consider this execution interleaving with “count = 5”7 initially:

Background

Race Condition |l

@ SO: producer execute registerl = count {registerl = 5}

e S1: producer execute registerl = registerl + 1 {registerl = 6}
@ S2: consumer execute {register2 = 5}

@ S3: consumer execute {register2 = 4}
@ S4: producer execute count = registerl {count = 6 }

@ Sb: consumer execute {count = 4}

@ Race Condition

e A situation: where several processes access and manipulate
the same data concurrently and the outcome of the
execution depends on the particular order in which the
access take place

The Critical-Section Problem

Outline

@ The Critical-Section Problem

The Critical-Section Problem

Critical-Section (Il 5*[X)

o Critical Resources Clffii F- %% J5)
o fE—BUN AN H A VE—ANRERE S) 1Y) B U5t
o Critical Section (CS) :
e a segment of code, access and may change shared data
(critical resources)
@ Make sure, that any two processes will not execute in its
own critical sections at the same time
@ the critical-section problem is to design a protocol that the
processes can use to cooperate.

e entry section: each process must request permission to enter
its critical-section

e critical section

e exit section

e remainder section

U e

The Critical-Section Problem

do {

entry section |

critical section

exit section

remainder section

} while (TRUE);

The Critical-Section Problem

Solution to Critical-Section Problem

@ A solution to the critical-section problem must satisfy:

© Mutual Exclusion (TLJF)- If process P; is executing in its
critical section, then no other processes can be executing in
their critical sections

@ Progress (il:if)- If no process is executing in its critical
section and there exist some processes that wish to enter their
critical section, then the selection of the processes that will
enter the critical section next cannot be postponed indefinitely

© Bounded Waiting (17 F%54¥F)- A bound must exist on the
number of times that other processes are allowed to enter their
critical sections after a process has made a request to enter its
critical section and before that request is granted

@ Assume that each process executes at a nonzero speed
@ No assumption concerning relative speed of the N processes

Peterson’s Solution

Outline

© Peterson's Solution

Peterson’s Solution

@ Software-based solution, only two processes are concerned

@ Assume that the LOAD and STORE instructions are
atomic; that is, cannot be interrupted.

@ Algorithms 173 are not satisfied

@ Perterson’s Solution is correct

BAE R G 5

Peterson’s Solution

Algorithm 1

@ Let the two threads share a common integer value turn

volatile int turn=0; // initially turn = 0

e turn =i: T; can enter its CS

o T;
Do {
while (turn!=i)
; // do nothing
CRITICAL SECTION
turn = j;
REMAINDER SECTION
} while(1);

e /rHT: Satisfies
mutual execution,
but not progress

BAE RG]

Peterson’s Solution

Algorithm 2

@ Replace the shared variable turn with a shared array:
volatile boolean flag[2];

o Initially flag[0] = flag[1] = false;
o flag[i] = true : T; want to enter its CS

o Ti o Jiir: WAL, (1
do { YflagJLT- [l M falsef%
}/IVhile (flag[j]); // do nothing Sytruel, 2 H IR I
agli] = true; ke
géI]?ITICAL SECTION NI XIS, BIAN
Flag[i]=flase; 2 CHF7
REMAINDER SECTION
} while(1);

BAE RG]

Peterson’s Solution

Algorithm 3

o flag[i] = true : T;is hoping to enter its CS
o T;
do {
flag[i] = true;
While (flag[j]) ; // do nothing
CRITICAL SECTION
Flag[i]=flase;
REMAINDER SECTION
} while(1);
o i LTI Keflagi Mtrue)s, W HRREA T IlE X
GRig), [FINIEE “aSwAEE” M AR

Peterson’s Solution

Peterson’s Solution

@ Combining the key ideas of algorithm 1 & 2. The two
processes share two variables:

int turn;

Boolean flag[2]

@ Algorithm for Process P;
while (true) {

flag[i] = TRUE;

turn = j;

while (flag[j] && turn == j);
CRITICAL SECTION

flag[i] = FALSE;
REMAINDER SECTION

}

@ This solution is correct.

BAE RG]

TestAndSet Instruction
Synchronization Hardware Swap Instruction

Outline

@ Synchronization Hardware

TestAndSet Instruction
Synchronization Hardware Swap Instruction

Synchronization Hardware

@ Many systems provide hardware support for critical section
code

@ Uniprocessors — could disable interrupts

e Currently running code would execute without preemption
o Generally too inefficient on multiprocessor systems

@ OSes using this not broadly scalable

@ Modern machines provide special atomic hardware
instructions
Atomic = non-interruptable

o Either test memory word and set value
o Or swap contents of two memory words

TestAndSet Instruction
Synchronization Hardware Swap Instruction

TestAndSet Instruction

@ Definition:
boolean TestAndSet (boolean *target) {
boolean rv = *target;
*target = TRUE;
return rv;

}
e Truth table (FELfHK)

target return value

before | after
F T
T T

M

U e

TestAndSet Instruction
Synchronization Hardware Swap Instruction

Solution using TestAndSet

@ Shared boolean variable lock, initialized to false.

@ Solution:
while (true) {
while (TestAndSet (&lock))
; // do nothing
// critical section
lock = FALSE;
// remainder section

U e

TestAndSet Instruction
Synchronization Hardware Swap Instruction

Swap Instruction

@ Definition:
void Swap (boolean *a, boolean *b) {
boolean temp = *a;
*3 = *p;
*b = temp;
}
@ Truth Table

(a,b)
before | after
(T | (T.7)
(TF) | (FT)
(FT) | (T.F)
(FF) | (F.F)

BAE R G 5

TestAndSet Instruction
Synchronization Hardware Swap Instruction

Solution using Swap

@ Shared Boolean variable lock initialized to FALSE;

@ Each process has a local Boolean variable key.

@ Solution: @ Truth Table
while (true) {
key = TRUE; (lock,key)
while (key == TRUE)
Swap (&lock, &key); before | after
// critical section (.1 | (T.T)
lock = FALSE; (T.F) | (FT)
// remainder section (F.T) | (T.F)
} (F.F) | (F,F)

BAE RG]

Semaphores

Outline

© Semaphores

Semaphores

Semaphore

@ The various hardware-based solutions to the critical-section
problem are complicated for application programmers to use
@ Semaphore S — integer variable (F&U(5 5 &)
o Initialization + Two standard operations modify S:

o wait() and signal()
e Originally called P() and V()

@ Can only be accessed via two indivisible (atomic) operations

e wait (S) { e signal (S) {
while (S <= 0) ; // no-op S++;
S—-—; }
}

g B

Semaphores

using semaphore

@ Using as
e counting semaphore

@ control access to a given resource consisting of a finite
number of instances

e binary semaphore

e provide mutual execlusion, can deal with the critical-section
problem for multiple processes

e synchronization tools

@ solve various synchronization problems

g

Semaphores

using as counting semaphore

e Counting semaphore
also named as Resource semaphore

o Initialized to N, the number of resources available
e resource requesting: wait()

o if the count of resource goes to 0, waiting until it becomes > 0

o resource releasing: signal()

@ usage
semaphore resources; /* initially resources = n */
do {
wait (resources);
Critical section;
signal(resources);
Remainder section;
} while(1);

Semaphores

using as binary semaphore

e Binary semaphores
also known as mutex locks, provides mutual exclusion

o integer value 0 or 1;
e can be simpler to implement; Can implement a counting
semaphore S as a binary semaphore
e usage:
Semaphore S; // initialized to 1
do {
wait (S);
// Critical Section
signal (S);
// Remainder section
} while (TRUE);

BAE R G 5

Semaphores

using as synchronization tools |

@ using semaphore to slove various synchronization problems
o I LIRHIRHIEIC R
o if p; : 51 — py: Sy, then

e Semaphore synch, initialized to 0, and

pl p2

S1
signal(synch) wait(synch)

S2

g B

Semaphores

Hin 2541
semaphore a,b,c,d,e,f,g = 0,0,0,0,0,0,0
begin
parbegin
begin S1;signal(a);signal(b);end;
begin wait(a);S2;signal(c);signal(d);end;
begin wait(b);S3;signal(g);end;
begin wait(c);S4;signal(e);end;
begin wait(d);S5;signal(f);end;
begin wait(e);wait(f);wait(g);S6;end;
parend
end

Semaphores

Semaphore Implementation |

o Disadvantage: the previous semaphore may cause busy
waiting
e this type of semaphore is also called a spinlock, suitable
situation

@ busy waiting (for I/0) time < context switching time, or
@ multiprocessor systems & busy waiting time is very short

@ Semaphore Implementation with no Busy waiting

o itk MMfH 5 i, depend on block() & wakeup() operations

typedef struct {

int value;

struct process *list;
} semaphore;

U e

Semaphores

Semaphore Implementation I

e wait()
wait(semaphore *3} {
3->value-—;
if (S->value < 0) {
add this process to 5->1ist;
block();
!
}
e signal()

signal(semaphore *8) {
S->value++;
if (S->value <= 0) {
remove a process P from 5->1ist;
wakeup(P);

Semaphores

Semaphore Implementation Il

o s HrS—value
o X Twait#ff, FFufm:
o Mvalue>1H), UiHHHERIEEI4, N1
o Mvalue<1H), UMK A BERS: WLl FEAF
o XJ Tsignal#fE, FTIRRT,

o value >0, ULEHWEA G, Ankmg, HFEEMNL
o value<0, UEHIAEEARE N1, JEeig A ErE

o frFvalue
o value >0, UWHIERAERNH, W, valuethzsym R mR %
FEIREYI 2K

o value<O, UIHIHSERFH, BURL LA SEARIER BUR,
valuesy s =3 10 7 13 AR 69 3K

Semaphores

@ the synchronization problem about semaphores

o No two processes can execute P/V operation on the same
semaphore at the same time
e HOW to be executed atomically?

e uniprocessors: inhibiting interrupt while wait() and signal()
e multiprocessors:

@ inhibiting interrupt globally
@ or spin lock

Semaphores

Misuse of semaphore: Deadlock and Starvation

@ Deadlock — two or more processes are waiting indefinitely for
an event that can be caused by only one of the waiting
processes

o Let S and Q be two semaphores initialized to 1

Py Py
wait(S); wait(Q);
wait(Q); wait(8);
signa.l(S); Signa‘l(Q);
signal(Q); signal(s);

@ Starvation — indefinite blocking. A process may never be
removed from the semaphore queue in which it is suspended.

g B

Semaphores

o ANDZIYAE 5 f A ST i «
o WAL BN ICAT I P FERI A I, —IRTEATRI 5
BCAZERE, FrERRAT H 58 5 P — R
o RIFEIE ML HA v, EAenhl; Ea—NMHADE
o SwaitflISsignalffF

BAE R G 5

Semaphores

Swait(S1,S2,--+,Sn)
if(S1>1 and S2>1 and ... and Sn>1) then
for i:=1 to n do
Si:=Si-1;
endfor

else

HE AR i N3 — AN i R Sify %
RENA b, JRE AR 4 B Swaitdh F
i T 36 # 2

endif

Ssignal(S1,S2,-+-,Sn)
for i:=1ton do
Si:=Si + 1;
ESUH SR AR, B

endfor

UL

Semaphores

o E*fﬁ: Biiﬁﬁﬁfjﬁ.
o MHiltn, —IRFHIEZA AL I T
o XN, MEIFHURT H—TFIRMER, HA T

Swait(S1, t1, d1,S2, t2, d2,-:+,Sn,tn,dn) Ssignal(S1, d1,S2, d2,---
if(S1>t1 and S2>t2 and *** and Sn>tn)then ,Sn,dn)
for i:=1 to n do for i:=1 to n do
Si:=Si—di; Si:=Si+di;
endfor FISTHAERFERE, g i
else endfor

BRI EE — AN A AN R TSI AE R B L,
It HAE DR HR A BISwait B 1E I TP 6 5
endif

BAE RG]

Semaphores

o 15 S AR UM IRTE I
o Swait(S,d,d): % HifL
o Swait(S,1,1): —fidRAUF S i
o Swait(S5,1,0): s>10f, ALFZANHEAIGAIX; s=0/5, FHik
)

BAE R G 5

NGRS,

Outline

Q NE R RN

BAE RG]

NGRS,

@ Background
@ The Critical-Section Problem
© Peterson's Solution

@ Synchronization Hardware
@ TestAndSet Instruction
@ Swap Instruction

© Semaphores
Q MR

BAE RG]

NGEREE,

ifigh 1 J

BAE RG]

	Background
	The Critical-Section Problem
	Peterson's Solution
	Synchronization Hardware
	TestAndSet Instruction
	Swap Instruction

	Semaphores
	小结和作业

