BAE RS S Bt

675 Processe Synchronization2 (HEFE[A]252)

PR =
R SR B

2009410 H28 H




@ Classical Problems of Synchronization

© Monitors
© Synchronization Examples

Q L AIE

BAE RG]



Classical Problems of Synchronization

Outline

@ Classical Problems of Synchronization




Classical Problems of Synchronization

Classical Problems of Synchronization

@ Use semaphores to solve
o Bounded-Buffer Problem, ZEr=# -3 )@ (PC Problem)

o Readers and Writers Problem, 3£3-5 % n]
o Dining-Philosophers Problem , #2255l % I il




Classical Problems of Synchronization

Solution to Bounded-Buffer Problem |

N buffers, each can hold one item
Semaphore mutex initialized to the value 1
Semaphore full initialized to the value 0

Semaphore empty initialized to the value N.

@ The structure of the producer @ The structure of the consumer
process process
while (true) { while (true) {
// produce an item wait (full);
wait (empty); wait (mutex);
wait (mutex); // remove an item from buffer
// add the item to the buffer signal (mutex);
signal (mutex); signal (empty);
signal (full); // consume the removed item
} }

BAE RG]



Classical Problems of Synchronization

Sulotion to Readers-Writers Problem |

@ A data set is shared among a number of concurrent processes

o Readers — only read the data set; they do not perform any
updates
e Writers — can both read and write.

@ Problem — allow multiple readers to read at the same time.
Only one single writer can access the shared data at the same
time.

@ Shared Data

e Data set

e Semaphore mutex initialized to 1.
e Semaphore wrt initialized to 1.

e Integer readcount initialized to 0.

BAE R G 5



Classical Problems of Synchronization

Sulotion to Readers-Writers Problem 1l

@ The structure of a writer process @ The structure of a reader

while (true) { process
wait(wrt.)i _ while (true) {
' // writing is performed wait(mutex);
signal(wrt); readcount ++;
} if (readcount == 1) wait(wrt);

signal(mutex)

// reading is performed
wait(mutex);
readcount - -;
if (readcount == 0) signal(wrt);
signal (mutex);

}

BAE RG]



Classical Problems of Synchronization

Dining-Philosophers Problem |

BAE R G 5



Classical Problems of Synchronization

Dining-Philosophers Problem I

@ Shared data

o Bowl of rice (data set)
e Semaphore chopstick [5] initialized to 1

@ The structure of Philosopher i:
While (true) {
wait ( chopstick]i] );
wait ( chopStick[ (i + 1) % 5] );
// eat
signal ( chopstick|i] );
signal (chopstick[ (i + 1) % 5] );
// think
}

@ This solution may cause a deadlock.

e I 5 B



Classical Problems of Synchronization

Dining-Philosophers Problem Il

@ Several possible remedies

e Allow at most 4 philosophers to be sitting simultaneously at
the table.

e Allow a philosopher to pick up her chopsticks only if both
chopsticks are available

e Odd philosophers pick up first her left chopstick and then her
right chopstick, while even philosophers pick up first her right
chopstick and then her left chopstick.

o 71: deadlock-free & starvation-free

g B



Classical Problems of Synchronization

Problems with Semaphores

@ Incorrect use of semaphore operations:
signal (mutex) +--. wait (mutex)

o the mutual-exclusion requirement is violated, processes may in
their CS simultaneously

wait (mutex) -+ wait (mutex)

e a deadlock will occur.

Omitting of wait (mutex) or signal (mutex) (or
both)

o either mutual-exclusion requirement is violated, or a deadlock
will occur

UL



Monitors

Outline

© Monitors




Monitors

Monitors |

@ A high-level abstraction that provides a convenient and
effective mechanism for process synchronization

@ Only one process may be active within the monitor at a time

Syntax of a monitor

monitor monitor-name

{

// shared variable declarations
procedure P1 (+++) {--*}

procedure Pn (--+) {--*}
Initialization code (+++.) {:-*}

BAE RG]



Monitors

Monitors ||

@ Schematic view of a Monitor

1 ]

operations

initialization
code

antry queue ‘ ‘




Monitors

Condition Variables |

@ the monitor construct is not sufficiently powerful for modeling
some synchronization scheme.

condition X, y;

@ Two operations on a condition variable:
x.wait()

@ a process that invokes the operation is suspended.

x.signal()

o resumes one of processes (if any) that invoked x.wait ()

BAE RG]



Monitors

Condition Variables 1l

@ Monitor with Condition Variables

entry queue

shared data

X
y -

111

operations

queues associated with
X, y conditions

initialization
code




Monitors

Condition Variables [l

@ Problem with x.signal()

e process P invokes x.signal, and a suspended process Q is
allowed to resume its execution, then ?

e signal and wait
e signal and continue

e in the language Concurrent Pascal, a compromise was adopted

@ when P executes the signal operation, it immediately leaves
the monitor, hence, Q is immediately resumed.




Monitors

A deadlock-free solution to Dining Philosophers |

@ the monitor
monitor DP
{
enum { THINKING; HUNGRY, EATING} state[5] ;
condition self [5];

void pickup (int i) {

state[i] = HUNGRY;

test(i);

if (state[i] != EATING) self[i].wait;
}

void putdown (int i) {
state[i] = THINKING;
test((i + 4) % 5);
test((i + 1) % 5);




Monitors

A deadlock-free solution to Dining Philosophers I

}

void test (int i) {
if ( (state[(i + 4) % 5] != EATING) &&
(state[i] == HUNGRY) &&
(state[(i + 1) % 5] != EATING) ) {
state[i] = EATING ;
self[i].signal () ;
}
}

initialization_code() {
for (inti=0;i<5;i++)
state[i] = THINKING;




Monitors

A deadlock-free solution to Dining Philosophers Il

@ Each philosopher i invokes the operations pickup() and
putdown() in the following sequence:

dp.pickup (i)
EAT

dp.putdown (i)

@ not starvation-free

BAE RG]



Monitors

Monitor Implementation Using Semaphores |

@ Variables
semaphore mutex; // (initially = 1) , for enter and exit monitor

semaphore next; / (initially = 0)

int next-count = 0;

BAE RG]



Monitors

Monitor Implementation Using Semaphores I

@ Each external procedure F will be replaced by

wait(mutex);

body of F;

if (next-count > 0)
signal(next)
else

signal(mutex);

@ Mutual exclusion within a monitor is ensured.

e I 5 B



Monitors

Monitor Implementation |

@ For each condition variable x, we have:

semaphore x-sem; // (initially = 0)

int x-count = 0;

@ The operation x.wait can be implemented as:

UL



Monitors

Monitor Implementation |l

X-count++;

if (next-count > 0)
signal(next);

else
signal(mutex);

wait(x-sem);

X-count—;

UL



Monitors

Monitor Implementation Il

@ The operation x.signal can be implemented as:
if (x-count > 0) {

next-count++;
signal(x-sem);
wait(next);

next-count—;

UL



Synchronization Examples

Outline

© Synchronization Examples




Synchronization Examples

Synchronization Examples

@ Solaris
@ Windows XP
@ Linux

@ Pthreads




Synchronization Examples

Solaris Synchronization

@ Implements a variety of locks to support multitasking,
multithreading (including real-time threads), and
multiprocessing

@ Uses adaptive mutexes for efficiency when protecting data
from short code segments

@ Uses condition variables and readers-writers locks when
longer sections of code need access to data

@ Uses turnstiles to order the list of threads waiting to acquire
either an adaptive mutex or reader-writer lock

g B



Synchronization Examples

Windows XP Synchronization

@ Uses interrupt masks to protect access to global resources on
uniprocessor systems

@ Uses spinlocks on multiprocessor systems

@ Also provides dispatcher objects which may act as either
mutexes and semaphores

@ Dispatcher objects may also provide events

e An event acts much like a condition variable

BAE R G 5



Synchronization Examples

Synchronization

before 2.6, nonpreemptive kernel

now, fully preemptive

o Linux:

o disables interrupts to implement short critical sections

Linux provides:

e semaphores
e spin locks




Synchronization Examples

Pthreads Synchronization

o Pthreads API is OS-independent
@ It provides:

e mutex locks
e condition variables

@ Non-portable extensions include:

e read-write locks
@ spin locks




NS RIAE

Outline

Q L AIE

BAE RG]



NS RIAE

@ Classical Problems of Synchronization
© Monitors

© Synchronization Examples

Q L AIE




NS RIAE

o #£XIE: 63, 6.11, 6.13
o ARt

o Ilfi F DX I LA PR 2 A 20T AL () =S BESRE AT A4
e 7.1, 78

BAE R G 5



NEERAE

if i J

BAE RG]



	Classical Problems of Synchronization
	Monitors
	Synchronization Examples
	小结和作业

