HRAE R G I vt

8% Main Memoryl

PR =
o R AR T S b

20094F11 A

BAE RG]

@ background
@ Storage hierarchy
@ Memory protection
@ Program execution, loading & linking

© Contiguous Memory Allocation

© Swapping
@ Swapping (X ##)

BAE RG]

background g
Memory prc
Program ution, loading & linking

Background

@ Storage hierarchy

@ memory protection

@ Program execution, loading & linking

background Storage hierarchy
Memory protection
Program ition, loading & linking

Outline

@ background
@ Storage hierarchy

background Storage hierarchy
Memory protection
Program execution, loading & linking

Storage hierarchy |

o [t VML AR S H A B)
o P WM 0] A i
o WAT AM7s Sy REERUR ALE
o WAF, EMBLBLI
o EHUIHENLRSE, A7l R = IREHKR 4L

Storage hierarchy

@ Storage systems in a computer
system can be organized in a

hierarchy
e Speed, access time =
o Cost per bit Ms'gﬂmdfi
° Volatility Optical disk
h

Magnetic tapes

background Storage h
tion
tion, loading & linking

Memory VS. register

e Same: Access directly for CPU

o Register name
o Memory address

o Different: access speed

o Register, one cycle of the CPU clock
o Memory, Many cycles (2 or more)

e Disadvantage:

o CPU needs to stall frequently & this is intolerable

Remedy

e cache

background Storage hierarchy
Memor ion
Program execution, loading & linking

Caching

o Caching (FiHZZAFHA)
o Copying information into faster storage system
o When accessing, first check in the cache,

o if In: use it directly
o Not in: get from upper storage system, and leave a copy in
the cache

@ Using of caching

o Registers provide a high-speed cache for main memory

e Instruction cache & data cache

e Main memory can be viewed as a fast cache for secondary
storage

o o+

background Storage hierarchy
Memory protection
Program execution, loading & linking

Outline

@ background

@ Memory protection

background Storage hierarchy
Memory protection
Program execution, loading & linking

Memory protection

o Base register protection scheme

0
: .. . oS
Base register+Limit register 256000 Base resister
. et
Memory outside is protected M
OS has unrestricted access to both 120010 S
. 120900
monitor and user’ s memory Tob3 e
. . .. 880000 Limit register
o Load instructions for the base/limit Tob4
1024000 —————

registers are privileged

Trap to operating system
memory
‘monitor-addressing error

background hierarchy
Memory protection
Program execution, loading & linking

Outline

@ background

@ Program execution, loading & linking

g

background ze hierarchy
Memory protection
Program execution, loading & linking

Program execution, loading & linking |

@ Von Neumann architecture (¥% - i 2 /& R 45H4)

e Program must be brought into memory
e Main memory is usually too small

| Sa——— |
=ds
AU
. % =
«[mx\ﬂaj’ - {#mﬂ—ﬁ mu&e&]—-
g N
me o e (&
A

—%i&ﬂﬂ—':L
RS WRES

BAE R G 5

background hierarchy
Memory protection
Program execution, loading & linking

Program execution, loading & linking Il

@ Program must be placed within
a process for it to be executed

source
program

o User programs: Where to
place the program?

o several steps

compile
time

linkage
editor

load

time
system
[ibrary
ynamicall
loaded
sysiem
Lz in-memar;
Yy =
dynamic | binary Ll
linking memory e
image !

g

background Storage hierarchy
Memory protection
Program execution, loading & linking

Address Types

@ Absolute address £} Huhik

o Address seen by the memory unit
o Physical address 43 i

o Relative address #H % ik
o Linear address £k Hutil:

o Logical address &4l

o Generated by the CPU
o Virtual address [42l il

@ When can the absolute address can be decided?

J 5 Bt

background Storage hierarchy
Memory protection
Program execution, loading & linking

Example

ata
mov ax, SymbolA A/d

mov bx, symbolB

instruction
jmp Labelt <+~
Label1:) If program was loaded at
exit 0x5000, the real codes
processor execute are :
0x0000 ... 0x5000 ...

0x0100 ba010580 O0x5100 ba015580
0x0110 ba020590 0x5110 ba025590

0x0140 €a000200 0x5140 eaD05200

0x0200: 0x5200 eb
eb

background)
rotection
Program execution, loading & linking

Address Binding

@ Address binding of instructions and data to memory
addresses can happen at three different stages

o Compile time: If memory location known a priori, absolute
code can be generated; must recompile code if starting
location changes; MS-DOS .COM-format programs

o Load time: Must generate relocatable code if memory
location is not known at compile time

o Execution time: Binding delayed until run time if the process
can be moved during its execution from one memory segment
to another. Need hardware support for address maps (e.g.,
base and limit registers)

background Storage hierarchy
Memory protection
Program execution, loading & linking

Logical vs. Physical Address Space

@ The concept of a logical address space that is bound to a
separate physical address space is central to proper memory
management

o Logical address — generated by the CPU;
also referred to as virtual address
o Physical address — address seen by the memory unit

@ in compile-time and load-time address-binding schemes

o Logical addr = physical addr

@ in execution-time address-binding scheme

e Logical addr # physical addr
e need MMU

g B

background Storage hier
Memory pro on
Program execution, loading & linking

Memory-Management Unit (MMU)

@ Hardware device that maps virtual to physical address

@ In MMU scheme, the value in the relocation register is added

to every address generated by a user process at the time it is
sent to memory

e Dynamic relocation using a relocation register

relocation
register

logical physical
dd ddi
= a 341':55 m address

memory
14346

@ The user program deals with logical addresses; it never sees
the real physical addresses

background)
y tion
Program execution, loading & linking

Program loading & linking

Shall we put the entire program & data of a process in physical
memory before the process can be executed?

@ For better memory space utilization

Dynamic loading
Dynamic linking
Overlays
Swapping

background Storage hierarchy
Memory protection
Program execution, loading & linking

Program loading |

@ 3 modes

o Absolute loading mode
e relocatable loading mode
e dynamic run-time loading

@ Absolute loading mode (&s4#&NFK)
e compiling —absolute code with absolute addresses
o loading —WhZiAE A\ BIFR i 1k
o TGN A ECHE B M Bl REAT 1B
o W THIERS

@ relocatable loading mode (T ERULHENGK)

e mostly, the loading address can not be known at compile time,
but only be decided at load time.

background Storage hierarchy
Memory protection
Program execution, loading & linking

Program loading |l

e compiling — relocatable code with relative addresses
o loading — must relocate

o M HLAEREN IR HARFE P h 4R A0 s (115 o RERR)
SE i (relocation).
o T HI AR BB AER NI — IR PESE R, LUR A S, i
FRoA# 2 EAR I (static relocation)
o MM TZEARYL
dynamic run-time relocation (52%&iTeS TR L)
o HINK, FEFFRAENATBBINE
o LIRSt
o i ELAESCRFAEIBAT IR T Bh A U RE AL W A7 AL L

° /7/25
IR L E AL IS AL
T AN T S 1k 380 266) b bk (0 2 AR 2R 5 SCIE AT I 4 2
17

BAE R G 5

background Storage hierarchy
Memory protection
Program execution, loading & linking

Program loading Il

o I, AN NAE T AR FIE s i b kT3 AR A2 AR Ml
o i B HLIE L AT A% R S
© Dynamic Loading (5222373 NFK)
o ML FISAT I R E
@ Routine is not loaded until it is called

o Better memory-space utilization;
unused routine is never loaded.

o Useful when large amounts of code are needed to handle
infrequently occurring cases

@ Error routine

o No special support from OS is required implemented through
program design

@ Due to the users

g B

background e
Memory pro on
Program execution, loading & linking

Overlays 7 i % AN

@ Keep in memory only those are

needed at any given time. Symbol
table 20k
@ Needed when process is larger
than amount of memory
allocated to it. 30k
o Implemented by user, no Oveiiay
ver

special support needed from OS,
programming design of overlay
structure is complex

A 4
A

Overlays for a two -pass assembler

background Storage hierarchy
Memory protection
Program execution, loading & linking

Program linking |

o ZNYREFF—GiiF— 2 A H Bt/
i P S AR B
@ according to the time of linking
o static linking (F&HEFL 77 :X)

o load-time dynamic linking (25 AW 2hA5E4H)
o run-time dynamic linking (11T I 3)Z&5E4z)

o static linking

o TEREIFIBATLHY, Jokt 5 HARBEE LR EAT T 75 K P bR
K, BER A SRR RO, USRS AT .
o K HARBELN: AHIXahk
o FFAEH bRREE 2 [l f i IO 2
o SNBSS
o BLE R] il

BAE R G 5

background

Program linking Il

o MBUSUAHXS I ZANFHXT HLHE A B —— AN G B AHXT Mk
I
o B NFF

@ load-time dynamic linking

o EHENIN, MRS F0:, AR5 T
FEIAME HAREEEE, JERN, FERNI, B st
o s

o (T BRI T
o (TSI HARERIKIL S
o ZiTEdsp &% (Dynamic Linking)
o FRIPINERHKIZAT, AIREZEHATHY HARBEA A F K
o EMEN? HFHAN?

e Linking postponed until execution time

BAE R G 5

background)
rotection
Program execution, loading & linking

Program linking Il

Small piece of code, stub, used to locate the appropriate
memory-resident library routine

Stub replaces itself with the address of the routine, and
executes the routine

OS needed to check if routine is in processes’ memory address

e Dynamic linking is particularly useful for libraries— shared

libraries

Mo BEPPIBAT AT AN bR s 425 1]

Contiguous Memory Allocation

Contiguous Memory Allocation

Contiguous Memory Allocation

Each process is contained in a single contiguous section of memory

o i —IEY:
@ Multiple-partition allocation

o [HE /X
o FIEIX

BAE RG]

Contiguous Memory Allocation

@ the most simple method
@ at most one process at a time

@ Main memory usually divided into two
partitions:

o Resident OS, usually held in low
memory with interrupt vector

e User processes then held in high
memory

512K

operating
system

user

Contiguous Memory Allocation

protection
o MMU
fimnit relc:r_:a‘lioni
register register i
logical physical
address yes address
CPU ———— = \\:/, memary

no [
|
|

trap: addressing error

Figure 8.6 Hardware support for relocation and limit registers.

@ Maybe not use any protection

Contiguous Memory Allocation

Multiple-partition allocation

@ make several user porcesses reside in memory at the same
time.

e User partition is divided into n partitions
e Each partition may contain exactly one process

@ when a partition is free, a process in input queue is selected
and loaded into the free partition

@ when a process terminates, the partition becomes available for
another process

o the degree of multiprogramming is bound by the number of
partions.

o fixed-partition VS. dynamic-partition

Contiguous Memory Allocation

Fixed-sized-partition scheme ([fil &7 [X) |

@ The simplest multi-partition method: IBM OS/360 (MFT)

e the memory is divided into several fixed-sized partitions
e partition size: equal VS. not equal
e Data Structure & allocation algorithm

0 -
FES AT (KB) RERE QA | ed il
e L B
I 15 BO EAE |
b BO b3 24 fie
B 50 75 Bt Ek C
n 100 125 5 fie
125K]|
18] 5 43 B A FE 2
ol Sk
225K]

Contiguous Memory Allocation

Fixed-sized-partition scheme ([l 73 [X) 1l

@ disadvantage

e poor memory utility
o Internal fragmentation & external fragmentation

e External Fragmentation — total memory space exists to
satisfy a request, but it is not contiguous

o Internal Fragmentation — allocated memory may be slightly
larger than requested memory; this size difference is memory
internal to a partition, but not being used

@ 7 dynamic partition

Contiguous Memory Allocation

dynamic partition (F)Z&7X) |

@ Hole - block of available memory

o Initially, all memory is considered one large hole;

e When a process arrives, a hole large enough is searched. If
found, the memory is allocated to the process as needed, the
rest memory of the partition is keep available to satisfy future
requests.

e holes of various size are scattered throughout memory

@ OS maintains information about:

o a) allocated partitions b) free partitions (hole)

U e

Contiguous Memory Allocation

dynamic partition (F)&5X) I

0s 0S
process 5 process 5
process 8
process 2 process 2

0s oS
process 5 process 5
process 9 process 9
process 10
process 2 process 2

Contiguous Memory Allocation

dynamic partition (Z)Z&7 XD 1l

CERSRER, SEAHEE
5 IR ke Redssik PRA

S ERHEE, ANEZASE
L] Tl 1

Frads EIEEE
as it
N+ 2 NAFHTA N+ 2

e I 5 B

Contiguous Memory Allocation

Dynamic Storage-Allocation Problem

@ How to satisfy a request of size n from a list of free holes

o First-fit (ET{RIGENV) : Allocate the first hole that is big
enough

N EZN=RY/ SN

o Best-fit (MW) : Allocate the smallest hole that is big
enough; must search entire list, unless ordered by size

o Produces the smallest leftover hole

o Worst-fit (% i&iW) : Allocate the largest hole; must also
search entire list

@ Produces the largest leftover hole

o First-fit and best-fit better than worst-fit in terms of
speed and storage utilization

g B

Contiguous Memory Allocation

o WK X KN A u.size;
o FIHIMFEE L, AR MK, KN hm.size
o MR IR X A HLEYE, Hm.size>u.size
o HIWrm.size-u.size 5 min_size[f] K/
min_size k) S 56 20 € 1 /N3 XK/
o >, ZpEl, AEIHRMAE 3, AR RIS N B 45
o NI, HEEHNL

o oM BRI 73 X (1 15 kiR [
o WLUEH, zha7rXarlcyy s e B K AN

& min_size

BAE R G 5

Contiguous Memory Allocation

g DX R AE |

o [, ZHIEHIF
o [WHIHIf
o HUF B AT — N7 23 DRI (K
o [WJa&If (D
o HTHEHUR A 70 X R I R da s ik AR/
o LIJE RN A IF
o MU MW RIHIAAN, FFHEH G — D7 X RIN
o LAWK, eI
o ML MHTIRIL, HEMXRMER, A

o LIRIEREA, MRYSHERMILES RN, FTHE 5 2 R HEAN N & T
FE75 W BER P AL

BAE R G 5

Contiguous Memory Allocation

g DX AR 1

0os 0s os 0os
process 5 process 5
process 9 process 9 process 9
pro1crz‘ess :> |:> ::>
process 2 process 2 process 2 process 2

o disadvantage
o FHAMICHIIEAT, W4 X Al 5 BUAE AT 1 54
o AR, (HANAEATIRAERI F3 (FIBR A, JE RO B 1 b
A
@ solution

o compaction (&%)

g B

Contiguous Memory Allocation

compaction (%)

@ Reduce external fragmentation by compaction

o Shuffle memory contents to place all free memory together in
one large block

o Compaction is possible only if relocation is dynamic, and is
done at execution time (JZATHI AN EEMHA)

o 1/0O problem

o Latch job in memory while it is involved in 1/O
e Do I/O only into OS buffers

Hole 1
os os 0s
process 5 process 5 process 1 process 5
V| proce:
process 9 |:| Compactio 10
process —> process > K
10 10 Can not fit in the holes, but if we
. move hole 1and hole 2 ... v
process 2 process 2 process 2
Hole 2

o AT E N/ X ALk

IA%%ﬁ&uimUﬁﬁ%@uﬁBﬁ%ﬁ%

Swapping (i)
Swapping

Outline

© Swapping
@ Swapping (X ##)

BAE RG]

Swapping (i)
Swapping

Swapping (*]#t) |

o I H TMITIICTSSH
o FAFH ;M) Ta) A 6
o X 4R
EN A A EIBATIOHERE, BRI AS F IO R e B
P B AN, DB 2N Ar 2, 8 E & B T &4
FIEERE, BRRERERT T BRI A, N AT

o AEFE I A AAA] %
o K HAL:

o HEFE: M, BERE
o WU, Bt FRIrXi

BAE R G 5

Swapping (i)
Swapping

Swapping (XJ##) 1l

o M E AR FFESZIL =N J7 H 1 Th i
o SN) fif 2 B
o HEFLHIHLH
o HEFRMIHA

e Backing store
fast disk large enough to accommodate copies of all memory
images for all users;
must provide direct access to these memory images
o MR, FHRELEIIA, B I
o il P BEEHIE G ka0 s R A BRadb AT 4 2
o JIERMEN /K IF LIk

BAE R G 5

Swapping (i)
Swapping

Swapping (Xf#) 111

o HMIZeHiR B
o b PRI YRR
@ RR scheduling:
swapped out when a quantum expires
@ Priority-based scheduling: Roll out, roll in

Lower-priority process is swapped out so higher-priority
process can be loaded and executed.

o UL i
o MBI A
e R P R B 4
R PR B et TR
o HHEXHasa], e, FHE U CE 45

BAE R G 5

Swapping (i)
Swapping

Swapping (X #) IV

o RN
o Wb IEFEHHRAHERE
o L& “HWbIhAIRA” MHERE 4 A)
o P HIUSAAFIFIRA
o HIEMLY
o HITHIRML: FIHIXT B AN H 4 47

BAE R G 5

Swapping (i)
Swapping

Swapping (X #t) V

@ Context switch

Swapped in & out cost too much

Major part of swap time is transfer time; total transfer time is
directly proportional to the amount of memory swapped

o Assume: process size 1MB, disk transfer rate 5MB/sec,
average latency 8ms

e Transfer time =1MB / (5MB/sec) = 1/5 sec = 200 ms
@ Swap time = 208 ms
e Swap out & in = 416

For RR scheduling, time quantum should >> 416ms
o Problems exist for pending |/O processes swapping

o Modified versions of swapping are found on many systems
(i.e., UNIX, Linux, and Windows)

@ System maintains a ready queue of ready-to-run processes
which have memory images on disk

BAE R G 5

Swapping

Schematic View of Swapping

Swapping (i)

operating
system

@ swap out

A -

process P,

.

@swap in

process P,

user
space

main memory

o>

backing store

Swapping (i)
Swapping

ifigh 1 J

	background
	Storage hierarchy
	Memory protection
	Program execution, loading & linking

	Contiguous Memory Allocation
	Swapping
	Swapping (对换)

