BAE RS S Bt

% 8 T& Main Memory2

PR =
R SR B

2009 4 09 H 01 [

BAE RG]

@ Paging (47 1)
@ Basic Method
@ Hardware support
@ Memory Protection
@ Shared Pages

© Structure of the Page Table
@ Hierarchical Paging
@ Hashed Page Tables
@ Inverted Page Tables

BAE RG]

Discrete Memory Allocation

@ paging (47 701)
e internal fragmentation <one page

@ segmentation (73B{)

e logical

@ combined paging & segmentation (B UIz)

X Basic Method
Paging (/371) Ha re support
A

\ y Protection
Shared Pages

Outline

@ Paging (47 1)
@ Basic Method

Basic Method
Paging (/371) ar re support
S y Protection
Shared Pages

@ Logical address space of a process can be noncontiguous;
process is allocated physical memory whenever the latter is
available

e Basic Method
@ Divide physical memory into fixed-sized blocks called frames

@ size is power of 2, between 512B and 8,192B
o Page Frame Number, PFN: 0,1, ..., PFNpax

@ Divide logical memory into blocks of same size called pages
o Logical Frame Number, LFN: 0,1, ..., LFNpax

© the backing store is also divided into fixed-sized blocks of
same size as frames

U e

Basic Method
Paging (/371) Hardware support

Memory Protection

Shared Pages

e need hardware and software support for paging

o Keep track of all free frames

@ To run a program of size n pages, need to find n free frames
and load program

o Set up a page table to translate logical to physical addresses
for each process

@ Internal fragmentation < page size

X Basic Method
Paging (/371) H upport

Shared Pages

Paging Model of Logical and Physical Memory

frame
number
page 0 0
of[1]
page 1 9 1| page 0
page 2 s 2
3
page 3 page table 3| page 2
logical 4| page 1
memory
5
6
7| page 3
physical
memory

5kt

Paging (/371)

Address Translation Scheme

Basic Method
Hardware support
Memory Protection
Shared Pages

o Address generated by CPU is divided into:

o Page number (p), LFN
o Page offset (d)

page number

page offset

p

d

m-n

For given logical address

o for 32bits system & 4KB page
m—n=20

n

space 2 and page size 2"

size, m= 32, n=12,

BAE R G 5

Paging (/371)

Shared Pages

o VI TT (TTHE) “SANIT (BUHE) A MAZ K52
o Hbk: A
o UT (UUHE) K/h: L

o U (JUHE) Sp=A 4k L
o UL (UIHE) WiMFd=A mod L

o FHIE L& 2 W, AWiveh 2V, W

o p=ALBNLL, R A BIE (32—N) 47
o d= A& N

BAE R G 5

Basic Method
Paging (/371) Hardware support

Memory Protection

Shared Pages

Paging Hardware

e LFN(p) + offset (d) — PFN(f) + offset (d)

logical physical
address address 10000 .., 0000
'
CPU —Eﬁ]

1111 .. 1111

Py

~

t

physical
memory

Basic Method
Paging (/371) Hardware support

Memory Protection

Shared Pages

Paging Example

0fa 0
1]k
21e
3)d
4]e 4 i
5|t j
619 b k
7|h 1&] i
i 2 5 | m
9] P n
10| k 3 o
1)1 page table P
12| m 12
13| n
140
15| p
logical memory 16
20 [@
b
c
d
24 | ©
i
g
h
28
physical memor

32-byte memory and 4-byte pages

Basic Method
Paging (/371) H support

Memory Protection
Shared Pages

Free Frames |

@ Since OS is managing physical memory, it must be aware of
the allocation details of physical memory

o which frames are allocated
e which frames are available
e how many total frames

o ...

o frame table: one entry for each physical page frame

Free Frames I

Paging (4L

Basic Method
Hardware support
Memory Protection
Shared Pages

ree-frame list
13

20
15

(a)

21

free-frame list

of14]
1[13]

2[18]
3
new-process page table

(b)

21

page 1

page 0

page 2

page 3

Before allocation

After allocation

Basic Method
Paging (/371) Hardware support

Memory Protection

Shared Pages

Outline

@ Paging (47 1)

@ Hardware support

g

Basic Method
Paging (/371) Hardware support

Memory Protection

Shared Pages

Hardware support |

@ special hardware (software) is needed to implement page table
@ Hardware support

e basic paging hardware

e paging hardware with TLB
@ Implementation of Page Table : basic paging hardware

o Page table is kept in main memory &

o Page-table base register (PTBR) points to the page table
o Page-table length register (PRLR) indicates size of the page
table

e context switch ?

U e

Basic Method
Paging (/371) Hardware support

Memory Protection

Shared Pages

Hardware support |l

e
G2 A } AL
| widenant | videk) |4>fk>> IEECHENEE
@ |
I A
0 1
1
3 e b —’I b| |
P L
B

JEHLE et

Basic Method
Paging (/371) Hardware support

Memory Protection

Shared Pages

Hardware support Ill

o Effective memory-access time

o In this scheme every data/instruction access requires two
memory accesses.

e One for the page table &

o one for the data/instruction.

@ Solution to two memory access problem:

e a special fast-lookup hardware cache called
associative memory or
translation look-aside buffers (TLBs)

Basic Method
Paging (/371) Hardware support

Memory Protection

Shared Pages

Hardware support 1V

@ Associative Memory

o Each register: a key & a value
o parallel search (high speed)
e Expensive, typically 872048 entries

Page # Frame #

.

Page # A’ _— —— Frame # A"’

Address translation (A’, A”)

e If A’ is in associative register, get frame # out
o Otherwise get frame # from page table in memory

Basic Method
Paging (/371) Hardware support

Memory Protection

Shared Pages

Paging Hardware With TLB

logical
address
CPU p
page frame
number number
TLB hit physical
address
f] d —
TLB
p {
TLB miss
f
Eowe: physical
memory
page table

@ Some TLBs store address-space identifiers (ASIDs) in each TLB
entry

@ uniquely identifies each process to provide address-space protection
for that process

X Basi ethod
Paging (/371) Hardware support

Memory Protection
Shared Pages

TLB miss (TLB #2k)

o If the page number is not in the associative registers

o Get & store

Hit ratio (=)

e The percentage of times that a page number is found in the
associative registers
e ratio related to number of associative registers

Context switch—TLB flushed

TLB replacement algorithm

Basic Method
Paging (/371) Hardware support

Memory Protection

Shared Pages

Effective Access Time

o if
e Associative Lookup = € time unit

e Assume memory cycle time is t microsecond
e Hit ratio = «

o then Effective Access Time (EAT)

EAT = (t+e)a+ (2t+¢)(l—a)
= 2t+e—ta

o If e =20ns, t=100ns, a1l = 0%, a2 = 98%:

if TLB hit: 20 + 100 = 120ns

if TLB miss: 20 + 100 + 100 = 220ns
EAT1 =120 % 0.8 4+ 220 * 0.2 = 140ns
EAT2 =120 % 0.98 + 220 * 0.02 = 122ns

BAE R G 5

Basic hod
Paging (/371) Har upport

Memory Protection

Shared Pages

Outline

@ Paging (47 1)

@ Memory Protection

g

B hod
Paging (/371) Hard support

Memory Protection

Shared Pages

Memory Protection

o If page size 2", page & frame is aligned at 27, so ***

@ Memory protection implemented by associating protection
bit with each frame

e Provide read only, read-write, execute-only protection or--*
o Valid-invalid bit attached to each entry in the page table:

o 'valid’ indicates that the associated page is in the process’
logical address space, and is thus a legal page
e 'invalid’ indicates that the page is not in the process’ logical

address space

Paging (/371)

Basic Method
Hardware support
Memory Protection
Shared Pages

Valid (v) or Invalid (i) Bit In A Page Table

@ Address space 214,
Page size 2KB;
Process size
(0710468):

@ Page 5 has internal
fragmentation

@ PTLR=6, Page 6 &
7 are invalid

00000

10,468
12,287

page 0

page 1

page 2

page 3

page 4

page 5

frame number , valid—invalid bit
\ /

[

ofo|o|~]s|w e

N oo s w N = O
—l=l<|<|<|=<|<|=<

>

page table
10240

o

10486

12287

page 0

page 1

page 2

page 3

page 4

page 5

X Basic hod
Paging (73 11) H upport
Memory Protection

Shared Pages

Outline

@ Paging (47 1)

@ Shared Pages

g

Paging (/371)
Memor rotection

Shared Pages

Shared Pages

@ Shared code

e One copy of read-only (reentrant) code shared among
processes (i.e., text editors, compilers, window systems).

e Shared code must appear in same location in the logical
address space of all processes

@ Private code and data

e Each process keeps a separate copy of the code and data
e The pages for the private code and data can appear anywhere
in the logical address space

Paging (/371)

Shared Pages Example

Basic Method
Hardware support

Memory Protection

Shared Pages

data 1

process P,

data 3

process P,

page table
for P, ed 1
ed?2
ad3
data 2
process P,

page table
for Py

page table
for P,

o

data 1

data 3

data 2

Hierarchical Paging

Structure of the Page Table Tables

Outline

© Structure of the Page Table
@ Hierarchical Paging

5kt

Hierarchical Paging

Structure of the Page Table -
Inverted

Hierarchical Page Tables

@ Break up the logical address space into multiple page tables

e need directories

@ A simple technique is a two-level page table

Hierarchical Paging
Hashed P ables

Structure of the Page Table Inverted P Tables

Two-Level Page-Table Scheme

|
/ : 100 ——
500 N
\ . .
. .
v .
™ 100 500
708 P | :
. 708
2 .
outer page [e .
table . \ S
.
900
page of 929
page table
page table :
memory

5 Byt

B

Hierarchical Paging
Hashed P ables

Structure of the Page Table)
Inverted

Two-Level Paging Example

@ A logical address (on 32-bit machine with 1K page size) is
divided into:
@ a page number consisting of 22 bits
e a page offset consisting of 10 bits
e Since the page table is paged, the page number is further
divided into:

@ a 12-bit page number & a 10-bit page offset

@ Thus, a logical address is as follows:

page number page offset
(o [p] o |
12 10 10

where p; is an index into the outer page table, and p, is the
displacement within the page of the outer page table

BAE R G 5

Hierarchical Paging
Hashed Page Tables

Structure of the Page Table Inverted Pa bles

Address-Translation Scheme

ANFS TS AR ML il
LR P | », [¢ |

SIS I AE > >+ > = b [¢ |
P

Structure of the Page Table

Hierarchical Paging

Three-level Paging Scheme

Hashed Page Tables
Inverted Page Tables

outer page inner page offset
P1 P2 d
42 10 12
2nd outer page = outer page | innerpage offset
P1 P2 P3 d
32 10 10 12

BAE R G 5

Hierarchical Paging
Hashed Page les

Structure of the Page Table T P Telks

performance of multi-level page tables

o Level number =L,
EAT = (L+ 1)t

o HIEFEGAT TN

EAT = a(t+e)+(1—-a)((L+1)t+e)
a = 098
L = 3

EAT = 0.98 x 120+ 0.02 x 520
128ns

which is only a 28% slowdown in memory access time.

Hierarchical Paging
Hashed Page Tables

Structure of the Page Table T e Telks

Outline

© Structure of the Page Table

@ Hashed Page Tables

Hierarchical Paging
Hashed Page Tables

Structure of the Page Table T e Telks

Hashed Page Tables

@ Common in address spaces > 32 bits

@ The virtual page number is hashed into a page table. This page table
contains a chain of elements hashing to the same location.

@ Virtual page numbers are compared in this chain searching for a match.
If a match is found, the corresponding physical frame is extracted.

physical
logical address address
B e

physical
Qﬁiﬁign) ~ [q|s| |]lplrlilt‘“ memory

hash table

B

Hierarchical
Hashed Pa

Structure of the Page Table T B Tebiks

Outline

© Structure of the Page Table

@ Inverted Page Tables

g

Hierarchical
Hashed Pag

Structure of the Page Table T B Tebiks

Inverted Page Table

@ One entry for each real page of memory

@ Entry consists of the virtual address of the page stored in that
real memory location, with information about the process that
owns that page

@ Decreases memory needed to store each page table, but
increases time needed to search the table when a page
reference occurs

@ Use hash table to limit the search to one —or at most a few
—page-table entries

U e

Hierarchical Paging
Hashed P

Structure of the Page Table Inverted P g’e Tables

Inverted Page Table Architecture

logical .
address physical
address

5 = hysical
N -IEaE R S

search l i

page table

Hierarchi
Hashed P es
Inverted Page Tables

Structure of the Page Table

@ Paging (47 1)
@ Basic Method
@ Hardware support
@ Memory Protection
@ Shared Pages

© Structure of the Page Table
@ Hierarchical Paging
@ Hashed Page Tables
@ Inverted Page Tables

Hierarch
Hashed e Ta

es
Structure of the Page Table T B Tebiks

i)

	Paging (分页)
	Basic Method
	Hardware support
	Memory Protection
	Shared Pages

	Structure of the Page Table
	Hierarchical Paging
	Hashed Page Tables
	Inverted Page Tables

