HAE R SR 5 W

Horr VM1 (RELFD)

B 2
s R AR TR

2009409 Ho1H

BAE RG]

@ Background

© Demand Paging
@ Basic Concepts (HW support)
@ Performance of Demand Paging

© Copy-on-Write

Q N

BAE RG]

Background

Background

o H54 UAUREHEH S W A7 Thig AT
o WITH MY 7 %

o To place the entire logical address in physical memory

o Overlays (F)
e Dynamic loading
e Dynamic linking

e SR
o ARMEMENLIR K A RHRIEL A BIR %
o HMHEL LY REWNAE, MK

9)@5%:
MIZ4E EY RN AT

BAE R G 5

Background

Background Il

o EAFBIARMIGIN
o FEIFHIALEHE M ARASIA B B H AR T L2, i
ISR R AL B
o HUUHHIARALTA R T M L
o F2/FuySEPIEIRE (locality of reference), 1968, Denning
o INFIE]JRpFRE L = Ihl Jey F A
o SR TR HHRN. B

o [EIUAFiHAN: RIEAFHRIFAED A BIRIVEE, AEM
IBAR b S N AR LAY IR — T B 28 R
o WIRAH:
MRGEMEE: WK E+HIMEAE
MR R . Hohk 2k S FEVE s A A A A
o IBATIEE: HIEWNAT
o BRRA: BalhMT

[22 BAE R G 5

Background

Background Il

@ Virtual memory : separation of user logical memory from
physical memory.

Only part of the program needs to be in memory for execution
Logical address space can therefore be much larger than
physical address space

Allows address spaces to be shared by several processes

Allows for more efficient process creation

o Virtual memory can be implemented via:
o Demand paging

o LIy miHiAR LA, ik

o IENRIM I (pager) ThfEFI L B L) e

o SxfinAHLL, VUi EHrh
PN BEA BT SR T, AN AR AN R

e Demand segmentation

g B

Background

Virtual Memory That is Larger Than Physical Memory

page 0
page 1
page 2 P N
\-_’/
—
HEE

\ _ N EEw
EEE
T~ EEE

memory
map \-___//
page v physical
memory
virtual
memory

BAE R G 5

RS s (FURFAE

o ZIRME: BELEMIRHIE

o —MEMLBE L IRFEN N AFIBAT
o Xt

o AVHEHIFEBATHIERE,, Gl Ak
o JEFUME

o Wi LY 7

o KEAUMESE LA IR MRk D BEA) o
o Z XN 4 1t A A ST AE 18 1S 70 P B AL)

BAE R G 5

Background

Virtual-address Space

@ the virtual address space of a
process refers to the logical (or
virtual) view of how a process is
stored in memory.

o Typically: 07xxx & exists in
contiguous memory

@ In fact, the physical memory are
organized (partitioned) in page
frames & the page frames assigned to
a process may not be
contiguous=MMU

g B

stack

heap

data

code

Background

Some benifits

© Shared Library Using Virtual Memory

stack stack
shared
shared library pages shared library
heap heap
data data
code code

@ Shared memory

© speeding up process creation

Demand Paging Basic Concepts (HW support)
Performance of Demand Paging

Demand Paging

@ Do not load the entire program in physical memory at
program execution time. NO NEED!
@ Bring a page into memory only when it is needed

Less I/O needed
Less memory needed
Faster response
More users

@ Page is needed = reference to it

e invalid reference =-abort

@ not-in-memory =-bring to memory
@ Swapper VS. pager

e A swapper manipulates the entire processes
o Lazy swapper
never swaps a page into memory unless page will be needed

@ Swapper that deals with individual pages is a pager

Basic Concepts (HW support)

Demand Paging
Performance of Demand Paging

Transfer of a Paged Memory to Contiguous Disk Space

e R T e,

W M]

swap out o[1101 2[1]3[]

progAram ‘%I ﬁ ﬁ &l
4] s[]e7

8] 9[o[11d

1213415

program . swapin 16017 T18 019 0]

20[121[J22[23]

e o

g B

Demand Paging Basic Concepts (HW support)

Performance of Demand Paging

Outline

© Demand Paging
@ Basic Concepts (HW support)

Demand Paging Basic Concepts (HW support)

Performance of Demand Paging

HW support

© the modified page table mechanism
@ page fault

© address translation

@ secondary memory (as swap space)

Demand Paging Basic Concepts (HW support)

Performance of Demand Paging

1) the modified page table mechanism

@ Valid-Invalid Bit (PRESENT bit)

o With each page table entry a valid-invalid

bit is associated Frame # valid-invalid bit
v
@ v = in-memory, i = not-in-memory x
\
o Initially valid-invalid bit is set to i on all L
entries
i
o During address translation, if valid-invalid L
page table

bit in page table entry is i = page fault

@ reference bits (for pager out)
© modify bit (or dirty bit)
© secondary storage info (for pager in)

g B

Demand Paging Basic Concepts (HW support)

Performance of Demand Paging

Page Table When Some Pages Are Not in Main Memory

0
1
A 2
lid—invalid o
! B frame 3 (-
P C 4 A =il
— . HEE
kI E ¢ NG L]
= ‘ B
o G 8
7w o[F [F]
logical page table 0
memory I_I u I_l
1 L] L
12 I
13
14
15
nhysical memar

B

Demand Paging Basic Concepts (HW support)

Performance of Demand Paging

2) Page Fault |

o If there is a reference to a page, first reference to that page
will trap to OS:

page fault

o Page fault trap (HR TR

o Exact exception (trap)
Restart the process in exactly the same place and state.
Re-execute the instruction which triggered the trap

o —ARARAAEIAT IR AT e AR 2 IR IR

BAE RG]

Demand Paging Basic Concepts (HW support)

Performance of Demand Paging

2) Page Fault Il

e example: One instruction & 6 page faults
o
o RUUS W Al REAEAT A — IR UTAF R AE h ™ 2

o AARAAIRE AL KL
RIS DU A s A 2o

Page Fault Handling:
@ OS looks at an internal table to decide:

o Invalid reference = abort
e Just not in memory =

U e

Demand Paging Basic Concepts (HW support)

Performance of Demand Paging

2) Page Fault Il

@ Get empty frame
© Swap page into frame

e pager out & pager in

@ Modify the internal tables & Set validation bit = v
© Restart the instruction that caused the page fault

BAE R G 5

Demand Paging

Basic Concepts (HW support)

Performance of Demand Paging

Steps in Handling a Page Fault

page is on
backing store

/f B
aperating
system .
@
refe(rSnce trap
load M [i
restart page table
instruction
free frame T
reset page bring in
table missing page
physical
memory

5

il

Demand Paging Basic Concepts (HW support)

Performance of Demand Paging

3) address translation

o (ERTHFTUFI 7> U HE A 45 M v, G0 T B o 14 Ak

Demand Paging Basic Concepts (HW support)

Performance of Demand Paging

resume the execution

o Before OS handling the page fault, the state of the process
must be saved ({R1FILIA)

e e.g. record its register values, PC

@ The saved state allows the process to be resumed from the
line where it was interrupted. (Pk &%)

@ Note: distinguish the following 2 situation

o illegal reference=-the process is terminated
e page fault=- load in or pager in

g B

Demand Paging Basic Concepts (HW support)
Performance of Demand Paging

Outline

Demand Pagin
(2 ging

@ Performance of Demand Paging

g

Demand Paging Basic Concepts (HW support)
Performance of Demand Paging

Performance of Demand Paging

@ let p = Page Fault Rate (0 < p < 1.0)
e if p=0, no page faults
o if p=1.0, every reference is a fault

o Effective Access Time (EAT)

EAT = (1 — p) x memory access
+p X page fault time

page fault time = page fault overhead
+swap page out
+swap page in

+restart overhead

Demand Paging Basic Concepts (HW support)
Performance of Demand Paging

Demand Paging Example |

@ Memory access time = 200ns

o Average page-fault service time = 8ms

EAT = (1—p)x200+ px8ms
= (1 —p)x200+ px 8,000,000
= 200+ p x 7,999,800

J 5 Bt

Demand Paging Basic Concepts (HW support)
Performance of Demand Paging

Demand Paging Example I

@ If one access out of 1,000 causes a page fault, then

p = 0.001
EAT = 82us

This is a slowdown by a factor of 40!!

@ if we want performance degration to be less then 10%, then

EAT =200+ p x 7,999,800 < 200 (1+ 10%) = 220
px 7,999,800 < 20
p < 20/7,999,800 ~ 0.0000025

BAE RG]

Demand Paging Basic Concepts (HW support)
Performance of Demand Paging

/D ffe U A T B TA] (%) 7 3%

@ To keep the fault time low

@ Swap space, faster then file system

@ Only dirty page is swapped out, or

© Demand paging only from the swap space, or

@ |Initially demand paging from the file system, swap out to swap
space, and all subsequent paging from swap space

o Keep the fault rate extremely low
e Localization of program executing

o Time, space

U e

Copy-on-Write

Process Creation

@ Virtual memory allows other benefits during process creation:

e Copy-on-Write
o Memory-Mapped Files (later)

g B

Copy-on-Write

Copy-on-Write

e Copy-on-Write (COW) allows both parent and child processes
to initially share the same pages in memory

o If either process modifies a shared page, only then is the page
copied

o COW allows more efficient process creation as only
modified pages are copied

@ Free pages are allocated from a pool of zeroed-out pages

BAE R G 5

Copy-on-Write

Before Process 1 Modifies Page C

physical
process; memory process,

~

page A

I

T page B 1]
page C e

h 4

e I 5 B

Copy-on-Write

After Process 1 Modifies Page C

physical
process; memory process;

BAE R G 5

Copy-on-Write

What happens if there is no free frame?

@ Page replacement
find some page in memory, but not really in use, swap it out

e algorithm
e performance

want an algorithm which will result in minimum number of
page faults

@ Same page may be brought into memory several times

g B

SRR

@ Background

© Demand Paging
@ Basic Concepts (HW support)
@ Performance of Demand Paging

© Copy-on-Write

Q N

BAE RG]

SRR

if i J

BAE RG]

	Background
	Demand Paging
	Basic Concepts (HW support)
	Performance of Demand Paging

	Copy-on-Write
	小结和作业

