
.

操作系统原理与设计
第9章 VM3（虚存3）

陈香兰

中国科学技术大学计算机学院

2009年09月01日

.

提纲

Thrashing
Cause of trashing
Working-Set Model
Page-Fault Frequency

Memory-Mapped Files

Allocating Kernel Memory

Other Issues

Operating System Examples

小结和作业

.

Outline

Thrashing
Cause of trashing
Working-Set Model
Page-Fault Frequency

Memory-Mapped Files

Allocating Kernel Memory

Other Issues

Operating System Examples

小结和作业

.

Thrashing I

I If a process does not have ’enough’ pages, the page-fault
rate is very high. This leads to:

I low CPU utilization
I OS thinks that it needs to increase the degree of

multiprogramming
I another process added to the system, getting worse!

I Thrashing � a process is busy swapping pages in and out

.

Thrashing II

I Cause of trashing: unreasonable degree of multiprogramming

.

Thrashing III

I How to limit the effects of thrashing
I local replacement algorithm? not entirely sloved.
I we must provide a process with as many frames as it

needs–locality
I How do we know how many frames is needed?

I working-set strategy ⇐Locality model

I Locality model: This is the reason why demand paging works?
I Process migrates from one locality to another
I Localities may overlap

I Why does thrashing occur?
Σsize of locality > total memory size

I Locality In A Memory-Reference Pattern (figure)

.

Thrashing IV

.

Outline

Thrashing
Cause of trashing
Working-Set Model
Page-Fault Frequency

Memory-Mapped Files

Allocating Kernel Memory

Other Issues

Operating System Examples

小结和作业

.

Working-Set Model(工作集模型) I

I the working-set model is based on the assumption of
locality.

I let

∆ ≡ working − set window
≡ a fixed number of page references

Example:10,000 instruction

I working set (工作集): the set of pages in the most recent ∆
page references.

I an approximation of the program’s locality.

.

Working-Set Model(工作集模型) II

I Example:
∆ = 10

I working set size: WSSi(working set of Process Pi) =
total number of pages referenced in the most recent ∆

I veries in time, depend on the selection of ∆

I if ∆ too small will not encompass entire locality
I if ∆ too large will encompass several localities
I if ∆ = ∞ ⇒ will encompass entire program

.

Working-Set Model(工作集模型) III

I For all processes in the system, currently

D = ΣWSSi ≡ total demand frames

I if D > m ⇒ Thrashing
I Policy

I if D > m, then suspend one of the processes

.

Keeping Track of the Working Set

I Approximate with interval timer + reference bits
I Example: ∆ = 10,000

I Timer interrupts after every 5000 time units
I Keep in memory 2 bits for each page
I Whenever a timer interrupts, copy and sets the values of all

reference bits to 0
I If one of the bits in memory = 1 ⇒ page in working set

I Why is this not completely accurate?
I IN!! But where?

I Improvement:
I 10 bits and interrupt every 1000 time units

.

Outline

Thrashing
Cause of trashing
Working-Set Model
Page-Fault Frequency

Memory-Mapped Files

Allocating Kernel Memory

Other Issues

Operating System Examples

小结和作业

.

Page-Fault Frequency Scheme I
I helpful for controling trashing
I Establish “acceptable” page-fault rate

I If actual rate too low, process loses frame
I If actual rate too high, process gains frame

.

working sets and page fault rates

.

Memory-Mapped Files I

I Memory-mapped file I/O allows file I/O to be treated as
routine memory access by mapping a disk block to a page
in memory

I A file is initially read using demand paging. A page-sized
portion of the file is read from the file system into a physical
page.
Subsequent reads/writes to/from the file are treated as
ordinary memory accesses.

I Simplifies file access by treating file I/O through memory
rather than read() write() system calls

I Also allows several processes to map the same file allowing the
pages in memory to be shared

.

Memory-Mapped Files II

.

Memory-Mapped Shared Memory in Windows

I reading the source code 英文351和352页，中文？和？页

.

Memory－mapped I/O

I many computer archtectures provide memory-mapped I/O
I ranges of memory addresses are set aside and are mapped to

the device registers.
I directly read/write the mapped range of memory address for

transfer data from/to device registers
I fast response times
I for example: video controler

I displaying text on the screen is almost as easy as writing the
text into the appropriate memory-mapped locations.

.

Allocating Kernel Memory

I Treated differently from user memory
I Often allocated from a free-memory pool

I Kernel requests memory for structures of varying sizes
I Some kernel memory needs to be contiguous

.

Buddy System

I Allocates memory from fixed-size segment consisting of
physically- contiguous pages

I Memory allocated using power-of-2 allocator
I Satisfies requests in units sized as power of 2
I Request rounded up to next highest power of 2
I When smaller allocation needed than is available, current

chunk split into two buddies of next-lower power of 2
I Continue until appropriate sized chunk available

.

Buddy System Allocator

.

Slab Allocator I

I Alternate strategy
I Slab is one or more physically contiguous pages
I Cache consists of one or more slabs
I Single cache for each unique kernel data structure

I Each cache filled with objects – instantiations of the data
structure

I When cache created, filled with objects marked as free
I When structures stored, objects marked as used
I If slab is full of used objects, next object allocated from empty

slab
I If no empty slabs, new slab allocated

I Benefits include no fragmentation, fast memory request
satisfaction

.

Slab Allocator II

.

Other Issues I
1. Prepaging

I To reduce the large number of page faults that occurs at
process startup

I Prepage all or some of the pages a process will need, before
they are referenced

I But if prepaged pages are unused, I/O and memory was wasted
I Assume s pages are prepaged and α of the pages is used

I Is cost of s ∗ α save pages faults > or < than the cost of
prepaging s ∗ (1 − α) unnecessary pages?

I α near zero ⇒ prepaging loses

2. Page Size
I Page size selection must take into consideration:

I fragmentation
I table size
I I/O overhead
I locality

.

Other Issues II
3. TLB Reach - The amount of memory accessible from the TLB

I TLB Reach = (TLB Size) × (Page Size)
I Ideally, the working set of each process is stored in the TLB

I Otherwise there is a high degree of page faults
I Increase the Page Size

I This may lead to an increase in fragmentation as not all
applications require a large page size

I Provide Multiple Page Sizes
I This allows applications that require larger page sizes the

opportunity to use them without an increase in fragmentation

4. Inverted page tables
5. Program structure

I Int[128,128] data;
I Each row is stored in one page

.

Other Issues III
I Program 1

for (j = 0; j <128; j++)

for (i = 0; i < 128; i++)

data[i,j] = 0;

128 x 128 = 16,384 page faults
I Program 2

for (i = 0; i < 128; i++)

for (j = 0; j < 128; j++)

data[i,j] = 0;

128 page faults

6. I/O Interlock – Pages must sometimes be locked into memory
I Consider I/O - Pages that are used for copying a file from a

device must be locked from being selected for eviction by a
page replacement algorithm

.

Other Issues IV
I Reason Why Frames Used For I/O Must Be In Memory

.

Operating System Examples

I Windows XP
I Solaris

.

Windows XP

I Uses demand paging with clustering. Clustering brings in
pages surrounding the faulting page.

I Processes are assigned working set minimum and working set
maximum

I Working set minimum is the minimum number of pages the
process is guaranteed to have in memory

I A process may be assigned as many pages up to its working
set maximum

I When the amount of free memory in the system falls below a
threshold, automatic working set trimming is performed to
restore the amount of free memory

I Working set trimming removes pages from processes that have
pages in excess of their working set minimum

.

Solaris

I Maintains a list of free pages to assign faulting processes
I Lotsfree – threshold parameter (amount of free memory) to

begin paging
I Desfree – threshold parameter to increasing paging
I Minfree – threshold parameter to being swapping
I Paging is performed by pageout process
I Pageout scans pages using modified clock algorithm
I Scanrate is the rate at which pages are scanned. This ranges

from slowscan to fastscan
I Pageout is called more frequently depending upon the amount

of free memory available

.

Solaris 2 Page Scanner

.

小结

Thrashing
Cause of trashing
Working-Set Model
Page-Fault Frequency

Memory-Mapped Files

Allocating Kernel Memory

Other Issues

Operating System Examples

小结和作业

.

阅读

I Reading 英文9.10，9.11.

.

作业

I 华夏班：9.2, 9.4, 9.10, 9.15
I 非华夏班：10.3, 10.4, 10.10, 10.20

.

谢谢！

	Thrashing
	Cause of trashing
	Working-Set Model
	Page-Fault Frequency

	Memory-Mapped Files
	Allocating Kernel Memory
	Other Issues
	Operating System Examples
	小结和作业

