BAERA R 5%
P9 VM3 (EAE3)
MR~
R RR RS2 B

20094709 Ho1H

Thrashing
Cause of trashing
Working-Set Model
Page-Fault Frequency
Memory-Mapped Files
Allocating Kernel Memory

Other Issues

Operating System Examples

NG,

Outline

Thrashing
Cause of trashing

Thrashing |

» If a process does not have 'enough’ pages, the page-fault
rate is very high. This leads to:

» low CPU utilization

» OS thinks that it needs to increase the degree of
multiprogramming

> another process added to the system, getting worse!

» Thrashing a process is busy swapping pages in and out

Thrashing I

h

thrashing

CPU utilization

degree of multiprogramming

» Cause of trashing: unreasonable degree of multiprogramming

Thrashing Il

» How to limit the effects of thrashing

> local replacement algorithm? not entirely sloved.

» we must provide a process with as many frames as it
needs—locality

» How do we know how many frames is needed?

> working-set strategy <Locality model

» Locality model: This is the reason why demand paging works?
» Process migrates from one locality to another
> Localities may overlap
» Why does thrashing occur?
Yisize of locality > total memory size

» Locality In A Memory-Reference Pattern (figure)

Thrashing IV

34 i

32 -
i ’ ‘ i FE |
i \ll\‘hil‘l”ﬂ"‘l\‘ul
I l i
ty L

b
bl nlm]
\‘ o +

‘ e bl B m
“ | o L

LA [m
i el gy e)

2 [HHHHHH\IH\II\ st \‘H "” Ll
MMWWWW. ‘

n

Outline

Thrashing

Working-Set Model

Working-Set Model(T /EHALY) |

» the working-set model is based on the assumption of
locality.

> let

A = working — set window

= 3 fixed number of page references

Example: 10,000 instruction

» working set (T.{E£Z): the set of pages in the most recent A
page references.

> an approximation of the program’s locality.

Working-Set Model(T /EAALY) I

» Example:
A =10

page reference table

A | A |
tT f2
WS(t,) = 1,2,5,6,7) WS(t,) = {3,4}

...2615777751623412344434344413234443444...

» working set size: WSS;(working set of Process P;) =
total number of pages referenced in the most recent A
> veries in time, depend on the selection of A

> if A too small will not encompass entire locality
> if A too large will encompass several localities
> if A =00 = will encompass entire program

Working-Set Model(T {EAAHLAY) 111

» For all processes in the system, currently

D = X WSS; = total demand frames

» if D> m = Thrashing
» Policy

> if D > m, then suspend one of the processes

Keeping Track of the Working Set

» Approximate with interval timer + reference bits
» Example: A = 10,000

» Timer interrupts after every 5000 time units

» Keep in memory 2 bits for each page

» Whenever a timer interrupts, copy and sets the values of all
reference bits to 0

> If one of the bits in memory = 1 = page in working set

» Why is this not completely accurate?

» IN!l But where?

» Improvement:

> 10 bits and interrupt every 1000 time units

Outline

Thrashing

Page-Fault Frequency

Page-Fault Frequency Scheme |

» helpful for controling trashing

» Establish “acceptable” page-fault rate

» If actual rate too low, process loses frame
> If actual rate too high, process gains frame

page-fault rate

increase number
of frames

upper bound

lower bound
decrease number
of frames

number of frames

working sets and page fault rates

working set
I
i i
1 | |
I 1
1 1
: 1
[
page 1 1
fault : 1
1
rate ! i
I !
I 1
| 1
0 ; :
time

Memory-Mapped Files |

» Memory-mapped file I/O allows file /O to be treated as
routine memory access by mapping a disk block to a page
in memory

» A file is initially read using demand paging. A page-sized
portion of the file is read from the file system into a physical
page.

Subsequent reads/writes to/from the file are treated as
ordinary memory accesses.

» Simplifies file access by treating file 1/O through memory
rather than read() write() system calls

» Also allows several processes to map the same file allowing the
pages in memory to be shared

Memory-Mapped Files I

5
6
process B
virtual memon

physical memory

irtual memory

2

3

4

5

6
process A

2[(3]4([5]6

1

disk file

Memory-Mapped Shared Memory in Windows

process,

shared
memory

memory-mapped
file

shared
memory

process,

shared
memory

» reading the source code 9& 3351135201, H3L? FI? 4L

Memory—mapped 1/0

> many computer archtectures provide memory-mapped 1/0O

> ranges of memory addresses are set aside and are mapped to
the device registers.

» directly read/write the mapped range of memory address for
transfer data from/to device registers

> fast response times

» for example: video controler

» displaying text on the screen is almost as easy as writing the
text into the appropriate memory-mapped locations.

Allocating Kernel Memory

» Treated differently from user memory
» Often allocated from a free-memory pool

» Kernel requests memory for structures of varying sizes
» Some kernel memory needs to be contiguous

Buddy System

» Allocates memory from fixed-size segment consisting of
physically- contiguous pages
» Memory allocated using power-of-2 allocator
» Satisfies requests in units sized as power of 2
» Request rounded up to next highest power of 2

» When smaller allocation needed than is available, current
chunk split into two buddies of next-lower power of 2

» Continue until appropriate sized chunk available

Buddy System Allocator

physically contiguous pages

256 KB

128 KB

128 KB

J T

64 KB H

64KB
R

G

32KB| |32 KB
el SR

Slab Allocator |

vV v.v Y

Alternate strategy

Slab is one or more physically contiguous pages
Cache consists of one or more slabs

Single cache for each unique kernel data structure

» Each cache filled with objects — instantiations of the data
structure

» When cache created, filled with objects marked as free

» When structures stored, objects marked as used

If slab is full of used objects, next object allocated from empty
slab

> If no empty slabs, new slab allocated

Benefits include no fragmentation, fast memory request
satisfaction

Slab Allocator |l

3KB
objects

7 KB
objects

kernel objects

1 N

caches

slabs

R 1

physical
contiguous
pages

Other Issues |

1. Prepaging

» To reduce the large number of page faults that occurs at
process startup

» Prepage all or some of the pages a process will need, before
they are referenced
But if prepaged pages are unused, |/0 and memory was wasted
» Assume s pages are prepaged and « of the pages is used
> |s cost of s* « save pages faults > or < than the cost of
prepaging sx* (1 — «) unnecessary pages?
> « near zero = prepaging loses

2. Page Size

> Page size selection must take into consideration:

> fragmentation
> table size

> 1/0 overhead
> locality

Other Issues |l

3. TLB Reach - The amount of memory accessible from the TLB

» TLB Reach = (TLB Size) x (Page Size)
> lIdeally, the working set of each process is stored in the TLB

> Otherwise there is a high degree of page faults
» Increase the Page Size

» This may lead to an increase in fragmentation as not all
applications require a large page size

» Provide Multiple Page Sizes

> This allows applications that require larger page sizes the
opportunity to use them without an increase in fragmentation

4. Inverted page tables
5. Program structure

» Int[128,128] data;
» Each row is stored in one page

Other Issues Il

» Program 1
for (j =0;j <128; j++)

for 1=0;1i< 128;i++)
data[i,j] = 0;

128 x 128 = 16,384 page faults
» Program 2

for i=0;1<128;i++)
for j =0;j < 128; j++)
datal[i,j] = 0;
128 page faults

6. 1/0 Interlock — Pages must sometimes be locked into memory

» Consider /O - Pages that are used for copying a file from a
device must be locked from being selected for eviction by a
page replacement algorithm

Other Issues 1V
» Reason Why Frames Used For I/O Must Be In Memory

buffer

disk drive

Operating System Examples

» Windows XP

» Solaris

Windows XP

» Uses demand paging with clustering. Clustering brings in
pages surrounding the faulting page.

» Processes are assigned working set minimum and working set
maximum

» Working set minimum is the minimum number of pages the
process is guaranteed to have in memory

» A process may be assigned as many pages up to its working
set maximum

» When the amount of free memory in the system falls below a

threshold, automatic working set trimming is performed to
restore the amount of free memory

» Working set trimming removes pages from processes that have
pages in excess of their working set minimum

Solaris

» Maintains a list of free pages to assign faulting processes

> Lotsfree — threshold parameter (amount of free memory) to

vV v.v. v Y

begin paging

Desfree — threshold parameter to increasing paging

Minfree — threshold parameter to being swapping

Paging is performed by pageout process

Pageout scans pages using modified clock algorithm

Scanrate is the rate at which pages are scanned. This ranges
from slowscan to fastscan

Pageout is called more frequently depending upon the amount
of free memory available

Solaris 2 Page Scanner

8192

100
|slowscan

fastscan

scan rate

minfree

desfree

lotsfree

amount of free memory

«Or «Fr o«

DA

NG

Thrashing
Cause of trashing
Working-Set Model
Page-Fault Frequency
Memory-Mapped Files
Allocating Kernel Memory

Other Issues

Operating System Examples

NG,

%

» Reading 7309.10, 9.11.

({1

» 1EE . 9.2, 9.4, 9.10, 9.15
» JEEEPE. 10.3, 10.4, 10.10, 10.20

A !

	Thrashing
	Cause of trashing
	Working-Set Model
	Page-Fault Frequency

	Memory-Mapped Files
	Allocating Kernel Memory
	Other Issues
	Operating System Examples
	小结和作业

