
.

操作系统原理与设计
第一章绪论——CS structures

陈香兰

中国科学技术大学计算机学院

February 28, 2014

.

提纲.

.

Computer System Operation
A modern computer system
Start a computer system
Interrupt

I/O Structure
I/O Structure
I/O operation
DMA

Storage Structure and Storage Hierarchy
Storage Structure
Storage hierarchy

Hardware Protection
Hardware Protection

General System Architecture
General System Architecture
system call

Computing Environments
小结和作业

.

Outline.

.

Computer System Operation
A modern computer system
Start a computer system
Interrupt

I/O Structure
I/O Structure
I/O operation
DMA

Storage Structure and Storage Hierarchy
Storage Structure
Storage hierarchy

Hardware Protection
Hardware Protection

General System Architecture
General System Architecture
system call

Computing Environments
小结和作业

.

A modern computer system I

.

A modern computer system II

.

参考：三款core i5 CPU外观比较

.

参考：一个电脑主板芯片应用方案

.

参考：华硕的一款主板

.

参考：华硕F8H笔记本拆解

.

Outline.

.

Computer System Operation
A modern computer system
Start a computer system
Interrupt

I/O Structure
I/O Structure
I/O operation
DMA

Storage Structure and Storage Hierarchy
Storage Structure
Storage hierarchy

Hardware Protection
Hardware Protection

General System Architecture
General System Architecture
system call

Computing Environments
小结和作业

.

Start a computer system

I Bootstrap program（启动引导程序）, a initial program
I Loaded at power-up or reboot
I Typically stored in ROM or EPROM, generally known as

firmware（固件）
I initializes hardware

I CPU registers, device controllers, memory content
I Load at least a part of the OS into main memory & start

executing it

I Platform dependent（平台相关/体系结构相关）

.

Example: Linux system startup

typical OS startup course:
Power-on→Bootstrap: BIOS→BootLoader: GRUB→OS: Linux

Linux (Intel i386)
Refer to appendix A of 《Understanding Linux Kernel》

I →RESET pin of the CPU
I cs:ip= 0xFFFF FFF0
I ROM BIOS（基本输入输出系统）

.

Example: Linux system startup (cont.)

BIOS（基本输入输出系统）
Basic I/O System(BIOS): A set of programs stored in ROM,
including

I Several interrupt-driven low-level procedures
I A bootstrap procedure, who

I POST (Power On Self-Test)
I Initializes hardware device
I Searches for an OS to boot
I Copies the first sector of the OS into RAM 0x0000 7C00, and
jumps & executes

.

Example: Linux system startup (cont.)
Master Boot Record, MBR,主引导记录

I the first sector on a hard drive, a special type of boot sector
I MBR = MBR code (also called boot loader) + partition table
I MBR code: code necessary to startup the OS

I typical boot loader: GRUB

.

??? After starts up

I Executes prearranged process, or

I Waits for interrupt

Modern OSs are interrupt-driven（中断驱动的）

.

Outline.

.

Computer System Operation
A modern computer system
Start a computer system
Interrupt

I/O Structure
I/O Structure
I/O operation
DMA

Storage Structure and Storage Hierarchy
Storage Structure
Storage hierarchy

Hardware Protection
Hardware Protection

General System Architecture
General System Architecture
system call

Computing Environments
小结和作业

.

Interrupt I
Interrupt represents an event to be handled
For hardware: Device interrupt

I The completion of an I/O operation
I a key stroke or a mouse move
I timer
I …

For error (also hardware): exception
I Trap for debug
I Fault, example: page fault, division by zero, invalid memory
access

I Abort, a serious error

For software: System call

.

Interrupt II

I To request for some operating-system service
I Linux: INT 0x80
I MS/DOS, windows: INT 0x21

Modern OSs are interrupt-driven

.

Interrupt handling I

When the CPU is interrupted
I Stops what it is doing
I Incoming interrupts are disabled to prevent a lost interrupt
I Transfers control to the ISR (Interrupt Service Routine, 中
断服务例程)

I A generic routine in fixed location and then call the
interrupt-specific handler

I interrupt vector table（中断向量表）

When the ISR completed,
Back to interrupted program

.

Interrupt handling II

I HOW ?
—— OS preserves the state of the CPU by storing
registers and the program counter.
also called context（上下文，硬件上下文）

I Old: Fixed location, or a location indexed by the device
number

I Recent: system stack(Linux：内核态堆栈)

.

Interrupt time line for a single process doing output

.

Example: interrupts in I386

I protect mode （保护模式）
I IDT （Interrupt Descriptor Table，中断描述符表)
I OS填写IDT表，包括每个中断处理例程的入口地址等信息
I 中断发生的时候，CPU根据从中断控制器获得的中断向量号
在IDT表中索引到对应的中断处理例程（入口地址），并跳转
过去运行

I 保存上下文
I 处理中断
I 恢复上下文

.

Outline.

.

Computer System Operation
A modern computer system
Start a computer system
Interrupt

I/O Structure
I/O Structure
I/O operation
DMA

Storage Structure and Storage Hierarchy
Storage Structure
Storage hierarchy

Hardware Protection
Hardware Protection

General System Architecture
General System Architecture
system call

Computing Environments
小结和作业

.

I/O structure

.

I/O structure

I Each device controller is in charge of a particular device type
I Each device controller has

I a local buffer & a set of special-purpose registers

I Data transfer, two phrase
I Main memory ←(CPU)→ local buffer of controller
I device ←(device controller)→ local buffer

I I/O devices & CPU can execute concurrently（并发地）
I Share/compete memory cycle
I Memory controller

.

.

Outline.

.

Computer System Operation
A modern computer system
Start a computer system
Interrupt

I/O Structure
I/O Structure
I/O operation
DMA

Storage Structure and Storage Hierarchy
Storage Structure
Storage hierarchy

Hardware Protection
Hardware Protection

General System Architecture
General System Architecture
system call

Computing Environments
小结和作业

.

I/O operation

I CPU start an I/O operation by
I Loading the appropriate registers within the device controller
I When complete, device controller informs CPU by

I Triggering an interrupt, or
I Simply set a flag in one of their registers

I Two I/O methods
I synchronous VS. asynchronous

.

I/O method —— analysis

Synchronous

I Waiting
I Wait instruction
I Dead loop like

Loop: jmp Loop

I At most one I/O request is outstanding at a time
I ???
I Advantage: always knows exactly which device is interrupting
I Disadvantage: excludes concurrent I/O operations & the
possibility of overlapping useful computation with I/O

.

I/O method —— analysis (cont.)

Asynchronous

I Start & cont.
I with a wait system call

I Need to keep track of many I/O request
I Device-status table（设备状态表）

I Each entry: Device type, address, state
I A wait queue for each device
I When an interrupt occurs, OS indexes into I/O device table to
determine device status and to modify table entry to reflect
the occurrence of interrupt

I Main advantage: system efficiency↑

.

device status table

.

Outline.

.

Computer System Operation
A modern computer system
Start a computer system
Interrupt

I/O Structure
I/O Structure
I/O operation
DMA

Storage Structure and Storage Hierarchy
Storage Structure
Storage hierarchy

Hardware Protection
Hardware Protection

General System Architecture
General System Architecture
system call

Computing Environments
小结和作业

.

Direct Memory Access (DMA)

Example1: 9600-baud terminal
I 2us(ISR) per 1000us
I It’s ok!

Example2: hard disk
I 2us(ISR) per 4us
I The overhead (per byte) is relatively costly!

DMA (Direct Memory Access)
I Used for high-speed I/O devices able to transmit information
at close to memory speeds.

.

DMA structure

One interrupt /
block of data

Device controller
I transfers between buffer and main memory directly, without
CPU intervention.

I Memory cycle stealing

.

Outline.

.

Computer System Operation
A modern computer system
Start a computer system
Interrupt

I/O Structure
I/O Structure
I/O operation
DMA

Storage Structure and Storage Hierarchy
Storage Structure
Storage hierarchy

Hardware Protection
Hardware Protection

General System Architecture
General System Architecture
system call

Computing Environments
小结和作业

.

Storage structure

I Von Neumann architecture VS. Harvard architecture
I Separated data & code in different memory???

I Main memory (RAM) is the only large storage media that the
CPU can access directly

I Small, Volatile

I Secondary storage is an extension of main memory that
provides large nonvolatile storage capacity

I Magnetic disk（磁盘）
I Optical disk（光盘）
I Magnetic tape（磁带）

.

Von Neumann architecture

I 计算机
I 不可编程的，强定制，高效
I 可编程的，灵活

I 提供指令集，程序就是一个指令序列

冯诺伊曼体系结构

I 五大部件：运算器、控制
器、存储器、I/O设备

I 存储器与CPU相分离
I 指令存储与数据存储共
享存储器

.

Storage structure (cont.)

Memory VS. register
I Same: Access directly for CPU

I Register name
I Memory address

I Different: access speed
I Register, one cycle of the CPU clock
I Memory, Many cycles (2 or more)

I Disadvantage:
I CPU needs to stall frequently & this is intolerable

I Remedy
I cache（高速缓存）

.

Magnetic disks

I Magnetic disks – rigid metal or glass platters covered with
magnetic recording material

I Disk surface is logically divided into tracks, which are
subdivided into sectors.

I The disk controller determines the logical interaction between
the device and the computer.

I Position time
I Transfer time

.

I Transfer time TT
I TT ≈ data size× Transfer rate
I Transfer rate ≈ (n M/s)−1

≈ (n Byte/us)−1

≈ 1/n us/Byte

I Positioning time Tp
I Seek time Ts
I Rotational latency TR
I Tp ≈ Ts + TR ≈ m ms

I TT VS. Tp
I Please Store data closely

.

Outline.

.

Computer System Operation
A modern computer system
Start a computer system
Interrupt

I/O Structure
I/O Structure
I/O operation
DMA

Storage Structure and Storage Hierarchy
Storage Structure
Storage hierarchy

Hardware Protection
Hardware Protection

General System Architecture
General System Architecture
system call

Computing Environments
小结和作业

.

Storage hierarchy（存储的层次）

Storage hierarchy
I Storage systems in a computer
system can be organized in a
hierarchy

I Speed, access time
I Cost per bit
I Volatility

.

Caching

I Caching (高速缓存技术）
I Copying information into faster storage system
I When accessing, first check in the cache,

I if In: use it directly
I Not in: get from upper storage system, and leave a copy in

the cache

I Using of caching
I Registers provide a high-speed cache for main memory
I Instruction cache & data cache
I Main memory can be viewed as a fast cache for secondary
storage

I …

.

Cache management

I Design problem
I Hardware or software?
I Cache size & Replacement policy is important
I Hit rate � 80%˜99% is OK!

.

Memory Wall

Memory Wall, 内存墙
I the growing disparity of speed between CPU and memory
outside the CPU chip1.

I From 1986 to 2000, CPU speed improved at an annual rate of
55% while memory speed only improved at 10%.

I Trend: memory latency would become an overwhelming
bottleneck in computer performance

1FromWikipedia: Random-access memory

http://en.wikipedia.org/wiki/Random-access_memory#Memory_wall

.

Coherency and consistency

I Multitasking environments must be careful to use most recent
value, no matter where it is stored in the storage hierarchy

I Migration of Integer A from Disk to Register

I The same data may appear in different level of the
storage system

I When
I Simple batch system, no problem
I Multitasking, always obtain the most recently updated value
I Multiprocessor, cache coherency (always implicit to OS)
I Distributed system?

.

Performance of Various Levels of Storage

I Movement between levels of storage hierarchy can be explicit
or implicit

.

Outline.

.

Computer System Operation
A modern computer system
Start a computer system
Interrupt

I/O Structure
I/O Structure
I/O operation
DMA

Storage Structure and Storage Hierarchy
Storage Structure
Storage hierarchy

Hardware Protection
Hardware Protection

General System Architecture
General System Architecture
system call

Computing Environments
小结和作业

.

Hardware protection

I A properly designed OS must ensure that an incorrect (or
malicious) program cannot cause other programs to execute
incorrectly.

I When in dead loop
I When sharing recourses
I When one erroneous program might modify the program or
data of another program, or even the OS

I Hardware must provide protection
I Dual-Mode Operation
I I/O protection
I Memory protection
I CPU protection

.

Dual-Mode Operation.

.

I Using mode bit to provide different modes of execution
I mode bit=1≡User mode（用户模式）: execution done on
behalf of user

I mode bit=0≡privileged mode（特权模式）/monitor
mode（监控程序模式）/supervisor mode（管理模式）
/system mode（系统模式）:
execution done on behalf of OS

I Privileged instructions

I User program VS. OS (or Kernel)
I Switch between user mode (1) and privileged mode(0)

I Boot: form privileged mode.
I User program: user mode.
I Interrupt (include system call): switch to privileged mode,

and then back.
I OS: privileged mode

.

I Example：i386
I 4 modes (2 mode bits)
I Linux uses 2 mode (00b & 11b)

.

I/O protection.

.

I Preventing the users from issuing
illegal I/O instructions

I All I/O instructions are privileged
instructions

I instead of performing I/O operation
directly, user program must make
a system call

I OS, executing in monitor mode,
checks validity of request and does
the I/O

I input is returned to the program by
the OS

I Smart hacker may…
I Stores in the interrupt vector a new
address, which points to a malicious
routine

I The I/O protection is compromised
I We need some more protection…

Use of a system all to perform I/O

.

Memory protection

I At least for interrupt vector and the
ISR

I Base register protection scheme
I Base register＋Limit register
I Memory outside is protected
I OS has unrestricted access to both
monitor and user’s memory

I Load instructions for the base/limit
registers are privileged

.

CPU protection

I OS should be always take control of everything
I What if a user program is in dead loop?

I Timer
I Interrupts computer after specified period
I Periodically or one-shot
I Load-timer is also a privileged instruction

I Usage
I Time sharing
I Compute current time
I Alarm or timer

.

Timer to prevent infinite loop / process hogging resources
I Set interrupt after specific period
I Operating system decrements counter
I When counter zero generate an interrupt
I Set up before scheduling process to regain control or
terminate program that exceeds allotted time

.

Outline.

.

Computer System Operation
A modern computer system
Start a computer system
Interrupt

I/O Structure
I/O Structure
I/O operation
DMA

Storage Structure and Storage Hierarchy
Storage Structure
Storage hierarchy

Hardware Protection
Hardware Protection

General System Architecture
General System Architecture
system call

Computing Environments
小结和作业

.

General system architecture

I multiprogramming
I time sharing
I OS: in kernel (privileged) mode

I control hardware & software resource
I execute privileged instruction
I system call

.

Outline.

.

Computer System Operation
A modern computer system
Start a computer system
Interrupt

I/O Structure
I/O Structure
I/O operation
DMA

Storage Structure and Storage Hierarchy
Storage Structure
Storage hierarchy

Hardware Protection
Hardware Protection

General System Architecture
General System Architecture
system call

Computing Environments
小结和作业

.

system call
System call—like a common function
call, but totally different!

I Trap to a specific location in interrupt
vector

I int (i386)
I trap (SUN SPARC)
I syscall (MIPS R2000)

I Control passes to a service routine in
the OS, and the mode bit is set to
monitor mode

I The kernel
I Verifies that the parameters are
correct and legal

I Executes the request
I Returns control to the instruction
following the system call

Use of a system all to perform I/O

.

Computing Environments

I Traditional computer
I changed along with the development of computer
I Office environment

I PCs connected to a network, terminals attached to mainframe
or minicomputers providing batch and timesharing

I Now portals allowing networked and remote systems access to
same resources

I Home networks
I Used to be single system, then modems
I Now firewalled, networked

.

I Client-Server Computing
I Dumb terminals supplanted by smart PCs
I Many systems now servers, responding to requests generated
by clients

I Compute-server provides an interface to client to request
services (i.e. database)

I File-server provides interface for clients to store and retrieve
files

.

I others
I Peer-to-Peer Computing
I Web-Based Computing
I Grid Computing
I Cloud Computing

I Pervasive/Ubiquitous Computing(普适计算)

.

小结.

.

Computer System Operation
A modern computer system
Start a computer system
Interrupt

I/O Structure
I/O Structure
I/O operation
DMA

Storage Structure and Storage Hierarchy
Storage Structure
Storage hierarchy

Hardware Protection
Hardware Protection

General System Architecture
General System Architecture
system call

Computing Environments
小结和作业

.

谢谢！

下次课交作业

	Computer System Operation
	A modern computer system
	Start a computer system
	Interrupt

	I/O Structure
	I/O Structure
	I/O operation
	DMA

	Storage Structure and Storage Hierarchy
	Storage Structure
	Storage hierarchy

	Hardware Protection
	Hardware Protection

	General System Architecture
	General System Architecture
	system call

	Computing Environments
	小结和作业

