
.

.

.. ..

.

.

操作系统原理与设计
第 3 章 Processes（进程）2

陈香兰

中国科学技术大学计算机学院

March 19, 2014

陈香兰 (中国科学技术大学计算机学院) 操作系统原理与设计 March 19, 2014 1 / 50

.

提纲

.. .1 Process Scheduling
Process Scheduling Queues
Schedulers
Context Switch(上下文切换)

.. .2 Operation on processes
Process Creation
Process Termination

.. .3 Interprocess Communication (进程间通信, IPC)
Shared-Memory systems
Message-Passing Systems

.. .4 Example of IPC Systems
POSIX Shared Memory
Mach
Windows XP

.. .5 Communication in C/S Systems

.. .6 小结和作业
陈香兰 (中国科学技术大学计算机学院) 操作系统原理与设计 March 19, 2014 2 / 50

.

Process Scheduling

.The objective of multiprogramming..

.. ..

.

.to have some process running at all times, to maximize CPU utilization.

.The objective of time sharing..

.. ..

.

.

to switch the CPU among processes so frequently that users can interact
with each program whilt it is running.

.What the system need?..

.. ..

.

.the process scheduler selects an available process to execute on the CPU.

陈香兰 (中国科学技术大学计算机学院) 操作系统原理与设计 March 19, 2014 3 / 50

.

Process Scheduling

.The objective of multiprogramming..

.. ..

.

.to have some process running at all times, to maximize CPU utilization.

.The objective of time sharing..

.. ..

.

.

to switch the CPU among processes so frequently that users can interact
with each program whilt it is running.

.What the system need?..

.. ..

.

.the process scheduler selects an available process to execute on the CPU.

陈香兰 (中国科学技术大学计算机学院) 操作系统原理与设计 March 19, 2014 3 / 50

.

Outline
.. .1 Process Scheduling

Process Scheduling Queues
Schedulers
Context Switch(上下文切换)

.. .2 Operation on processes
Process Creation
Process Termination

.. .3 Interprocess Communication (进程间通信, IPC)
Shared-Memory systems
Message-Passing Systems

.. .4 Example of IPC Systems
POSIX Shared Memory
Mach
Windows XP

.. .5 Communication in C/S Systems

.. .6 小结和作业
陈香兰 (中国科学技术大学计算机学院) 操作系统原理与设计 March 19, 2014 4 / 50

.

Process Scheduling Queues

.Processes migrate among the various queues..

.. ..

.

.

Job queue – set of all processes in the system
Ready queue – set of all processes residing in main memory, ready
and waiting to execute
Device queues – set of processes waiting for an I/O device

陈香兰 (中国科学技术大学计算机学院) 操作系统原理与设计 March 19, 2014 5 / 50

.

Ready Queue And Various I/O Device Queues

陈香兰 (中国科学技术大学计算机学院) 操作系统原理与设计 March 19, 2014 6 / 50

.

Representation of Process Scheduling

Queueing-diagram representation of process scheduling

陈香兰 (中国科学技术大学计算机学院) 操作系统原理与设计 March 19, 2014 7 / 50

.

Outline
.. .1 Process Scheduling

Process Scheduling Queues
Schedulers
Context Switch(上下文切换)

.. .2 Operation on processes
Process Creation
Process Termination

.. .3 Interprocess Communication (进程间通信, IPC)
Shared-Memory systems
Message-Passing Systems

.. .4 Example of IPC Systems
POSIX Shared Memory
Mach
Windows XP

.. .5 Communication in C/S Systems

.. .6 小结和作业
陈香兰 (中国科学技术大学计算机学院) 操作系统原理与设计 March 19, 2014 8 / 50

.

Schedulers I

.
Long-term (长期) scheduler (or job scheduler)
..
.. ..

.

.

selects which processes should be brought into the ready queue

.
Short-term (短期) scheduler (or CPU scheduler)
..
.. ..

.

.

selects which process should be executed next and allocates CPU

陈香兰 (中国科学技术大学计算机学院) 操作系统原理与设计 March 19, 2014 9 / 50

.

The primary distinction between long-term & short-term
schedulers I

The pri1mary distinction between long-term & short-term schedulers
lies in frequency of execution

Short-term scheduler is invoked very frequently (UNIT: ms) ⇒ must
be fast
Long-term scheduler is invoked very infrequently (UNIT: seconds,
minutes) ⇒ may be slow
WHY?

The long-term scheduler controls the degree of
multiprogramming (多道程序度)

the number of processes in memory.
stable?

陈香兰 (中国科学技术大学计算机学院) 操作系统原理与设计 March 19, 2014 10 / 50

.

The primary distinction between long-term & short-term
schedulers II

Processes can be described as either:
.
I/O-bound (I/O 密集型) process
..

.. ..

.

.

spends more time doing I/O than computations, many short CPU bursts

.
CPU-bound (CPU 密集型) process
..

.. ..

.

.

spends more time doing computations; few very long CPU bursts

IMPORTANT for long-term scheduler:
A good process mix of I/O-bound and CPU-bound processes.

陈香兰 (中国科学技术大学计算机学院) 操作系统原理与设计 March 19, 2014 11 / 50

.

The long-term scheduler may be absent or minimal
UNIX, MS Windows, ...
The stability depends on

physical limitation
self-adjusting nature of human users

陈香兰 (中国科学技术大学计算机学院) 操作系统原理与设计 March 19, 2014 12 / 50

.

Addition of Medium Term (中期) Scheduling

Medium-Term (中期) Scheduler
can reduce the degree of multiprogramming
the scheme is called swapping (交换): swap in VS. swap out

Addition of medium-term scheduling to the queueing diagram

陈香兰 (中国科学技术大学计算机学院) 操作系统原理与设计 March 19, 2014 13 / 50

.

Outline
.. .1 Process Scheduling

Process Scheduling Queues
Schedulers
Context Switch(上下文切换)

.. .2 Operation on processes
Process Creation
Process Termination

.. .3 Interprocess Communication (进程间通信, IPC)
Shared-Memory systems
Message-Passing Systems

.. .4 Example of IPC Systems
POSIX Shared Memory
Mach
Windows XP

.. .5 Communication in C/S Systems

.. .6 小结和作业
陈香兰 (中国科学技术大学计算机学院) 操作系统原理与设计 March 19, 2014 14 / 50

.

Context Switch (上下文切换) I

CONTEXT (上下文)
when an interrupt occurs; When scheduling occurs

.the context is represented in the PCB of the process..

.. ..

.

.

CPU registers

process state

memory-management info

...

operation: state save VS. state restore

陈香兰 (中国科学技术大学计算机学院) 操作系统原理与设计 March 19, 2014 15 / 50

.

Code reading

观察

队列的组织
上下文的内容和组织
上下文切换

linux-0.11
linux-2.6.26
uC/OS-II

陈香兰 (中国科学技术大学计算机学院) 操作系统原理与设计 March 19, 2014 16 / 50

.

Operation on processes

The processes in most systems can execute concurrently, and they
may be created and deleted dynamically.
The OS must provide a mechanism for

process creation
process termination

陈香兰 (中国科学技术大学计算机学院) 操作系统原理与设计 March 19, 2014 17 / 50

.

Outline
.. .1 Process Scheduling

Process Scheduling Queues
Schedulers
Context Switch(上下文切换)

.. .2 Operation on processes
Process Creation
Process Termination

.. .3 Interprocess Communication (进程间通信, IPC)
Shared-Memory systems
Message-Passing Systems

.. .4 Example of IPC Systems
POSIX Shared Memory
Mach
Windows XP

.. .5 Communication in C/S Systems

.. .6 小结和作业
陈香兰 (中国科学技术大学计算机学院) 操作系统原理与设计 March 19, 2014 18 / 50

.

Process Creation I

Parent process (父进程) create children processes (子进程),
which, in turn create other processes, forming a tree of processes
Most OSes identify processes according to a unique process
identifier (pid).

typically an integer number

UNIX & Linux
.Command:..
.. ..

.

.ps -el

陈香兰 (中国科学技术大学计算机学院) 操作系统原理与设计 March 19, 2014 19 / 50

.

Process Creation II

A tree of processes on a typical Solaris

陈香兰 (中国科学技术大学计算机学院) 操作系统原理与设计 March 19, 2014 20 / 50

.

Parent and children

Resource sharing
In general, a process will need certain resources (CPU time, memory,
files, I/O devices) to accomplish its task.
When a process creates a subprocesses

Parent and children may share all resources, or
Children may share subset of parent’s resources, or
Parent and child may share no resources

Execution
Parent and children execute concurrently
Parent waits until children terminate

Address space
Child duplicate of parent
Child has a program loaded into it

陈香兰 (中国科学技术大学计算机学院) 操作系统原理与设计 March 19, 2014 21 / 50

.

UNIX examples: fork + exec
.

.

fork system call creates new process
exec system call used after a fork to replace the process’memory
space with a new program

.

.. ..

.

.

#include <unistd.h>
pid t fork(void);

.

.. ..

.

.

#include <unistd.h>
extern char **environ;
int execl(const char *path, const char *arg, ...);
int execlp(const char *file, const char *arg, ...);
int execle(const char *path, const char *arg, ..., char * const envp[]);
int execv(const char *path, char *const argv[]);
int execvp(const char *file, char *const argv[]);

陈香兰 (中国科学技术大学计算机学院) 操作系统原理与设计 March 19, 2014 22 / 50

.

C Program Forking Separate Process
.

.

int main(void) {

pid t pid;

/* fork another process */

pid = fork();

if (pid < 0) { /* error occurred */

fprintf(stderr, “Fork Failed”);

exit(-1);

} else if (pid == 0) { /* child process */

execlp(“/bin/ls”, “ls”, NULL);

} else { /* parent process */

/* parent will wait for the child to complete */

wait (NULL);

printf (“Child Complete”);

exit(0);

}

}

陈香兰 (中国科学技术大学计算机学院) 操作系统原理与设计 March 19, 2014 23 / 50

.

Outline
.. .1 Process Scheduling

Process Scheduling Queues
Schedulers
Context Switch(上下文切换)

.. .2 Operation on processes
Process Creation
Process Termination

.. .3 Interprocess Communication (进程间通信, IPC)
Shared-Memory systems
Message-Passing Systems

.. .4 Example of IPC Systems
POSIX Shared Memory
Mach
Windows XP

.. .5 Communication in C/S Systems

.. .6 小结和作业
陈香兰 (中国科学技术大学计算机学院) 操作系统原理与设计 March 19, 2014 24 / 50

.

Process Termination

...1 Process executes last statement and asks the OS to delete it by using
the exit() system call.

Output data (a status value, typically an integer) from child to
parent (via wait())
Process’ resources are deallocated by the OS

...2 Termination can be caused by another process
Example: TerminateProcess() in Win32

...3 Users could kill some jobs.

陈香兰 (中国科学技术大学计算机学院) 操作系统原理与设计 March 19, 2014 25 / 50

.

Process Termination

Parent may terminate execution of children processes (abort)
Child has exceeded allocated resources
Task assigned to child is no longer required
If parent is exiting

.Some operating system do not allow child to continue if its parent
terminates..

.. ..

.

.

All children terminated - cascading termination

UNIX Example:
exit(), wait()
If the parent terminates, all its children have assigned as their new
parent the init process.

陈香兰 (中国科学技术大学计算机学院) 操作系统原理与设计 March 19, 2014 25 / 50

.

Interprocess Communication (进程间通信，IPC) I

Processes executing concurrently in the OS may be either
independent processes or cooperating processes

Independent process cannot affect or be affected by the execution of
other processes
Cooperating process can affect or be affected by the execution of
other processes

Advantages of allowing process cooperation
Information sharing: a shared file VS. several users
Computation speed-up: 1 task VS. several subtasks in parallel with
multiple processing elements (such as CPUs or I/O channels)
Modularity
Convenience: 1 user VS. several tasks

Cooperating processes require an IPC mechanism that will allow
them to exchange data and information.

陈香兰 (中国科学技术大学计算机学院) 操作系统原理与设计 March 19, 2014 26 / 50

.

Interprocess Communication (进程间通信，IPC) II
Two fundamental models of IPC

Message-passing (消息传递) model
useful for exchange smaller amount of data, because no conflicts need
be avoided.
easier to implement
exchange information via system calls such as send(), receive()

Shared-memory (共享内存) model
faster at memory speed via memory accesses.
system calls only used to establish shared memory regions

陈香兰 (中国科学技术大学计算机学院) 操作系统原理与设计 March 19, 2014 27 / 50

.

Outline
.. .1 Process Scheduling

Process Scheduling Queues
Schedulers
Context Switch(上下文切换)

.. .2 Operation on processes
Process Creation
Process Termination

.. .3 Interprocess Communication (进程间通信, IPC)
Shared-Memory systems
Message-Passing Systems

.. .4 Example of IPC Systems
POSIX Shared Memory
Mach
Windows XP

.. .5 Communication in C/S Systems

.. .6 小结和作业
陈香兰 (中国科学技术大学计算机学院) 操作系统原理与设计 March 19, 2014 28 / 50

.

Shared-Memory systems

Normally, the OS tries to prevent one process from accessing
another process’s memory.
Shared memory requires that two or more processes agree to
remove this restriction.

They can exchange information by R/W data in the shared areas.
The form of data and the location are determined by these
processes and not under the OS’s control.
The processes are responsible for ensuring that they are not writing to
the same location simultaneously.

陈香兰 (中国科学技术大学计算机学院) 操作系统原理与设计 March 19, 2014 29 / 50

.

Producer-Consumer Problem (生产者 -消费者问题)

Producer-Consumer Problem (生产者 -消费者问题，PC 问题):
Paradigm for cooperating processes

producer (生产者) process produces information that is consumed by a
consumer (消费者) process. Example:

complier
assembly code

−−−−−−−−−−−−→ assembler
object models

−−−−−−−−−−−→ loader

Shared-Memory solution
a buffer of items shared by producer and consumer

Two types of buffers
unbounded-buffer places no practical limit on the size of the buffer
bounded-buffer assumes that there is a fixed buffer size

陈香兰 (中国科学技术大学计算机学院) 操作系统原理与设计 March 19, 2014 30 / 50

.

Bounded-Buffer – Shared-Memory Solution

.Shared variables reside in a shared
region..

.. ..

.

.

#define BUFFER SIZE 10
typedef struct {

...
} item;

item buffer[BUFFER SIZE];
int in = 0; // index of the next empty buffer
int out = 0; // index of the next full buffer

.
Insert() Method..

.. ..

.

.

while (true) {
/* Produce an item */
while (((in + 1) % BUFFER SIZE) == out)

; /* do nothing – no free buffers */
buffer[in] = item;
in = (in + 1) % BUFFER SIZE;

}

.
Remove() Method..

.. ..

.

.

while (true) {
while (in == out)

; // do nothing – nothing to consume

// remove an item from the buffer
item = buffer[out];
out = (out + 1) % BUFFER SIZE;
return item;

}

all empty? all full?
Solution is correct, but can only use BUFFER SIZE-1 elements

陈香兰 (中国科学技术大学计算机学院) 操作系统原理与设计 March 19, 2014 31 / 50

.

Outline
.. .1 Process Scheduling

Process Scheduling Queues
Schedulers
Context Switch(上下文切换)

.. .2 Operation on processes
Process Creation
Process Termination

.. .3 Interprocess Communication (进程间通信, IPC)
Shared-Memory systems
Message-Passing Systems

.. .4 Example of IPC Systems
POSIX Shared Memory
Mach
Windows XP

.. .5 Communication in C/S Systems

.. .6 小结和作业
陈香兰 (中国科学技术大学计算机学院) 操作系统原理与设计 March 19, 2014 32 / 50

.

Message-Passing Systems

Message passing (消息传递)
provides a mechanism for processes to communicate and to synchronize
their actions without sharing the same address space.
processes communicate with each other without resorting to shared
variables
particularly useful in a distributed environmet.

IPC facility provides at least two operations:
send(message) – message size fixed or variable
receive(message)

If process P and Q wish to communicate, they need to:
establish a communication link between them
exchange messages via send/receive

Implementation of communication link
physical (e.g., shared memory, hardware bus)
logical (e.g., logical properties)

陈香兰 (中国科学技术大学计算机学院) 操作系统原理与设计 March 19, 2014 33 / 50

.

Implementation Questions

How are links established?
Can a link be associated with more than two processes?
How many links can there be between every pair of communicating
processes?
What is the capacity of a link?
Is the size of a message that the link can accommodate fixed or
variable?
Is a link unidirectional or bi-directional?

陈香兰 (中国科学技术大学计算机学院) 操作系统原理与设计 March 19, 2014 34 / 50

.

Direct Communication

Processes must name each other explicitly:
send(P, message) - send a message to process P
receive(Q, message) - receive a message from process Q

Properties of communication link in this scheme
Links are established automatically
A link is associated with exactly one pair of communicating processes
Between each pair there exists exactly one link
The link may be unidirectional, but is usually bi-directional

Symmetry VS asymmetry
send(P, message)
receive(id, message) - receive a message from any process

陈香兰 (中国科学技术大学计算机学院) 操作系统原理与设计 March 19, 2014 35 / 50

.

Indirect Communication

Messages are directed and received from mailboxes (also referred to
as ports)

Each mailbox has a unique id (such as POSIX message queues)
Processes can communicate only if they share a mailbox
Primitives are defined as:

send(A, message) – send a message to mailbox A
receive(A, message) – receive a message from mailbox A

Properties of communication link in this scheme
Link established only if processes share a common mailbox
A link may be associated with more than two processes
Each pair of processes may share several communication links
Link may be unidirectional or bi-directional

陈香兰 (中国科学技术大学计算机学院) 操作系统原理与设计 March 19, 2014 36 / 50

.

Indirect Communication

Mailbox sharing problem
P1, P2, and P3 share mailbox A
P1, sends; P2 and P3 receive
Who gets the message?

Solutions to choose
Allow a link to be associated with at most two processes
Allow only one process at a time to execute a receive operation
Allow the system to select arbitrarily the receiver. Sender is notified
who the receiver was.

陈香兰 (中国科学技术大学计算机学院) 操作系统原理与设计 March 19, 2014 36 / 50

.

Indirect Communication

Who is the owner of a mailbox?
a process

only owner can receive messages through its mailbox, others can only
send messages to the mailbox.
when the process terminates, its mailbox disappears.

the OS
the mailbox is independent and is not attached to any particular process.

Operations
create a new mailbox
send/receive messages through mailbox
destroy a mailbox

陈香兰 (中国科学技术大学计算机学院) 操作系统原理与设计 March 19, 2014 36 / 50

.

Synchronization

Message passing may be either blocking or non-blocking
Blocking is considered synchronous

Blocking send has the sender block until the message is received
Blocking receive has the receiver block until a message is available

Non-blocking is considered asynchronous
Non-blocking send has the sender send the message and continue
Non-blocking receive has the receiver receive a valid message or null

Difference combinations are possible.
If both are blocking ≡rendezvous(集合点)

The solution to PC problem via message passing is trivial when we
use blocking send()/receive.

陈香兰 (中国科学技术大学计算机学院) 操作系统原理与设计 March 19, 2014 37 / 50

.

Buffering

Queue of messages attached to the link; implemented in one of
three ways

...1 Zero capacity – 0 messages
Sender must wait for receiver (rendezvous)

...2 Bounded capacity – finite length of n messages
Sender must wait if link full

...3 Unbounded capacity – infinite length
Sender never waits

陈香兰 (中国科学技术大学计算机学院) 操作系统原理与设计 March 19, 2014 38 / 50

.

Outline
.. .1 Process Scheduling

Process Scheduling Queues
Schedulers
Context Switch(上下文切换)

.. .2 Operation on processes
Process Creation
Process Termination

.. .3 Interprocess Communication (进程间通信, IPC)
Shared-Memory systems
Message-Passing Systems

.. .4 Example of IPC Systems
POSIX Shared Memory
Mach
Windows XP

.. .5 Communication in C/S Systems

.. .6 小结和作业
陈香兰 (中国科学技术大学计算机学院) 操作系统原理与设计 March 19, 2014 39 / 50

.

POSIX Shared Memory
.

.

.POSIX API for shared memory..

.. ..

.

.

#include<sys/ipc.h>
#include<sys/shm.h>
int shmget(key t key, size t size, int shmflg);
int shmctl(int shmid, int cmd, struct shmid ds *buf);

#include<sys/types.h>
#include<sys/shm.h>
void* shmat(int shmid, const void* shmaddr, int shmflg);
int shmdt(const void* shmaddr);

陈香兰 (中国科学技术大学计算机学院) 操作系统原理与设计 March 19, 2014 40 / 50

.

POSIX Shared Memory
.

.

.C program illustrating POSIX shared-memory API..

.. ..

.

.

#include <stdio.h>
#include <sys/shm.h>
#include <sys/stat.h>

int main(){
int segment id;
char* shared memory;
const int size = 4096;

segment id = shmget(IPC PRIVATE, size, S IRUSR|S IWUSR);
shared memory = (char*) shmat(segment id, NULL, 0);

sprintf(shared memory, “Hi there!”);
printf(“%s\n”,shared memory);

shmdt(shared memory);
shmctl(segment id, IPC RMID, NULL);
return 0;

}

陈香兰 (中国科学技术大学计算机学院) 操作系统原理与设计 March 19, 2014 40 / 50

.

POSIX Shared Memory
.

.

.Two program using shared memory: program1..

.. ..

.

.

#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>
#include <sys/stat.h>

int main(void) {
key t key;
int shm id;
const int shm size=4096;
char * shm addr;

key=ftok(“.”,’m’);
shm id=shmget(key,shm size,IPC CREAT|IPC EXCL|S IRUSR|S IWUSR);

shm addr=(char*)shmat(shm id,0,0);

sprintf(shm addr,”hello, this is 11111111\n”);
printf(“111111:”);
printf(shm addr);
sleep(10);
printf(“111111:”);
printf(shm addr);
shmdt(shm addr);
shmctl(shm id,IPC RMID,0);
return 0;

}

陈香兰 (中国科学技术大学计算机学院) 操作系统原理与设计 March 19, 2014 40 / 50

.

POSIX Shared Memory
.

.

.Two program using shared memory: program2..

.. ..

.

.

#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>
#include <sys/stat.h>

int main(void) {
key t key;
int shm id;
const int shm size=4096;
char * shm addr;

key=ftok(“.”,’m’);
shm id=shmget(key,shm size,S IRUSR|S IWUSR);

shm addr=(char*)shmat(shm id,0,0);

printf(“22222222:”);
printf(shm addr);
sprintf(shm addr,”this is 22222222\n”);
shmdt(shm addr);
return 0;

}

陈香兰 (中国科学技术大学计算机学院) 操作系统原理与设计 March 19, 2014 40 / 50

.

Outline
.. .1 Process Scheduling

Process Scheduling Queues
Schedulers
Context Switch(上下文切换)

.. .2 Operation on processes
Process Creation
Process Termination

.. .3 Interprocess Communication (进程间通信, IPC)
Shared-Memory systems
Message-Passing Systems

.. .4 Example of IPC Systems
POSIX Shared Memory
Mach
Windows XP

.. .5 Communication in C/S Systems

.. .6 小结和作业
陈香兰 (中国科学技术大学计算机学院) 操作系统原理与设计 March 19, 2014 41 / 50

.

Outline
.. .1 Process Scheduling

Process Scheduling Queues
Schedulers
Context Switch(上下文切换)

.. .2 Operation on processes
Process Creation
Process Termination

.. .3 Interprocess Communication (进程间通信, IPC)
Shared-Memory systems
Message-Passing Systems

.. .4 Example of IPC Systems
POSIX Shared Memory
Mach
Windows XP

.. .5 Communication in C/S Systems

.. .6 小结和作业
陈香兰 (中国科学技术大学计算机学院) 操作系统原理与设计 March 19, 2014 42 / 50

.

LPC in Windows XP

Subsystems
application programs can be considered clients of the Windows XP
subsystems server.
application programs communicate via a message-passing mechanism:
local procedure-call (LPC) facility.

Port object: two types
connection ports: named objects, to set up communication channels
communication ports

for small message, use the port’s message queue
for a larger message, use a section object, which sets up a region of
shared memory.
this can avoids data copying

陈香兰 (中国科学技术大学计算机学院) 操作系统原理与设计 March 19, 2014 43 / 50

.

LPC in Windows XP

Local procedure calls in Windows XP.

陈香兰 (中国科学技术大学计算机学院) 操作系统原理与设计 March 19, 2014 43 / 50

.

Client-Server Communication

Sockets (套接字)
Remote Procedure Calls (远程过程调用，RPC)
Remote Method Invocation (远程方法调用，RMI) (Java)

陈香兰 (中国科学技术大学计算机学院) 操作系统原理与设计 March 19, 2014 44 / 50

.

Sockets (套接字)

A socket is defined as an endpoint for communication
Concatenation of IP address and port
The socket 161.25.19.8:1625 refers to port 1625 on host 161.25.19.8

Communication consists between a pair of sockets

陈香兰 (中国科学技术大学计算机学院) 操作系统原理与设计 March 19, 2014 45 / 50

.

Remote Procedure Calls(远程过程调用, RPC)

Remote procedure call (RPC) abstracts procedure calls between
processes on networked systems.
Stubs – client-side proxy for the actual procedure on the server.
The client-side stub locates the server and marshalls the parameters.
The server-side stub receives this message, unpacks the marshalled
parameters, and peforms the procedure on the server.

陈香兰 (中国科学技术大学计算机学院) 操作系统原理与设计 March 19, 2014 46 / 50

.

Remote Procedure Calls(远程过程调用, RPC)

Execution of a remote precedure call (RPC)

陈香兰 (中国科学技术大学计算机学院) 操作系统原理与设计 March 19, 2014 46 / 50

.

Remote Method Invocation(远程方法调用, RMI)

Remote Method Invocation (RMI) is a Java mechanism similar to
RPCs.
RMI allows a Java program on one machine to invoke a method on a
remote object.

陈香兰 (中国科学技术大学计算机学院) 操作系统原理与设计 March 19, 2014 47 / 50

.

Remote Method Invocation(远程方法调用, RMI)

Marshalling Parameters

陈香兰 (中国科学技术大学计算机学院) 操作系统原理与设计 March 19, 2014 47 / 50

.

小结

.. .1 Process Scheduling
Process Scheduling Queues
Schedulers
Context Switch(上下文切换)

.. .2 Operation on processes
Process Creation
Process Termination

.. .3 Interprocess Communication (进程间通信, IPC)
Shared-Memory systems
Message-Passing Systems

.. .4 Example of IPC Systems
POSIX Shared Memory
Mach
Windows XP

.. .5 Communication in C/S Systems

.. .6 小结和作业
陈香兰 (中国科学技术大学计算机学院) 操作系统原理与设计 March 19, 2014 48 / 50

.

阅读

Read related code in Linux or uC/OS-II
Subsubsection “An Example: Mach” of subsection “Examples of IPC
Systems”
Subsubsection “An Example: Windows XP” of subsection “Examples
of IPC Systems”
Subsection “Communication in Client-Server Systems”

陈香兰 (中国科学技术大学计算机学院) 操作系统原理与设计 March 19, 2014 49 / 50

.

.

.. ..
. .谢谢！

陈香兰 (中国科学技术大学计算机学院) 操作系统原理与设计 March 19, 2014 50 / 50

	Process Scheduling
	Process Scheduling Queues
	Schedulers
	Context Switch(上下文切换)

	Operation on processes
	Process Creation
	Process Termination

	Interprocess Communication (进程间通信, IPC)
	Shared-Memory systems
	Message-Passing Systems

	Example of IPC Systems
	POSIX Shared Memory
	Mach
	Windows XP

	Communication in C/S Systems
	小结和作业

