
.

.

.. ..

.

.

操作系统原理与设计
第 7 章 Deadlocks（死锁）

陈香兰

中国科学技术大学计算机学院

April 16, 2014

陈香兰 (中国科学技术大学计算机学院) 操作系统原理与设计 April 16, 2014 1 / 40

.

Objecttives

To develop a description of deadlocks, which prevent sets of
concurrent processes from completing their tasks
To present a number of different methods for preventing or
avoiding deadlocks in a compuer system.

陈香兰 (中国科学技术大学计算机学院) 操作系统原理与设计 April 16, 2014 2 / 40

.

提纲

.. .1 Background and System Model

.. .2 Deadlock Characterization
Necessary Conditions
Resource-Allocation Graph
Methods for Handling Deadlocks

.. .3 Deadlock Prevention (死锁预防)

.. .4 Deadlock Avoidance (死锁避免)
Safe State (安全状态)
Resource-Allocation Graph Scheme
Banker’s Algorithm (银行家算法)

.. .5 Deadlock Detection (死锁检测) and Recovery

.. .6 小结和作业

陈香兰 (中国科学技术大学计算机学院) 操作系统原理与设计 April 16, 2014 3 / 40

.

Outline
.

.

.. .1 Background and System Model

.. .2 Deadlock Characterization

.. .3 Deadlock Prevention (死锁预防)

.. .4 Deadlock Avoidance (死锁避免)

.. .5 Deadlock Detection (死锁检测) and Recovery

.. .6 小结和作业

陈香兰 (中国科学技术大学计算机学院) 操作系统原理与设计 April 16, 2014 4 / 40

.

The Deadlock Problem

.deadlock situation..

.. ..

.

.

A set of blocked processes each holding a resource and waiting to acquire a
resource held by another process in the set.

.Example 1..

.. ..

.

.

System has 2 disk drives.
P1 and P2 each hold one disk drive and each needs another one.

.Example 2..

.. ..

.

.

semaphores A and B, initialized to 1

P0 P1

wait (A); wait(B)
wait (B); wait(A)

陈香兰 (中国科学技术大学计算机学院) 操作系统原理与设计 April 16, 2014 5 / 40

.

Bridge Crossing Example

Traffic only in one direction.
Each section of a bridge can be viewed as a resource.
If a deadlock occurs, it can be resolved if one car backs up (preempt
resources and rollback).
Several cars may have to be backed up if a deadlock occurs.
Starvation is possible.

陈香兰 (中国科学技术大学计算机学院) 操作系统原理与设计 April 16, 2014 6 / 40

.

System Model

A system consists of a finite number of resources
The resources are partitioned into several types, each consisting of
some number of identical instance.

physical resources: CPU cycles, memory space, I/O devices
logical resources: files, semaphores, and monitors

System model
Resource types R1, R2, . . . , Rm
Each resource type Ri has Wi instances.
Each process utilizes a resource as follows:

request: may wait until it can acquire the resource
use
release

陈香兰 (中国科学技术大学计算机学院) 操作系统原理与设计 April 16, 2014 7 / 40

.

Outline
.

.

.. .1 Background and System Model

.. .2 Deadlock Characterization
Necessary Conditions
Resource-Allocation Graph
Methods for Handling Deadlocks

.. .3 Deadlock Prevention (死锁预防)

.. .4 Deadlock Avoidance (死锁避免)

.. .5 Deadlock Detection (死锁检测) and Recovery

.. .6 小结和作业

陈香兰 (中国科学技术大学计算机学院) 操作系统原理与设计 April 16, 2014 8 / 40

.

Deadlock Characterization: Necessary Conditions

Deadlock can arise if four conditions hold simultaneously.
...1 Mutual exclusion(互斥):

only one process at a time can use a resource.
...2 Hold and wait(持有并等待):

a process holding at least one resource is waiting to acquire additional
resources held by other processes.

...3 No preemption(不剥夺):
a resource can be released only voluntarily by the process holding it,
after that process has completed its task.

...4 Circular wait(循环等待):
there exists a set {P0, P1, . . . , P0} of waiting processes such that P0 is
waiting for a resource that is held by P1, P1 is waiting for a resource
that is held by P2, . . . , Pn−1 is waiting for a resource that is held by
Pn, and Pn is waiting for a resource that is held by P0.

陈香兰 (中国科学技术大学计算机学院) 操作系统原理与设计 April 16, 2014 9 / 40

.

Deadlock Characterization: Resource-Allocation Graph
.

.

System resource-allocation graph: A directed graph
A set of vertices V and a set of edges E.
V is partitioned into two types:

P = {P1, P2, . . . , Pn}, the set consisting of all the processes in the
system.
R = {R1, R2, . . . , Rm}, the set consisting of all resource types in the
system.
request edge(请求边) – directed edge Pi→ Rj
assignment edge(分配边) – directed edge Rj →Pi

Process

Resource Type with 4 instances

Pi requests instance of Rj

Pi is holding an instance of Rj

陈香兰 (中国科学技术大学计算机学院) 操作系统原理与设计 April 16, 2014 10 / 40

.

Example of a Resource Allocation Graph

陈香兰 (中国科学技术大学计算机学院) 操作系统原理与设计 April 16, 2014 11 / 40

.

Example of a resource Allocation Graph With A Deadlock

陈香兰 (中国科学技术大学计算机学院) 操作系统原理与设计 April 16, 2014 12 / 40

.

Graph With A Cycle But No Deadlock

陈香兰 (中国科学技术大学计算机学院) 操作系统原理与设计 April 16, 2014 13 / 40

.

Basic Facts

If graph contains no cycles ⇒ no deadlock.
If graph contains a cycle ⇒

if only one instance per resource type, then deadlock.
if several instances per resource type, possibility of deadlock.

陈香兰 (中国科学技术大学计算机学院) 操作系统原理与设计 April 16, 2014 14 / 40

.

Methods for Handling Deadlocks

...1 Ensure that the system will never enter a deadlock state.
...1 Deadlock prevention
...2 Deadlock avoidance

...2 Allow the system to enter a deadlock state and then recover.
...1 Deadlock detection and recovery from deadlock

...3 Ignore the problem and pretend that deadlocks never occur in the
system; used by most operating systems, including UNIX.

陈香兰 (中国科学技术大学计算机学院) 操作系统原理与设计 April 16, 2014 15 / 40

.

Outline
.

.

.. .1 Background and System Model

.. .2 Deadlock Characterization

.. .3 Deadlock Prevention (死锁预防)

.. .4 Deadlock Avoidance (死锁避免)

.. .5 Deadlock Detection (死锁检测) and Recovery

.. .6 小结和作业

陈香兰 (中国科学技术大学计算机学院) 操作系统原理与设计 April 16, 2014 16 / 40

.

Deadlock Prevention (死锁预防)

Deadlock prevention provides a set of methods for ensuring that at
least one of the necessary conditions cannot hold.
Restrain the ways request can be made.

...1 Mutual Exclusion
not required for sharable resources (read-only files);
must hold for nonsharable resources. (printer)
In general, therefore, we cannot deny the mutual-exclusion
condition

陈香兰 (中国科学技术大学计算机学院) 操作系统原理与设计 April 16, 2014 17 / 40

.

Deadlock Prevention (死锁预防)

Deadlock prevention provides a set of methods for ensuring that at
least one of the necessary conditions cannot hold.
Restrain the ways request can be made.

...2 Hold and Wait
must guarantee that whenever a process requests a resource, it does
not hold any other resources.

...1 Require process to request and be allocated all its resources before it
begins execution, or

...2 allow process to request resources only when the process has none.

Disadvantage:
...1 Low resource utilization;
...2 starvation possible.

陈香兰 (中国科学技术大学计算机学院) 操作系统原理与设计 April 16, 2014 17 / 40

.

Deadlock Prevention (死锁预防)

Deadlock prevention provides a set of methods for ensuring that at
least one of the necessary conditions cannot hold.
Restrain the ways request can be made.

...3 No Preemption
...1 If a process that is holding some resources requests another resource

that cannot be immediately allocated to it, then all resources currently
being held are preempted.

Preempted resources are added to the list of resources for which the
process is waiting.
Process will be restarted only when it can regain its old resources, as
well as the new ones that it is requesting.

...2 preempt the desired resources from the waiting process and allocate
them to the requesting process

if the resource are neither available nor held by a waiting process, the
requesting process must wait. While waiting, some of its resources may
be preempted by other requesting process
a process can be restarted only when it is allocated the new resources
it is requesting and recovers any resources that were preempted.

陈香兰 (中国科学技术大学计算机学院) 操作系统原理与设计 April 16, 2014 17 / 40

.

Deadlock Prevention (死锁预防)

Deadlock prevention provides a set of methods for ensuring that at
least one of the necessary conditions cannot hold.
Restrain the ways request can be made.

...4 Circular Wait
impose a total ordering of all resource types, and require that each
process requests resources in an increasing order of enumeration.

...1 always in an increasing order

...2 may release some higher ordered resource before requesting lower
ordered resource

陈香兰 (中国科学技术大学计算机学院) 操作系统原理与设计 April 16, 2014 17 / 40

.

Outline
.

.

.. .1 Background and System Model

.. .2 Deadlock Characterization

.. .3 Deadlock Prevention (死锁预防)

.. .4 Deadlock Avoidance (死锁避免)
Safe State (安全状态)
Resource-Allocation Graph Scheme
Banker’s Algorithm (银行家算法)

.. .5 Deadlock Detection (死锁检测) and Recovery

.. .6 小结和作业

陈香兰 (中国科学技术大学计算机学院) 操作系统原理与设计 April 16, 2014 18 / 40

.

Deadlock Avoidance (死锁避免)

Requires that the system has some additional a priori information
available.

Simplest and most useful model requires that each process declare the
maximum number of resources of each type that it may need.
The deadlock-avoidance algorithm dynamically examines the
resource-allocation state to ensure that there can never be a
circular-wait condition.
Resource-allocation state is defined by the number of available and
allocated resources, and the maximum demands of the processes.

陈香兰 (中国科学技术大学计算机学院) 操作系统原理与设计 April 16, 2014 19 / 40

.

Safe State (安全状态)
.

.

When a process requests an available resource, system must decide if
immediate allocation leaves the system in a safe state.
System is in safe state if there exists a (safe) sequence (安全序列)

< P1, P2, . . . , Pn >

of ALL the processes in the systems such that for each Pi, the
resources that Pi can still request can be satisfied by currently
available resources + resources held by all the Pj, with j < i.

That is:
If Pi resource needs are not immediately available, then Pi can wait
until all Pj have finished.
When Pj is finished, Pi can obtain needed resources, execute, return
allocated resources, and terminate.
When Pi terminates, Pi+1 can obtain its needed resources, and so on.

陈香兰 (中国科学技术大学计算机学院) 操作系统原理与设计 April 16, 2014 20 / 40

.

Basic Facts: Safe, Unsafe , Deadlock State I

If a system is in safe state ⇒ no deadlocks.
If a system is in unsafe state ⇒ possibility of deadlock.
Avoidance ⇒ ensure that a system will never enter an unsafe state.

陈香兰 (中国科学技术大学计算机学院) 操作系统原理与设计 April 16, 2014 21 / 40

.

Basic Facts: Safe, Unsafe , Deadlock State II

Example, 12 tape drives and 3 processes, at T0

MaxNeeds current
P0 10 5
P1 4 2
P2 9 2→ 3

< P1,P0,P2 >

if at T2, P2 request and is allocated one more tape drive, ?

陈香兰 (中国科学技术大学计算机学院) 操作系统原理与设计 April 16, 2014 22 / 40

.

Avoidance algorithms

...1 Single instance of a resource type.
Use a resource-allocation graph

...2 Multiple instances of a resource type.
Use the banker’s algorithm (银行家算法)

陈香兰 (中国科学技术大学计算机学院) 操作系统原理与设计 April 16, 2014 23 / 40

.

1. Resource-Allocation Graph Scheme

Resource-Allocation Graph
Claim edge (需求边) Pi→Rj

indicated that process Pj may request resource Rj;
represented by a dashed line.

Claim edge converts to request edge when a process requests a
resource.
Request edge converted to an assignment edge when the resource is
allocated to the process.
When a resource is released by a process, assignment edge reconverts
to a claim edge.
Resources must be claimed a priori in the system.

陈香兰 (中国科学技术大学计算机学院) 操作系统原理与设计 April 16, 2014 24 / 40

.

1. Resource-Allocation Graph Scheme

Example: Safe State

safe sequence: < P1,P2 >

陈香兰 (中国科学技术大学计算机学院) 操作系统原理与设计 April 16, 2014 24 / 40

.

1. Resource-Allocation Graph Scheme

Example: Unsafe State In Resource-Allocation Graph

陈香兰 (中国科学技术大学计算机学院) 操作系统原理与设计 April 16, 2014 24 / 40

.

1. Resource-Allocation Graph Scheme

Resource-Allocation Graph Algorithm
Suppose that process Pi requests a resource Rj
The request can be granted only if converting the request edge
to an assignment edge does not result in the formation of a cycle
in the resource allocation graph

陈香兰 (中国科学技术大学计算机学院) 操作系统原理与设计 April 16, 2014 24 / 40

.

2. Banker’s Algorithm (银行家算法)

Banker’s Algorithm (银行家算法)
Multiple instances.
Each process must a priori claim maximum use.
When a process requests a resource it may have to wait.
When a process gets all its resources it must return them in a finite
amount of time.

...1 Data stuctures

...2 safety algorithm

...3 resource-request algorithm

陈香兰 (中国科学技术大学计算机学院) 操作系统原理与设计 April 16, 2014 25 / 40

.

2. Banker’s Algorithm (银行家算法): Data Structures

Let
n = number of processes
m = number of resources types.

Available: Vector of length m. If available[j] = k, there are k
instances of resource type Rj available.
Max: n × m matrix. If Max[i, j] = k, then process Pi may request at
most k instances of resource type Rj.
Allocation: n × m matrix. If Allocation[i, j] = k then Pi is currently
allocated k instances of Rj.
Need: n × m matrix. If Need[i, j] = k, then Pi may need k more
instances of Rj to complete its task.

Need[i, j] = Max[i, j]− Allocation[i, j].

陈香兰 (中国科学技术大学计算机学院) 操作系统原理与设计 April 16, 2014 26 / 40

.

2. Banker’s Algorithm (银行家算法): Safety Algorithm
.

.

...1 Let Work and Finish be vectors of length m and n, respectively.
Initialize:

Work = Available

Finish[i] = false for i = 0, 1, . . . , n − 1.
...2 Find an i such that both:

...1 Finish[i] = false

...2 Needi ≤ Work

If no such i exists, go to step 4.
...3 Work = Work + Allocationi, Finish[i] = true, go to step 2.
...4 If Finish[i] == true for all i, then the system is in a safe state.

陈香兰 (中国科学技术大学计算机学院) 操作系统原理与设计 April 16, 2014 27 / 40

.

2. Banker’s Algorithm: Resource-Request Algorithm for
Process Pi
.

.

Request = request vector for process Pi.
If Requesti[j] = k then process Pi wants k instances of resource type Rj.

...1 If Requesti ≤ Needi go to step 2. Otherwise, raise error condition,
since process has exceeded its maximum claim.

...2 If Requesti ≤ Available, go to step 3. Otherwise Pi must wait, since
resources are not available.

...3 Pretend to allocate requested resources to Pi by modifying the state
as follows:

Available = Available − Request;

Allocationi = Allocationi + Requesti;

Needi = Needi − Requesti;

If safe ⇒ the resources are allocated to Pi.
If unsafe ⇒ Pi must wait, and the old resource-allocation state is
restored

陈香兰 (中国科学技术大学计算机学院) 操作系统原理与设计 April 16, 2014 28 / 40

.

2. Banker’s Algorithm: Example
.

.

5 processes: P0 ˜ P4;
3 resource types:
A (10 instances), B (5 instances), and C (7 instances).
Snapshot at time T0:

Allocation Max Available
A B C A B C A B C

P0 0 1 0 7 5 3 3 3 2
P1 2 0 0 3 2 2
P2 3 0 2 9 0 2
P3 2 1 1 2 2 2
P4 0 0 2 4 3 3

Need = Max − Allocation

Need
A B C

P0 7 4 3
P1 1 2 2
P2 6 0 0
P3 0 1 1
P4 4 3 1

The system is in a safe state since the sequence

< P1, P3, P4, P2, P0 >

satisfies safety criteria.
陈香兰 (中国科学技术大学计算机学院) 操作系统原理与设计 April 16, 2014 29 / 40

.

2. Banker’s Algorithm: Example: P1 Request (1,0,2)

Check that Request ≤ Available (that is, (1,0,2) ≤ (3,3,2) ⇒ true.

Allocation Need Available
A B C A B C A B C

P0 0 1 0 7 4 3 3 3 2→2 3 0
P1 2 0 0→3 0 2 1 2 2→0 2 0
P2 3 0 1 6 0 0
P3 2 1 1 0 1 1
P4 0 0 2 4 3 1

Executing safety algorithm shows that sequence

< P1, P3, P4, P0, P2 >

satisfies safety requirement.

Can request for (3,3,0) by P4 be granted?
Can request for (0,2,0) by P0 be granted?

陈香兰 (中国科学技术大学计算机学院) 操作系统原理与设计 April 16, 2014 30 / 40

.

Outline
.

.

.. .1 Background and System Model

.. .2 Deadlock Characterization

.. .3 Deadlock Prevention (死锁预防)

.. .4 Deadlock Avoidance (死锁避免)

.. .5 Deadlock Detection (死锁检测) and Recovery

.. .6 小结和作业

陈香兰 (中国科学技术大学计算机学院) 操作系统原理与设计 April 16, 2014 31 / 40

.

Deadlock Detection (死锁检测) and Recovery

Allow system to enter deadlock state
Detection algorithm

...1 single instance

...2 several instances

Recovery scheme
...1 Process termination
...2 Resource preemption

陈香兰 (中国科学技术大学计算机学院) 操作系统原理与设计 April 16, 2014 32 / 40

.

1. Single Instance of Each Resource Type
.

.

Maintain wait-for graph:
Nodes are processes.
Pi→Pj, if Pi is waiting for Pj.

Periodically invoke an algorithm that searches for a cycle in the
graph. If there is a cycle, there exists a deadlock.
COST: An algorithm to detect a cycle in a graph requires an order of
n2 operations, where n is the number of vertices in the graph.

陈香兰 (中国科学技术大学计算机学院) 操作系统原理与设计 April 16, 2014 33 / 40

.

2. Several Instances of a Resource Type
.

.

...1 Data structures:
Available:
A vector of length m indicates the number of available resources of
each type.
Allocation:
An n × m matrix defines the number of resources of each type currently
allocated to each process.
Request:
An n × m matrix indicates the current request of each process. If
Request[i][j] = k, then process Pi is requesting k more instances of
resource type Rj.

陈香兰 (中国科学技术大学计算机学院) 操作系统原理与设计 April 16, 2014 34 / 40

.

2. Several Instances of a Resource Type
.

.

...2 Detection Algorithm
...1 Let Work and Finish be vectors of length m and n, respectively

Initialize:
Work = Available
For i = 1, 2, . . . , n, if Allocationi 6=0, then Finish[i] = false;otherwise,
Finish[i] = true.

...2 Find an i such that both:
Finish[i] == false
Requesti ≤Work

If no such i exists, go to step 4.
...3 Work = Work + Allocationi, Finish[i] = true, go to step 2.
...4 If Finish[i] == false, for some i, 1 ≤ i ≤ n, then the system is in

deadlock state. Moreover, if Finish[i] == false, then Pi is deadlocked.

Algorithm requires an order of O(m × n2) operations to detect
whether the system is in deadlocked state.

陈香兰 (中国科学技术大学计算机学院) 操作系统原理与设计 April 16, 2014 34 / 40

.

2. Several Instances of a Resource Type
.

.

...3 Example of Detection Algorithm
Five processes: P0 ˜ P4;
three resource types:

A (7 instances), B (2 instances), and C (6 instances).

Snapshot at time T0:
Allocation Request Available

A B C A B C A B C
P0 0 1 0 0 0 0 0 0 0
P1 2 0 0 2 0 2
P2 3 0 2 0 0 0
P3 2 1 1 1 0 0
P4 0 0 2 0 0 2

Sequence <P0, P2, P3, P1, P4> will result in Finish[i] = true for all i.

陈香兰 (中国科学技术大学计算机学院) 操作系统原理与设计 April 16, 2014 34 / 40

.

2. Several Instances of a Resource Type
.

.

...3 Example of Detection Algorithm
If P2 requests an additional instance of type C.

Request
A B C

P0 0 0 0
P1 2 0 2
P2 0 0 1 ← 0 0 0

P3 1 0 0
P4 0 0 2

State of system?
Can reclaim resources held by process P0, but insufficient resources to
fulfill other processes requests.
Deadlock exists, consisting of processes P1, P2, P3, and P4.

陈香兰 (中国科学技术大学计算机学院) 操作系统原理与设计 April 16, 2014 34 / 40

.

2. Several Instances of a Resource Type
.

.

...3 Example of Detection Algorithm

...4 Detection-Algorithm Usage
When, and how often, to invoke depends on:

How often a deadlock is likely to occur?
How many processes will need to be rolled back? one for each disjoint
cycle

If detection algorithm is invoked arbitrarily, there may be many cycles in
the resource graph and so we would not be able to tell which of the
many deadlocked processes “caused”the deadlock.

陈香兰 (中国科学技术大学计算机学院) 操作系统原理与设计 April 16, 2014 34 / 40

.

Recovery from Deadlock: 1. Process Termination

...1 Abort all deadlocked processes.

...2 Abort one process at a time until the deadlock cycle is eliminated.

To minimize cost: in which order should we choose to abort?
Priority of the process.
How long process has computed, and how much longer to completion.
Resources the process has used.
Resources process needs to complete.
How many processes will need to be terminated.
Is process interactive or batch?

陈香兰 (中国科学技术大学计算机学院) 操作系统原理与设计 April 16, 2014 35 / 40

.

Recovery from Deadlock: 2. Resource Preemption

Three issues need to be addressed:
...1 Selecting a victim – minimize cost.
...2 Rollback – return to some safe state, restart process for that state.
...3 Starvation – same process may always be picked as victim, include

number of rollback in cost factor.

陈香兰 (中国科学技术大学计算机学院) 操作系统原理与设计 April 16, 2014 36 / 40

.

Outline
.

.

.. .1 Background and System Model

.. .2 Deadlock Characterization

.. .3 Deadlock Prevention (死锁预防)

.. .4 Deadlock Avoidance (死锁避免)

.. .5 Deadlock Detection (死锁检测) and Recovery

.. .6 小结和作业

陈香兰 (中国科学技术大学计算机学院) 操作系统原理与设计 April 16, 2014 37 / 40

.

小结

.. .1 Background and System Model

.. .2 Deadlock Characterization
Necessary Conditions
Resource-Allocation Graph
Methods for Handling Deadlocks

.. .3 Deadlock Prevention (死锁预防)

.. .4 Deadlock Avoidance (死锁避免)
Safe State (安全状态)
Resource-Allocation Graph Scheme
Banker’s Algorithm (银行家算法)

.. .5 Deadlock Detection (死锁检测) and Recovery

.. .6 小结和作业

陈香兰 (中国科学技术大学计算机学院) 操作系统原理与设计 April 16, 2014 38 / 40

.

作业

参见课程主页

陈香兰 (中国科学技术大学计算机学院) 操作系统原理与设计 April 16, 2014 39 / 40

.

.

.. ..
. .谢谢！

陈香兰 (中国科学技术大学计算机学院) 操作系统原理与设计 April 16, 2014 40 / 40

	Background and System Model
	Deadlock Characterization
	Necessary Conditions
	Resource-Allocation Graph
	Methods for Handling Deadlocks

	Deadlock Prevention (死锁预防)
	Deadlock Avoidance (死锁避免)
	Safe State (安全状态)
	Resource-Allocation Graph Scheme
	Banker's Algorithm (银行家算法)

	Deadlock Detection (死锁检测) and Recovery
	小结和作业

