0117401: Operating System

TTENFRESRIT
Chapter 11: File system interface(X & 4#E0)

&=
xlanchen@ustc.edu.cn
http://staff.ustc.edu.cn/~xlanchen

Computer Application Laboratory, CS, USTC @ Hefei
Embedded System Laboratory, CS, USTC @ Suzhou

May 18, 2015

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRES51&T May 18, 2015

ATERMMANTIEES),
EEiIRE RV EFEE.

AErmigs HIFITEIE,

B&& = xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRIE51&T May 18, 2015 2/39

@ File Concept

© Access Methods (a5

© Directory Structure (B R5#)

@ File System Mounting (X4 % %11 #)
e File sharing (X4 H =)

e Protection

@ \wFnrEL

B&& = xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRIE51&T May 18, 2015 3/39

File System

Files
" BENE
Directory

XL

BREM IBIBLEMFIEL
X RGN

X R
BN MIIRLEMIFILELR

TIRERALN

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRES51&T

Chapter Ojbectives

@ To explain the function of file systems
@ To describe the interfaces to file systems

@ To discuss file-system design tradeoffs, including access methods,
file sharing, file locking, and directory structures

@ To explore file-system protection

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRES51&T May 18, 2015 5/39

0 File Concept

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRE51&T May 18, 2015 6/39

File Concept

@ OS provides a uniform logical view of infomation storage despite
the various storage media (nonvolatile).

@ Afile is a logical storage unit.

o A fileis a named collection of related information that is recorded
on secondary storage.

o Types:
@ Data: numeric; character; binary
@ Program
e In general, a file is a sequence of bits, bytes, lines, or records.
@ The meaning is defined by the file’ s creator and user.
o Afile has a certain defined structure, which depends on its type.
@ Example: text files, source files, object files, executable files
e Contiguous logical address space

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRE51&T May 18, 2015 7/39

File Concept

@ File concept

@ File attributes

© File operations

© File types

@ File structures

© Internal file structure

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRE51&T May 18, 2015 7/39

1. File Attributes (3Z{&E)

@ Afile’ s attributes vary from one OS to another but typically
consist of these:

e Name - The only information kept in human-readable form

@ Aname is usually a string of characters, such as “example.c”
@ Uppercase vs. lowercase: care or not care

o Identifier - Unique tag, usually a number, identifies file within FS
@ The non-human-readable name for the file

Type - Needed for systems that support different types

Location - A pointer to file location on device

Size - Current file size; may also include MAX size

Protection - Access-control (15[8]#Z) information: who can do
reading, writing, executing

e Time, date, and user identification - Data for protection, security,
and usage monitoring

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRE51&T May 18, 2015 8/39

1. File Attributes (3Z{&E)

@ Information about files are kept in the directory structure, which
is also maintained on the secondary storage

other
all file
file attributes
attributes
identifier identifier !
name name
directory structure 1 directory structure 2

@ Typically, a directory entry only consists of the file’ s name and
its unique identifier.
The identifier in turn locates the other file attributes.

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRE51&T May 18, 2015 8/39

2. File Operations (SZ{41%1F)

@ File is an abstract data type. OS provides the 6 basic system calls

@ Create : allocate space + create an directory entry

© Write : write pointer

© Read: read pointer

© Reposition within file : also known as seek

© Delete : release space + erase the directory entry

@ Truncate : file len=0; release space; all other attributes remain
unchanged

@ others:

o For file: append, rename
e For file attribute: chown, chmod, ...
e For directory & directory entries:

@ Open(Fj)- search the directory structure on disk for entry F;, and
move the content of entry to memory

@ Close(Fj)- move the content of entry F; in memory to directory
structure on disk

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRE51&T May 18, 2015 9/39

2. File Operations (3Z{412&1%)

@ Open Files & Open-File Table

e Open-file table, OFT: a small table containing information about all
open files

@ Several processes may open the same file at the same time
=2-levels: a per-process table & a system-wide table with
process-independent information

OFT

process P1 \

OFT i
‘ ‘ ‘ ‘ system OFT

process P2

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRE51&T May 18, 2015 9/39

2. File Operations (SZ{41%1F)

@ Open Files & Open-File Table
@ Several pieces of data are needed to manage open files:

@ File pointer: pointer to last read/write location, process-dependent
@ File-open count: counter of number of times a file is open - to allow
removal of data from open-file table when last processes closes it
@ Disk location of the file: the information needed to locate the file on

disk, always is kept in memory
@ Access rights: per-process access mode information

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRE51&T May 18, 2015 9/39

2. File Operations (SZ{41%1F)

@ Open file locking
e Provided by some OSes and FSes

@ allow one process to lock a file and prevent other processes from
gaining access to it

o functionality is similar to reader-writer locks

@ OS- or FS-dependent

@ Mandatory or advisory

e Mandatory

@ access is denied depending on locks held and requested;
@ OS ensures locking integrity
@ Windows OSes

o Advisory

@ processes can find status of locks and decide what to do
@ up to software developers
@ UNIX

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRE51&T May 18, 2015

3. File Types - Name, Extension

’ file type ‘ usual extension ‘ function ‘
executable exe, com, bin or none ready-to-run machine-language program
object obj, o compiled, machine language, not linked
source code ¢, CC, java, pas, asm, a source code in various languages
batch bat, sh commands to the command interpreter
text txt, doc textual data, documents
work processor wp, tex, rtf, doc various word-processor formats
library lib, a, so, dll libraries of routines for programmers
print or view ps, pdf, jpg ASCII or binary file in a format for printing or
viewing
archive are, zip, tar related files grouped into one file, sometimes
compressed, for archiving or storage
multimedia mpeg, mov, rm, mp3, avi | binary file containing audio or A/V information

B&& = xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EH/RE 5% May 18, 2015 10/39

4. File Structure

@ Sometimes, file types can indicate the internal structure of file
@ File structures(S{4F451)((B4E L)

e None - sequence of words, bytes
e Simple record structure

@ Lines
@ Fixed length;
@ Variable length

e Complex Structures

@ Formatted document
@ Relocatable load file

@ Can simulate last two with first method

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRE51&T May 18, 2015

4. File Structure

@ System-supported file structures

e Most modern OSes support a minimal number of file structures
directly

@ Example: UNIX sees every file as a sequence of 8-bit bytes
o Benefits:

@ Applications have more flexibility
@ Simplifies the OS

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRE51&T May 18, 2015 11/39

5. Internal file structure

@ Internel file structure
@ How to locate an offset within a file?
@ Logical file (record) (vary in length)—Physical block (fixed size)

@ Solution: Packing - packing a number of logical records into
physical blocks.

@ Pack & unpack: convert between logical records and physical blocks
@ Internal fragmentation will occur

Logical records |

[2

Physical blocks

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRES51&T May 18, 2015 12/39

© Access Methods (1475 2)

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRE51&T May 18, 2015 13/39

Access Methods (iAia) A=)

@ Files store information. When it is used, this information must be
accessed and read into computer memory

@ On alogical perspective of users, access a file of records

@ Sequential Access (IRFFiARI A)
© Direct Access (E#ziARIA)
© Indexed Access (R3|iAiB)AR)

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRES51&T May 18, 2015 14/39

1. Sequential Access (IR FiAE1 A)

@ Sequential Access (llfi#1/38]73Z0): the simplest access method.
Information in the file is processed in order, one record after the
other.

@ This is a most common access mode.

For example: editors, compilers
o Atape model of file

@ File operations & the effect on file pointer

e read/write next
@ reset
e rewind/forward n

current position

beginning end

rewind {
I—read OF Wit Ermmmmndy

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRES51&T May 18, 2015

2. Direct Access (EifIalAR)

@ Direct Access (E#EiAlE]/5R)
Information in the file is processed in no particular order.
o File is made up of a numbered sequence of fixed-length logical

records
@ A disk model of a file, allow random access, immediate access
For example: databases, or an ailine-reservation system
e Can move quickly to any record location by supplying a relative
record number (n)

@ Read n & Write n,
File pointer =L n, 0 < n < N, where N is the last record number, L

is the fixed length of each record.
@ — Position n & read/write next, for example:

seek(20); // move to rec. 20
seek(-1); // move to rec. 19
read();

May 18,2015 16/39

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRES51&T

2. Direct Access (EifIalAR)

@ Simulation of sequential access on a direct-access file

] sequential access ‘ implementation for direct access ‘

reset cp=0;
read next read cp;
cp=cp+1;
write next write cp;
cp=cp+1;

@ How can we get n?
If the record is with variable length, then ?

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRES51&T May 18, 2015 16 /39

a7)

@ To improves search time and reduce I/O

@ Make an index file for the file, which contains pointers to various
records

@ Search the index file first,

© and then use the pointer to access the file directly and to find the

desired record.
logical record

last name number

3. Indexed Access (225

Adams
;:Srt::: smith, john [social-security age
Smith

index file relative file

Figure: Example of index and relative files

@ With large files, the index file itself may become too large to be
kept in memory = Multi-level index table

B&& = xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EH/RE 5% May 18, 2015

© Directory Structure (B R4519)

k&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EH1RIE 5% May 18, 2015 18/39

A Typical File-system Organization

@ Partition (mini-disks, volumes)

@ Onedisk
© Part of a disk: provide separate logical spaces on one disk
© N disks: group several disks into a single logical space

directory directory
iti disk 2
partition A files
disk 1
artition C 3
directory P files
partition B .
files disk 3

@ Partition = files + directories

e Directory: holds file information (name, location, size, type, ...) for
all files in that partition

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRES51&T May 18, 2015 19/39

Directory Overview

@ Directory:
A collection of nodes containing information about all files

Directory

Files

@ Directory + files: all reside on disk
@ Backups of these two structures are kept on tapes

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRE51&T May 18, 2015 20/39

Directory Overview

@ Information in a directory entry

o File attributes In DOS
e Directory entry
© Name = FCB (file control block)
@ Type
@ Address @ 32 bytes each
@ Current length .
e Maximum length e May cost many I/0 operations to
@ Date last accessed search for an entry
(for archival)
@ Date last updated In UNIX
(for dump) e Inode: Store most of file attributes
@ OwnerID .
(who pays) e Directory entry
@ Protection = file name + a pointer to the inode
information

e 16 bytes each

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRE51&T May 18, 2015 20/39

Directory Overview

@ Operations performed on directory

@ Search for afile = @ Search in the table for an entry
o Create afile z e Insert an entry

o Delete afile = o Delete an entry

o List a directory = e Modify an entry

@ Rename a file ° ...

e Traverse the file system

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRE51&T May 18, 2015 20/39

Directory Overview

@ Organize the directory (logically) to obtain

@ Efficiency - locating a file quickly
© Naming - convenient to users

@ Two users can have same name for different files
@ The same file can have several different names

© Grouping - human convention

@ logical grouping of files by properties, (e.g., all Java programs, all
games, -**)

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRE51&T May 18, 2015 20/39

Directory Structures (B &£51)

@ Single-level directory (B2 ZBR)

@ Two-level directory (WEBR)

© Tree-structured directory (FBIZE/ H F)
Q Acyclic-graph directory (BB B &)

© General-graph directory (BFEE B %)

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRES51&T May 18, 2015 PAWAL]

1. Single-Level Directory (R ZBx)

@ Asingle directory for all users

BEDDDDE

@ Easy to support and understand.
@ But if there are large numbers of files and/or users . ..

e Very low searching speed, O(N)
e Naming problem

@ Small naming space & Name collision
@ MS-DOS: 11 bytes for filename
@ UNIX: 256 bytes

@ protection VS sharing;
e grouping problem

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRES51&T May 18, 2015 22/39

2. Two-Level Directory (\WZ B &)

@ Two-Level Directory: Separate directory for each user
@ User File Directory, UFD
@ Each entry owns information for a user’ s file
© Master file directory, MFD

@ Each entry contains:
(1) User name,
(2) A pointer to his UFD

master file

directory ‘ user 1 ‘ USGJ‘Z‘ user3 | USGI’“‘

user file
directory

cat ‘ bo a ‘ test H data ‘ test ‘ data

LITITITITE

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRES51&T May 18, 2015

2. Two-Level Directory (\WZ B &)

@ Can have the same file name for different user
@ Efficient searching

@ No grouping capability

@ Easy management

o Add/delete a user
@ Security VS. Sharing

MFD, system administrator

UFD, isolated from other users

Directory tree (seen as an inverted tree) & path name
How to share? E.g. system-wide files (dara, program, ...)

@ copy for each user?
@ searching path

@ A UFD may be very large, then . ..

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRES51&T May 18, 2015

3. Tree-Structured Directories (FtBY 45 B &)

root‘ spell ‘ bin ‘programs‘

‘ stat ‘ mail ‘ dist H find ‘count hex ‘recorderH P ‘ e ‘ mail ‘
T \ S R R \
W) _J Y, N\, W) W) Y,

‘ prog ’ COPY’ prt ’ exp ‘ ‘recordel{ list ’ find H hex ’count‘

7 ~/ 7 N N

‘ list ‘ obj ‘SPeII‘ all ‘ last ‘ first ‘

[A R S

@ Root directory (1R B3X) & directory (B &) & subdirectory (FBX)

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRES51&T May 18, 2015 24/39

3. Tree-Structured Directories (FtBY 45 B &)

@ Regular file VS. subdirectory

e Treat a subdirectory like another file
e Use a special bit in the directory entry to distinguish a file (0) from
a subdirectory (1)

@ Current directory (HgiB) (working/searching directory)

e Creating a new file is done in current directory.
e Initial current directory

@ Absolute vs. relative path names (42 33/4833 812 1)
/spell/words/rade
../spell/words/rade

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRES51&T May 18, 2015 24/39

3. Tree-Structured Directories (FtBY 45 B &)

@ Operations

Change current directory: cd /spell/mail/prog
Delete a file: rm <file-name>

List a dictory: Is

create a new directory: mkdir <dir-name>

@ Example: if in current directory /mail

mkdir count
‘ prog ‘ copy ‘ prt ‘ exp‘ - ‘ prog ‘ copy ‘ prt ‘ exp‘count‘

o Delete a directory
@ MS-DOS (only empty directory) VS. UNIX (optional)

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRES51&T May 18, 2015 24/39

3. Tree-Structured Directories (FtBY 45 B &)

@ Efficient searching
@ Grouping Capability
@ The tree structure
prohibits the sharing of files and directories.

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRES51&T May 18, 2015 24/39

4. Acyclic-Graph Directories (LI B H %)

@ Acyclic-Graph Directories

e Have shared subdirectories and files, with no cycles
e The same file or directory may be in two different directories,
having two different names (aliasing)

list ‘ all | w ‘counr| count|words| list

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRES51&T May 18, 2015 25/39

4. Acyclic-Graph Directories (LI B H %)

@ Implementation
@ Symbolic links (FFS§51%)

@ Aspecial new directory entry (link)
@ The content of such file is the path name of the real file/directory
@ How to traverse a directory contains symbolic links?

@ Duplicates directory entries

@ Hard to maintain consistency

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRES51&T May 18, 2015 25/39

4. Acyclic-Graph Directories (LI B H %)

@ Traversing problem

o Different names, actual only one file
e traverse more than once

@ Deleting problem

o If direct deletes list = dangling pointer
e or preserve the file until all reference to it are deleted
e Solutions:

@ File-reference list
@ Reference count: hard link (FE§%#%) in UNIX

@ How to ensure there are no cycles?

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRES51&T May 18, 2015

5. General Graph Directory (BFBE B x)

@ If we allow cycles existed in directory

root ‘ avi | tc | Jim ‘
| text | mail ‘count‘ book| |book‘ mail ‘unhexi hyp |
avi caunf‘ unhex| hex
(5

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRES51&T May 18, 2015 26/39

5. General Graph Directory (BFBE B x)

@ The traversing problem and deleting problem still exists, even
more complicatedly

e Infinite loop
@ limit the access number of a directory while for a search

e Garbage & garbage collection

@ How do we guarantee no cycles?

@ Allow only links to file not subdirectories
o Every time a new link is added use a cycle detection algorithm to
determine whether it is OK

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRES51&T May 18, 2015 26/39

@ File System Mounting (X R i1 #)

lanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ &#l/RIE 5i&1 May 18, 2015 27/39

File System Mounting (X4 & 4545 %8)

@ Afile system must be mounted before it can be accessed
@ A unmounted file system is mounted at a mount point (& 5)

users

sue Jjane

prog

(a) (b)

(a) Existing. (b) Unmounted Partition (c) if using /users as Mount Point

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRES51&T May 18, 2015 28/39

e File sharing (X H =)

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRE51&T May 18, 2015 29/39

File sharing (X4 =)

@ Sharing of files on multi-user systems is desirable
@ Sharing may be done through a protection scheme
@ On distributed systems, files may be shared across a network

@ Network File System (NFS) is a common distributed file-sharing
method

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRE51&T May 18, 2015 30/39

File sharing (X4 =)

@ Multiple Users share files

@ Multiple users=-the issues of file sharing, file naming, file
protection become preeminent
e The system must control the sharing

@ allow by default, OR
@ require a user to specifically grant access to the file

e More file and directory attributes are needed

@ Owner:User IDs identify users, allowing permissions and protections
to be per-user

@ Group:Group IDs allow users to be in groups, permitting group
access rights

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRE51&T May 18, 2015 30/39

File sharing (X4 =)

© Remote File Systems
@ Uses networking to allow file system access between systems

@ Manually via programs like FTP
@ Automatically, seamlessly using distributed file systems
© Semi automatically via the world wide web

e Client-server model allows clients to mount remote file systems
from servers

@ Server can serve multiple clients
@ Client and user-on-client identification is insecure or complicated
@ Example:
NFS is standard UNIX client-server file sharing protocol
CIFS is standard Windows protocol
@ Standard OS file calls are translated into remote calls

e Distributed Information Systems (distributed naming services)
such as LDAP, DNS, NIS, Active Directory implement unified access
to information needed for remote computing

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRE51&T May 18, 2015 30/39

File sharing (X4 =)

© Failure Modes

e Remote file systems add new failure modes, due to network
failure, server failure
e Recovery from failure can involve state information about status of

each remote request
e Stateless protocols such as NFS include all information in each
request, allowing easy recovery but less security

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRE51&T May 18, 2015 30/39

File sharing (X4 =)

© Consistency Semantics

e Consistency semantics specify how multiple users are to access a
shared file simultaneously

@ Similar to process synchronization algorithms
Tend to be less complex due to disk I/0 and network latency (for
remote file systems

@ Andrew File System (AFS) implemented complex remote file sharing
semantics

@ Unix file system (UFS) implements:
Writes to an open file visible immediately to other users of the same
open file
Sharing file pointer to allow multiple users to read and write
concurrently

@ AFS has session semantics
Writes only visible to sessions starting after the file is closed

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRE51&T May 18, 2015 30/39

Outline

e Protection

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRE51&T May 18, 2015 31/39

@ Reliability (AT§E14)

e Guarding against physical damage
o File systems can be damaged by

@ Hardware problems, power surges or failures, head crashed, dirt,
temperature extremes, or Vandalism

o Generally provided by duplicate copies of files (disk—tape, .. .)

@ Protection (P, TLMH)

e Guarding against improper access

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRES51&T May 18, 2015 32/39

Protection in multi-user system

@ The need to protect files is a direct result of the ability to access
files (of other users).

@ Complete protection with prohibiting access
@ Free access with no protection
© Controlled access. +/

@ Controlled access: limiting the types of file access that can be
made

e Types of access: Read/Write/Execute/Append/Delete/List
e Higher-level functions may also be controlled:
rename/copy/edit/. ..

@ File owner/creator should be able to control:
e what can be done? by whom?

@ Many protection mechanisms have been proposed.

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRES51&T May 18, 2015 33/39

Access control (if[a)izl)

@ The most common approach to the protection problem:
ID-dependent access

@ Make access dependent on the ID of the user
@ The most general scheme to implement ID-dependent access:
Access control list (V5ia)3Z%155&, ACL)
@ Associate with each file and directory an access list.

@ Access list specifies for each listed (allowed) user name and the types
of (allowed) access allowed.
@ Stored in each directory entry

e Length problem
Solution: Three classes of users

a) owner access 7 = ROW X
1 1 1

R W X

b) group access 6 = 1 1 0
. R w X

¢) public access 1 = 9 0 1

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRES51&T May 18, 2015 34/39

Access control (if[a)izl)

@ About group:

e Ask manager to create a group (unique name), say G, and add
some users to the group.
e For a particular file (say game) or subdirectory, define an
appropriate access.
owner group public

chmod 761 game
e Attach a group to a file
chgrp G game

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRES51&T May 18, 2015

Windows XP Access-control List Management

General | Security | Summany

Group or user names

Phadministrotors)

€ pho (07 hpbg)
eESvYSTEM
£ Users (POG-LAFTOR Users)

A | [memove
Fermissions for Guest Alow Denw
Full Contral (L]
ko ity =
Fead & Exccute 4| e
Fiead =]
Wrrite] [+

Special Permissions

For special permissions or for adwanced settings.

Ak o
BripE ey

oK.] [cencal]

xlanchen@ustc.ed ://staff.ust0117401: Operating System i+ EHRIE51%T

May 18, 2015

TW-TW-T--
drwx------
drwXrwxr-x
drwxrwx---
-IW-I--I--
CTWXT-XI-X
drwx--x--x
drwx------

I pbg
5 pbg
2 pbg
2 pbg
I pbe
I pbe
4 pbg
3 pbg

drwxrwxrwx 3 pbe

staff 31200
staff 512
staff 512
student 512
staff 9423
staff 20471
faculty 512
staff 1024
staff 512

Sep 3 08:30
Jul 8 09.33
Jul 8 09:35
Aug 3 14:13
Feb 24 2003
Feb 24 2003
Jul 31 10:31
Aug 29 06:52
Jul 8 09:35

intro.ps
private/
doc/

student-proj

program
program
lib/
mail/
test/

.C

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRES51&T

May 18, 2015

A Sample UNIX Directory Listing

36/39

Q@ aERfEL

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRE51&T May 18, 2015 37/39

@ File Concept

© Access Methods (a5

© Directory Structure (B R5#)

@ File System Mounting (X4 % %11 #)
e File sharing (X4 H =)

e Protection

@ \wFnrEL

B&& = xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRIE51&T May 18, 2015 38/39

11 ! |

B&& = xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRIE51&T May 18, 2015 39/39

	File Concept
	Access Methods (访问方式)
	Directory Structure (目录结构)
	File System Mounting (文件系统挂载)
	File sharing (文件共享)
	Protection
	小结和作业

