0117401: Operating System

TENNRIESIgT

Chapter 11: File system implementation(3 {4 % 4:5<1)

&=
xlanchen@ustc.edu.cn
http://staff.ustc.edu.cn/~xlanchen

Computer Application Laboratory, CS, USTC @ Hefei
Embedded System Laboratory, CS, USTC @ Suzhou

May 25, 2015

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRES51&T May 25, 2015



ATERMMANTIEES),
EEiIRE RV EFEE.

AErmigs HIFITEIE,

B&& = xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRIE51&T May 25, 2015 2/35



a File-System Structure

9 FS Implementation

9 Directory Implementation

@ Allocation Methods (5B 75%)
e Free-Space Management

e Efficiency and Performance
e Recovery

@ Log Structured File Systems
© AR

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRE51&T May 25, 2015



0 File-System Structure

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRE51&T May 25, 2015 4/35



File-System Structure

@ File structure

o Logical storage unit application programs

e Collection of related information _
File name
logical file system

@ FSresides on secondary storage (disks)
@ FS organization Logical block address

file-organization module
@ How FS should look to the user
@ How to map the logical FS onto the basic file system

physical secondary-storage devices @ tlzsrﬁrf:\;‘;r;;;gz;m{i’k

Physical block address

@ FS organized into layers 1/0 control Hardware-specific
@ instructions
devices

Figure: Layered File System

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRES51&T May 25, 2015 5/35



e FS Implementation

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRE51&T May 25, 2015 6/35



FS Implementation

@ Structures and operations used to implement file system
operation, OS- & FS-dependment

@ On-disk structures
@ In-memory structures

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRES51&T May 25, 2015 7/35



FS Implementation

@ On-disk structures
@ Boot control block

@ To boot an OS from the partition (volume)
o If empty, no OS is contained on the partition

@ Volume control block
© Directory structure
@ Per-file FCB

file permissions
file dates (create, access, write)
file owner, group, ACL
file size
file data blocks or pointers to file data blocks
Figure: A typical file control block

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRES51&T

May 25, 2015



FS Implementation

© In-memory information: For both FS management and
performence improvement via caching

e Data are loaded at mount time and discarded at dismount
@ Structures include:

@ in-memory mount table;

@ in-memory directory-structure cache
@ system-wide open-file table;

@ per-process open-file table

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRES51&T May 25, 2015



FS Implementation

© In-memory information: For both FS management and
performence improvement via caching

e Data are loaded at mount time and discarded at dismount
@ Structures include:

@ in-memaorv mount table:

@ in-me ]
I
@ systet = 100
_n{open (file name
° per p directory structure|
directory structure file-control block
user space kernel memory secondary storage
(a)
index

read (index)_,_r —"D l:‘ D

directory blocks

per-process system-wide \D
open file table  open file tabld | file-control block

user space kernel memory secondary storage

(b)

lanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ & #HRIE 5181 May 25, 2015



Partitions and mounting

@ Partition (2'X)

@ Raw (E.g. UNIX swap space & some database) VS. cooked
e Boot information, with its own format

@ Bootimage
@ Boot loader unstanding multiple FSes & OSes
Dual-boot

@ Root partition is mounted at boot time

@ Others can be automatically mounted at boot or manually
mounted later

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRES51&T May 25, 2015 8/35



Virtual File Systems (B2 4 R 45)

@ Virtual File Systems (VFS, EEHASZ 4 £ 4t) provide an
object-oriented way of implementing file systems.

@ VFS allows the same system call interface (the API) to be used for
different types of file systems.

@ The API is to the VFS interface, rather than any specific type of file
system.

file-system interface

VFS interface
|
local file system local file system emote file syste|
type 1 type 2 type 1

]
<
network

Schematic View of Virtual File System

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRES51&T May 25, 2015 9/35



9 Directory Implementation

k&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EH1RIE 5% May 25, 2015 10/35



Directory Implementation

@ Linear list of file names with pointer to the data blocks.

e Simple to program
e Time-consuming to execute

@ Hash Table - linear list with hash data structure.

@ Decreases directory search time

@ Collisions - situations where two file names hash to the same
location

o Fixed & variable size or chained-overflow hash table

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRES51&T May 25, 2015 11/35



@ Allocation Methods (5 E75%)

k&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EH1RIE 5% May 25, 2015 12/35



Allocation Methods (9 B2 /%)

@ An allocation method refers to
how disk blocks are allocated for files
so that disk space is utilized effectively
& files can be accessed quickly

@ Contiguous allocation (iE4: 5 )
@ Linked allocation (3£ 5 E)
© Indexed allocation (Z35| )
@ Combined ((BEA )

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRES51&T May 25, 2015



1. Contiguous Allocation (£

@ Each file occupies a set of contiguous blocks on the disk
@ Simple - directory entry only need

e starting location (block #)
e & length (number of blocks)

@ Mapping from logical to physical
LogicalAddress/512 =Q... ... R
Block to be accessed = Q + starting address
Displacement into block =R

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRES51&T May 25, 2015



1. Contiguous Allocation (iE£:45 ) 11

N directory
e | .
count file start length
omSIm} o[ '3[ | count 0 2
f tr 14 3
401 sL1 6L1 7] mail 19 6
s[1 o[ o[ 1111 list 28 4
ir f 6 2
12[ 1311411501
16 117118[119[]
mail
2021 Je2[23[]
24[ )25 J26[J27[]
list
28[ 29[ ]30[]31[]
-

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRES51&T

May 25, 2015

15/35



1. Contiguous Allocation (iE£: 5> g) I

@ Advantages:

@ Support both random & sequential access

@ Start block: b;
Logical block number: i
=-physical block number: b +i
@ Fast access speed, because of short head movement

@ Disadvantages:
e External fragmentation

@ Wasteful of space (dynamic storage-allocation problem).

@ Files cannot grow,
or File size must be known in advance.
=Internal fragmentation

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRES51&T May 25, 2015



Extent-Based Systems

@ Many newer file systems (I.e. Veritas File System) use a modified
contiguous allocation scheme

@ Extent-based file systems allocate disk blocks in extents
@ An extent is a contiguous block of disks

e Extents are allocated for file allocation
o Afile consists of one or more extents.

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRES51&T May 25, 2015



2. Linked Allocation (fi§¥Z 5 B2)

@ Each fileis a linked list of disk blocks: blocks may be scattered
anywhere on the disk.
@ Two types
@ Implicit (Fa=X551%)
Q Explicit (=X 551%)

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRES51&T May 25, 2015 18/35



2. Linked Allocation (fi§¥Z 5 B2)

@ Implicit (Faz §41%E)

e Directory contains a pointer to the first block

& last block of the file. N A Te dlr:.::ry ond
o Each block contains a pointer to to the next | o0 iglesn| 22 ¢ 2
block. U9 e0 70
a block = [ pointer . °”D
12[ 13 114f 115 ]
[ — 16[[17[J18[]19[]
o Allocate as needed, link together ZODmZDQSD
@ Simple - need only starting address S s
@ Free-space management system - no waste  |28[J2e[IsolIs1[]
of space

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRES51&T May 25, 2015 18/35



2. Linked Allocation (fi§¥Z 5 B2)

@ Implicit (Faz §41%E)

o Disadvantage:

@ No random access
@ Link pointers need disk sapce
E.g.: 512 per block, 4 per pointer =0.78%
Solution: clusters
= disk throughput
But internal fragmentationt

directory

file  start
jeep

end
25

L7181 ]

20[]21 2D23|j
24[J25Fil26[127[]

28[]20[ 130131 []

= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHFRES5I&T

May 25, 2015

18/35



2. Linked Allocation (fi§¥Z 5 B2)

@ Implicit (Faz §51%)
e Mapping:
Suppose

@ block size=512bytes,

@ block pointer size=1byte, using the first byte
of a block

© Logical address in the file to be accessed = A

we have

@ Data size for each block =512 — 1 = 511
@ A/511=Q...... R

then

© Block to be accessed is the Q™ block in the
linked chain of blocks representing the file.
@ Displacementinto block =R + 1

@ How to reduce searching time?

directory

file  start
jeep

end
25

8] pLto211]
12[J18[114[ 1151
16[J17[118[119[]

20[J21 2 [Jes[]
24[25F126[127(]

28[J29[130[131[]

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRES51&T

May 25, 2015

18/35



2. Linked Allocation (fi§¥Z 5 B2)

@ Explicit linked allocation: File Allocation table, FAT
Disk-space allocation used by MS-DOS and 0S/2

directory entry
[ test [ --- ] 217
name start block

e A section of disk at the beginning of each
partition is set aside to contain the FAT

@ Each disk block one entry 217 618
@ The entry contains
(1) the index of the next block in the file
(2) end-of-file, for the last block entry 339 :|

(3) 0, for unused block

e Directory entry contains the first block 618 339
number

no. of disk blocks —1

FAT

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRES51&T May 25, 2015 18/35



2. Linked Allocation (fi§¥Z 5 B2)

@ Explicit linked allocation: File Allocation table, FAT
Disk-space allocation used by MS-DOS and 0S/2

directory entry
[ test [ --- ] 217
name start block

217 618

e Now support random access,
but still not very efficient

e May result in a significant disk head seeks. 330 :|

Solution: Cached FAT

618 339

no. of disk blocks —1

FAT

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRES51&T May 25, 2015 18/35



2. Linked Allocation (fi§¥Z 5 B2)

@ Explicit linked allocation: File Allocation table, FAT
Disk-space allocation used by MS-DOS and 0S/2

. directory entry
e How to compute FAT size? [ test [ --- | 217

block
SUppOSE name start

@ Disk space =80 GB
@ Block size =4 KB

Th 217 618
en
Ota OoCK numbper = X X
@ Total block ber =80 x 2%0/2'% = 5 x 222
@ 4x27=2"<5x2?” <8x2¥=2% 339
@ Length of each FAT entry?

(25bits? 28bits? 32bits?) 618 339
@ Length of FAT?
(5 x 222 x 4B = 80MB = 80GB/2'°)

no. of disk blocks —1

FAT

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRES51&T May 25, 2015 18/35



3. Indexed Allocation (ZZ5| 5 Eg)

@ Indexed Allocation (Z25| 7 H2):
Brings all pointers together into one location - the index block.

directory
\_// ; -
. . . file index block
e Each file has its own index block - 15\25 - o= 19
e Directory entry contains the index 0 5080 70
block address
8 o J10[ X110

e Each index block: An array of

. . 121314\
pointers (an index table)

16

Logical block number i 20[J21 o2 A3 LT[
= the it" pointer 2425627 ]
28[ 293031

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRES51&T May 25, 2015



3. Indexed Allocation (ZZ5| 5 Eg)

@ Indexed Allocation (Z25| 7 H2):
Brings all pointers together into one location - the index block.

directory
e Advantage: [ = fle index block
o] 10, 201 3] jeep 19
@ Random access D\
@ Dynamic access without external 40 s =
fragmentation 8] o[Jt0

e Disadvantage:

@ have overhead of index block. 2021 J22[A23[]
@ File size limitation, since one index
block can contains limited pointers

2425261271
28129130131

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRES51&T May 25, 2015 19/35



3. Indexed Allocation (ZZ5| 5 Eg)

@ Indexed Allocation (Z25| 7 H2):

Brings all pointers together into one location - the index block.

e Mapping from logical to physical
Suppose
(1) Block size = 1KB
(2) Index size = 4B

Then for logical address LA, we have
LA/512 = Q..R

(3)Q = the index of the pointer
(4)R = displacement into block

We also have Max file size
=219/4 x 1KB = 256KB

R E————
o] 1EL\2D 3]
4 s 7]
8] o J10[N11[]
12[J13[J14N1

16

2002122483

2425261271
28[J29[ 130131

directory

file
jeep

index block
19
1

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRES51&T

May 25, 2015



3. Indexed Allocation (ZZ5| 5 Eg)

@ Indexed Allocation (Z25| 7 H2):
Brings all pointers together into one location - the index block.

directory
[ = fle index block
o 1D\2D 30 jeer o

e How to support a file of unbounded M CRER T
length? ml kD

@ linked scheme
© multi-level index scheme

2021 J22[A23[]
2425261271
28129130131

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRES51&T May 25, 2015 19/35



3. Indexed Allocation (ZZ5| 5 Eg)

@ Linked scheme

@ Link blocks of index table (no limit on size).
e Mapping

Suppose

(1) Block size=1KB

(2) Index or link pointer size = 4B

Then

LA/ (1KB x (1K/4—1)) =Q; ... Ry
(3) Q1 = block of index table
(4) Ry is used as follows:
Ri/IK=Qy...... R,
(5) Q2 = index into block of index table
(6) Ry = displacement into block of file:

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRES51&T May 25, 2015



3. Indexed Allocation (ZZ5| 5 Eg)

@ multi-level index scheme

Example: Two-level index (maximum file size is ?)

B I
/
@ We have |
LA/ (1K x 1K/4) = Q1 ... Ry
(1) Q: = index into outer-index
(2) Ry is used as follows:
Ri/1IKB=Q2...Rs
(3) Q2 = displacement into block of
index table outer-index ™
(4) R, = displacement into block of - -
file index table file

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRES51&T

May 25, 2015

19/35




4. Combined Scheme ((8& 73 2\): UNIX (4K bytes per

block) I

mode

owners (2)

timestamps (3)

size block count ata

ata

ata

direct blocks _|

single indirect—

double indirect |

triple indirect

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRES51&T

May 25,2015  20/35



4. Combined Scheme ((8& 73 2\): UNIX (4K bytes per

block) II

@ if 4KB per block, and 4B per entry

Direct blocks = 10 x 4KB = 40KB
Number of entries per block 4KB/4B = 1K
Single indirect 1K x 4KB = 4MB
Double indirect 1K x 4MB = 4GB
Triple indirect = 1K x 4GB = 4TB

Maximnm file size =?

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRES51&T May 25, 2015 AWAL



e Free-Space Management

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRE51&T May 25, 2015 22/35



Free-Space Management

@ Disk Space: limited

e Free space management: To keep track of free disk space
e How? Free-space list?
e Algorithms

@ Bit vector
@ Linked list
© Grouping (Fi4B%HEEX)
Q Counting

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRES51&T May 25, 2015 23/35



Free-Space Management

@ Bit vector
o Free-space list is implemented as a bit map or bit vector

@ 1 bit for each block
1=free;
O=allocated
@ Example:
a disk where blocks 2,3,4,5,8,9,10,11,12,13,17,18,25,26,27 are free
and the rest blocks are allocated. The bitmap would be

0011 1100 1111 1100 0110 0000 0111 0000 O...

@ Bit map length.
For n blocks, if the base unit is word, and the size of word is 16 bits,
then
bit map length = (n + 15)/16

U16 bitMap[bitMaptLength];

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRES51&T May 25, 2015 23/35



Free-Space Management

@ Bit vector
@ How to find the first free block or n consecutive free blocks on the
disk?

@ Many computers supply bit-manipulation instructions

@ To find the first free block:
Suppose: base unit = word (16 bits) or other
(1) find the first non-0 word
(2) find the first 1 bit in the first non-0 word

@ Iffirst Kwords is 0, & (K + 1) word > 0,
the first (K+ 1) word’ s first 1 bit has offset L,
then

first free block number N =K x 16 + L

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRES51&T May 25, 2015



Free-Space Management

@ Bit vector
e Simple
e Must be kept on disk
Bit map requires extra space,
Example:
block size = 2'2 bytes
disk size = 23 bytes (1 gigabyte)
n =239 /212 = 218 pits (or 32K bytes)
@ Solution: Clustering

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRES51&T May 25, 2015



Free-Space Management

@ Bit vector
o Efficient to get the first free block or n consecutive free blocks, if
we can always store the vector in memory.

@ But copy in memory and disk may differ.
E.g.  Dbit[i] =1 in memory & bit[i] = 0 on disk
@ Solution:
Set bit[i] = 1 in memory.
Allocate block[i]
Set bit[i] = 1 in disk

o Need to protect:

@ Pointer to free list
@ Bitmap

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRES51&T May 25, 2015



Free-Space Management

@ Linked Free Space List on Disk

free-space list head ——

o Link together all the free disk blocks
@ First free block
@ Next pointer
o Not efficient
e Cannot get contiguous space easil
& & P . 20[ J21[ 122/ 123[ |
o No waste of space
28[J2e[130131[]
\

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRES51&T May 25, 2015 23/35



Free-Space Management

© Grouping(RY4E5EHE%)

@ To store the addresses of n free blocks (a group) in the first free
block

@ First n-1 group members are actually free
@ Last one contain the next group

@ Andsoon
e E.g.: UNIX 100 100 99
& 400 —J 0
399 7999
S.freel 100 301 7001
0 300 —
1 [ 209 300 400 7900
299 399 7899 7999
98 202 H H H
99 201
201 301 7801 7901

k&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EH1RIE 5% May 25, 2015 23/35



Free-Space Management

© Counting
@ Assume:
@ Several contiguous blocks may be allocated or freed simultaneously

@ Each =first free block number & a counter (number of free blocks)
e Shorter than linked list at most time, counter > 1

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRES51&T May 25, 2015 23/35



@ Efficiency and Performance

k&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EH1RIE 5% May 25, 2015 24/35



@ Efficiency dependent on:

e Disk allocation and directory algorithms
e Various approaches

@ Inodes distribution

@ Variable cluster size

@ Types of data keptin file’ s directory entry

@ Large pointers provides larger file length, but cost more disk space

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRES51&T May 25, 2015 25/35



Performance

@ Performance

e disk cache - separate section of main memory for frequently used
blocks

e free-behind and read-ahead - techniques to optimize sequential
access

e improve PC performance by dedicating section of memory as
virtual disk, or RAM disk

—_—

| track |

"‘—V I buffer |
LI

CPU open-file table controller disk
1 1
2 block buffer g

main memory

lanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ &#l/RIE 511 May 25, 2015 26/35



Page Cache I

@ A page cache caches pages rather than disk blocks using virtual
memory techniques

@ Memory-mapped I/0 uses a page cache
@ Routine I/0 through the file system uses the buffer (disk) cache
@ This leads to the following figure

e I/0 Without a Unified Buffer Cache

1/0 using

e ) read() and write()

|

page cache

\

buffer cache

|

file system

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRES51&T May 25, 2015 27/35



Unified Buffer Cache

@ A unified buffer cache uses the same page cache to cache both
memory-mapped pages and ordinary file system I/0

@ [/0 Using a Unified Buffer Cach

memory-mapped I/0

\

buffer cache

|

file system

1/0 using
read() and write()

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRES51&T May 25, 2015 28/35



Outline

e Recovery

B&& = xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRIE51&T May 25, 2015 29/35



Recovery

@ Consistency checking (—E4EE
e compares data in directory structure with data blocks on disk, and
tries to fix inconsistencies
@ Backup & restore

@ Use system programs to back up data from disk to another storage
device (floppy disk, magnetic tape, other magnetic disk, optical)
@ Recover lost file or disk by restoring data from backup

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRES51&T May 25, 2015 30/35



© Log Structured File Systems

k&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EH1RIE 5% May 25, 2015 31/35



Log Structured File Systems

@ Log structured (or journaling) file systems record each update to
the file system as a transaction

@ All transactions are written to a log
e Atransaction is considered committed once it is written to the log
e However, the file system may not yet be updated

@ The transactions in the log are asynchronously written to the file
system

e When the file system is modified, the transaction is removed from
the log

@ If the file system crashes, all remaining transactions in the log
must still be performed

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRES51&T May 25, 2015 32/35



Q aERfEL

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRE51&T May 25, 2015 33/35



a File-System Structure

9 FS Implementation

9 Directory Implementation

@ Allocation Methods (5B 75%)
e Free-Space Management

e Efficiency and Performance
e Recovery

@ Log Structured File Systems
© AR

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRE51&T May 25, 2015



11 ! |

B&& = xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRIE51&T May 25, 2015 35/35



	File-System Structure
	FS Implementation
	Directory Implementation
	Allocation Methods (分配方法)
	Free-Space Management
	Efficiency and Performance
	Recovery
	Log Structured File Systems
	小结和作业

