0117401: Operating System
AR 5 it

Chapter 13: I0 Systems (I0% #2)

&2
xlanchen@ustc.edu.cn
http://staff.ustc.edu.cn/ xlanchen

Computer Application Laboratory, CS, USTC @ Hefei
Embedded System Laboratory, CS, USTC @ Suzhou

June 1, 2015

hen@ustc.edu.cn http:// f0117401: Operatin; em T+ FAURE 5%

AT BAA TAEET -
HERE LXK -

RE g LAEIT 875 o

en@ustc.edu.cn http://staff 0117401: Operating System T+ HU/R 2 5%

o 1/0 Hardware
@ Polling (4197 X)
o Interrupts (PBIZ A,)
@ Direct Memory Access (DMAZ &X,)
@ I/0 hardware summary
e Application I/0 Interface
@ Block and Character Devices
@ Network Devices
@ Clocks and Timers
@ Blocking (%) and Nonblocking (FEFLE) I/0
e Kernel I/0 Subsystem
@ I/0 Scheduling
@ Buffering (£ %))
Caching, Spooling & device reservation
Error Handling
1/0 Protection
Kernel Data Structures
e Transforming I/0 Requests to Hardware Operations

e Performance

Q 4t

anchen@ustc.edu.cn http://staff 0117401: Operating ¢ MR R G% June 1,

Chapter Obgjectives

@ Explore the structure of an 0S’ s I/0 subsystem.
@ Discuss the principles of I/0 hardware and its complexity.

@ Provide details of the performance aspects of I/0 hardware
and software.

xlanchen@ustc.edu.cn http://staff 0117401: Operating System 1 VR 5% June 1,

Overview

@ I/0 devices

e vary widely

@ The control of devices connected to the computer is a major

concern of 0S designers.

How OS manages and controls various peripherals ? J

lanchenoustc.edu.cn http://staff 0117401: O i S em T I 5%

o 1/0 Hardware
@ Polling (%147 X)
@ Interrupts (P B Z)
@ Direct Memory Access (DMAZ &)
@ I/0 hardware summary

xlanchen@ustc.edu.cn http://staff 0117401: Operating System 1 URIE 5% June 1, 2015 6 / 56

1/0 Hardware

@ Incredible variety of I/0 devices

Processor-memory

-

subsystem & @
2
@

8|
monitor processor @

| — @

. bridge/memory
graphics controller cantroliar SGSI controller
Fast device T L — PGl bus T !)

|DE disk controller

expansion bus interface

parallel
port

serial
port

‘A collection of
electronics

“Wires & protocols

slow d%ﬂh‘&@ﬂﬂ%’
@ @

antaming registers

June 1, 2015

u.cn

http://staff 0117401: Op

1/0 Hardware

@ Common concepts : CPU—PORT—BUS—Controller

e Port (%)
o Bus (%) (daisy chain or shared direct access)

@ PCI (Peripheral Component Interconnect)
@ SCSI (Small computer systems interface)
@ Expansion bus

e Controller (4##|%) (host adapter)
@ How can the processor command controller?

@ Controller has one or more registers for data and control
signals.

@ The process communicates with the controller by reading and
writing bit patterns in the registers.

@ I/0 instructions control devices

> xlanchen@ustc.edu.cn http://staff 0117401: Operating System ++JEAURIT 5% June 1,

1/0 Hardware

@ Two communication approaches
@ Direct I/0 instructions

@ Access the port address

@ Each port typically contains of four registers, i.e., status,
control, data-in and data-out.

@ Instructions: In, out

@ Memory-mapped 1/0

@ Example: 0xa0000 ~ Oxfffff are reserved to ISA graphics cards
and BIOS routines

o MR e G, G 5 FO117401: O . 7 Jf 58 5 i

1/0 Hardware

@ I/0 address range

Device I/0 Port Locations on PCs (partial)

’ 1/0 address range (hexadecimal) device ‘
000-00F DMA controller
020-021 interrupt controller
040-043 timer
200-20F game controller
2F8-2FF serial port (secondary)
320-32F hard-disk controller
378-37F parallel port
3D0-3DF graphics controller
3F0-3F7 diskette-drive controller
3F8-3FF serial port (primary)

2 xlanchen@ustc.edu.cn http://staff 0117401: Operating System 7+3 . June 1,

I/0 Control Methods

Q Polling (#1975 X)

@ Interrupts (FBiF X)

© DMA (DMAF X))

Q (EmHt: xHAENWME

xlanchen@ustc.edu.cn http://staff 0117401: Operating System T+ HU/R 2 5% June 1, 2015 8 / 56

Outline

o 1/0 Hardware
@ Polling (%14 7% X.)

u.cn http://staff 0117401: Op: i > 7 1% June 1, 2015

Polling (%147 X,)

@ Need handshaking (&)
@ State of device

Q@ command-ready

@ In command register
@ 1: a command is available for the controller

©Q busy

@ In status register
@ 0: ready for the next command; 1: busy

@ Error

@ To indicate whether an I/0 is ok.

lancheneustc.edu.cn http:/, £ 0 01: 0 ing S 7 JR 3T 5 3% June 1, 2015 10 / 56

Polling (%147 X,)

@ Basic handshaking notion for writing output

Host repeatedly reads the busy bit until it is O

Host sets write bit in command register and writes a byte
into data-out register

Host sets command-ready bit

When controller notices command-ready, sets busy bit
Controller gets write command and data, and works
Controller clears command-ready bit, error bit and busy bit

@ Stepl: Busy-wait cycle to wait for I/0 from device
=polling

hen@ustc.edu.cn http:// f0117401: Operatin; tem THHEAURE 5% June 1, 2015 10 / 56

Outline

o 1/0 Hardware

@ Interrupts (P ¥ 7 X,)

m AR 5 June 1, 2015 11 / 56

Interrupts (‘jF' l’ffTﬁi\)

@ CPU Interrupt-request line triggered by 1/0 device
@ Interrupt handler receives interrupts
@ Basic interrupt scheme

@ Raise — Catch — Dispatch — Clear

— 8259
__,] master

Devices[[:1> I;‘

— 8259
. slave

- CPU 0S

hen@ustc.edu.cn http:// f0117401: Operating System T+JL Ly 4% June 1, 2015

Interrupts (‘jF' l’ffTﬁi\)

@ Interrupt-Driven I/0 Cycle

CPU 1/0 controller

r—evice driver initiates I/\
initiates I/0

CPU executing checks for

interrupts between instructions 3
'
CPU receiveing interrupt, input ready, output
transfers control to 4 complete, or error
interrupt handler lgenerates interrupt signall
7 15

interrupt handler
processes data,
returns from interrupt

o

CPU resumes

— processing of
interrupted task

Interrupts (“F’ lifTﬁi\)

@ More sophisticated interrupt-handling features
@ Defer interrupt handling
@ Maskable to ignore or delay some interrupts
@ Nonmaskable
@ Efficient dispatching without polling the devices

@ Interrupt vector to dispatch interrupt to correct handler
@ Interrupt chaining: to allow more device & more interrupt
handlers

@ Distinguish between high- and low-priority interrupts
@ Interrupt priority

@ Interrupt mechanism also used for exceptions

2 xlanchen@ustc.edu.cn http://staff 0117401: Operating tem THHEAURE 5% June 1, 2015

Interrupts (‘jF' l’ffTﬁi\)

@ Example:

Intel Pentium Processor Event-Vector Table

vector number description ‘ vector number description
0 divide error 11 segment no present
1 debug exception 12 stack fault
2 null interrupt 13 general protection
3 breakpoint 14 page fault
4 INTO-detected overflow 15 (Intel reserved, do not use)
5 bound range exception 16 floating-point error
6 invalid opcode 17 alignment check
7 device not available 18 machine check
8 double fault 19-31 (Intel reserved, do not use)
9 coprocessor segment overrun (reserved) 32-255 maskable interrupts
10 invalid task state segment

anchen@ustc

Outline

o 1/0 Hardware

@ Direct Memory Access (DMAZ &)

u.cn http://staff 0117401: Op: i > T 1% June 1,

Direct Memory Access (DMAF R,)

@ Direct Memory Access (DMAZH R,):
Used to avoid programmed I/0 for large data movement, and
bypasses CPU to transfer data directly between 1/0 device
and memory

@ Requires
DMA controller

@ the host prepares a DMA command block in memory

@ a pointer to the source of a transfer
@ a pointer to the destination of the transfer
@ a count of the number of bytes to be transfered

o CPU writes the address of the DMA command block to DMA
controller, and then goes on with other work.

heneustc.edu.cn http:// f0117401: Operatin: tem THHEAURE 5% June 1, 2015

Direct Memory Access (DMAF R,)

@ Handshaking between DMA controller & device controller

@ Device controller raises DMA-request when one word is
available

© DMA controller seizes memory bus, places the desired address
on memory-address wires, and raises DMA-acknowledge

e Device controller transfers the word to memory, and removes
the DMA-request signal. Goto 1

@ DMA controller interrupts the CPU.

hen@ustc.edu.cn http:// f0117401: Operatin; tem THHEAURE 5% June 1, 2015 14 / 56

Direct Memory Access (DMAF R,)

@ Six Step Process to Perform DMA Transfer

5. DMA controller
transfers bytes to
buffer X, increasing
memory address
and decreasing C
until C = 0

1. device driver is told
to transfer disk data
to buffer at address X

2. device driver tells
disk controller to
transfer C bytes
from disk to buffer
at address X

CPU

cache

DMA/bus/

6. when C = 0, DMA : T —
interrupts CPU to signal (‘:T)ﬁ:)[ﬁpetr % SEU memory bus
transfer completion ‘

i I ! PCl bu

‘ 3. disk controller initiates
IDE disk DMA transfer
controller 4. disk controller sends

each byte to DMA
controller

@ Cycle stealing:

when DMA seizes the memory bus, CPU is

momentarily prevented from accessing main memory

Outline

o 1/0 Hardware

@ I/0 hardware summary

m AR 5 June 1, &

I/0 hardware summary

A bus
A controller

An I/0 port and its registers

The handshaking relationship between the host and a device
controller

@ The execution of this handshaing in a pooling loop via
interrupts

@ the offloading of this work to a DMA controller for large
transfer

xlanchen@ustc.edu.cn http://staff 0117401: Operating System 1 VR 5% June 1, 2015 16 / 56

e Application I/0 Interface
@ Block and Character Devices
@ Network Devices
@ Clocks and Timers

@ Blocking (FBE®&) and Nonblocking (3EFLE) I1/0

xlanchen@ustc.edu.cn http://staff 0117401: Operating System 1 VRE 5% June 1, 2015

1/0 control challenges

@ Wide variety of devices
@ Two challenges

Applications — 0S « Devices

o How can the 0S give a convenient, uniform I/0 interface to
applications?

o How can the 0S be designed such that new devices can be
attached to the computer without the OS being rewritten?

@ For device manufacturers, device-driver layer hides
differences among I/0 controllers from kernel

hen@ustc.edu.cn http:// f0117401: Operatin; tem THHEAURE 5% June 1, 2015 18 / 56

1/0 control challenges

anchen@ustc

kernel
o
=
g
& kernel I/0 subsystem
]
SCSI keyboard| mouse PCI bus | floppy ATAPI
device | device | device LR device | device | device
driver | driver | driver driver | driver | driver
SCST keyboard| mouse PCI bus | floppy ATAPI
device | device | device o0 device | device | device
¢ ¢ontrollegontrollefontrolle ontrollerontrolletontrolle
g
2 [[i [[
£ ATAPT
scst . floPpy* de?ides
A eyboar mouse CECI PCI bus disk (disks,
devices .
drives tapes,
drives)

n http://

A Kernel I/0 Structure

Application I/0 Interface

@ For applications, I/0 system calls encapsulate device
behaviors in generic classes

o RERIM : m AT HEGYERELX -

@ Device-driver layer hides differences among I/0 controllers
from kernel

@ Devices vary in many dimensions

o Character-stream or block
Sequential or random-access
Sharable or dedicated

Speed of operation

read-write, read only, or write only

anchen@ustc.edu.cn http://staff 0117401: Operating ¢ +HEARE 5% June 1, 2015 19 / 56

Characteristics of I/0 Devices

’ aspect ‘ variation example
data-transfer mode | character terminal
block disk
access method sequential modem
random CD-ROM
transfer schedule synchronous tape
asynchronous keyboard
sharing dedicated tape
sharable keyboard
device speed latency
seek time
transfer rate
delay between operations
1/0 direction read only CD-ROM
write only graphics controller
read-write disk

lancheneustc.edu.cn http:/, £ 0 0 ing System THJEAULRE 54% June 1, 2015

Magjor Device Access Conventions

Block I/0
Character-stream 1/0
Memory-mapped file access
Network sockets

Clock and Time

anchen@ustc.edu.cn http://staff 0117401: Operating ¢ MR R G% June 1, 2015

Outline

e Application I/0 Interface
@ Block and Character Devices

u.cn http://staff 0117401: Op: i > T 1% June 1, 2015

Block and Character Devices

@ Block devices include disk drives

o Commands include read, write, seek
o Raw I/0 or file-system access
@ Memory-mapped file access possible

@ Character devices include keyboards, mice, serial ports

@ Commands include get, put
@ Libraries layered on top allow line editing

2 xlanchen@ustc.edu.cn http://staff 0117401: Operating tem THHEAURE 5% June 1, 2015

Outline

e Application I/0 Interface

@ Network Devices

u.cn http://staff0117401: Operating S 7 i% June 1, 2015 24 / 56

Network Devices

@ Varying enough from block and character to have own

interface
@ Unix and Windows NT/9x/2000 include socket interface

@ Separates network protocol from network operation
@ Server — socket, bind, listen, accept

@ Client — socket, connect

o Includes select functionality

@ Approaches vary widely (pipes, FIFOs, streams, queues,
mailboxes)

hen@ustc.edu.cn http:// f0117401: Operatin; em T+ FAURE 5% June 1, 2015

Outline

e Application I/0 Interface

@ Clocks and Timers

u.cn http://staff0117401: Operating S 7 i% June 1, 2015 26 / 56

Clocks and Timers

@ Provide current time, elapsed time, timer
@ Hardware clocks

@ Real Time Clock (RTC, %28 Ef4¥)
@ Time Stamp Counter (TSC, B 8 Bk1+4k %)
@ Programmable Interval Timer (PIT, *T 44218 &2t %)

@ used for timings, periodic interrupts

@ ioctl (on UNIX) covers odd aspects of I/0 such as clocks
and timers

anchen@ustc.edu.cn http://staff 0117401: Operating ¢ MR EG% June 1, 2015

Clocks and Timers

@ Real Time Clock (RTC, 520} Ad4%)

Integrated with CMOS RAM, always tick.
Seconds from 00:00:00 January 1, 1970 UTC
o Can be used as an alarm clock

o IRQ8
@ Interrupt frequency: 2HZ~8192HZ

1/0 address (port no): 0x70, 0x71
o Example:

@ Motorola 146818: CMOS RAM + RTC

@ Second«s year, month, date, week HOW?

xlanchen@ustc.edu.cn http://staff 0117401: Operating System 1 VRE 5% June 1, 2015

Clocks and Timers

@ Time Stamp Counter (TSC, B8] &1H3%3)
@ 64bit TSC register in the processor
@ Pentium and after
o Incremented at each clock signal on CLK input pin

@ example: CPU frequency 400MHZ
adds 1 per 2.5 ns = adds 400 x 10° per second

o Instruction: rdtsc
@ How to know CPU frequency?

heneustc.edu.cn http:// f0117401: Operatin: tem THHEAURE 5% June 1, 2015

Clocks and Timers

@ Programmable Interval Timer (PIT, 4 A2R[FZTITE)

e 8253, 8254

@ Issues time interrupt in a programmable time internal

@ Can also be used to calculate processor frequency during
boot up.

e 8253

@ 14,3178 MHz crystal =4,772,727 Hz system clock =1,193,180 Hz

to 8253
@ using 16 bit divisor = interrupt every 838 ns =~ 54.925493 ms

2015

heneustc.edu.cn http:// f0117401: Operatin: tem THHEAURE 5% June 1,

e Application I/0 Interface

@ Blocking (FBE®&) and Nonblocking (3EFLE) I1/0

hen@ustc.edu.cn http:// f0117401: Operatin; tem THHEAURE 5% June 1, 2015 28 / 56

Blocking (L%) and Nonblocking (3EFLZE) 1/0

@ Blocking (FLE) — process suspended until I/0 completed

o Easy to use and understand
o Insufficient for some needs

@ Nonblocking (3EFEZE) — I/0 call returns as much as
available

o User interface, data copy (buffered I1/0)

o Implemented via multi-threading

@ Returns quickly with count of bytes read or written

e Asynchronous (#%) — process runs while I/0 executes

@ Difficult to use
@ I/0 subsystem signals process when I/0 completed

anchen@ustc.edu.cn http://staff 0117401: Operating ¢ MR R G% June 1, 2015 29 / 56

Two I/0 Methods

ernel user { requesting process requesting process } user
waiting

device driver device driver
7 g i
1 interrupt handler i+ tinterrupt handler kernel
1 A 1

hardware H hardware
data transfer— --data transfer —
time ——— time ——
(a) (b)
Synchronous Asynchronous

anchen@ustc

e Kernel 1/0 Subsystem
@ 1/0 Scheduling
Buffering (4 /4 HL4#])
Caching, Spooling & device reservation

1/0 Protection

°

(]

@ Error Handling

()]

@ Kernel Data Structures

anchen@ustc.edu.cn http://staff 0117401: Operating ¢ MR EG% June 1, 2015

Kernel I/0 Subsystem Services

@ Kernel I/0 Subsystem Services

@ 1/0 Scheduling

© Buffering

© Caching

@ Spooling

@ Device reservation
@ Error handling

heneustc.edu.cn http:// f0117401: Operatin: tem THHEAURE 5% June 1, 2015

Outline

e Kernel 1/0 Subsystem
@ I/0 Scheduling

u.cn http://staff 0117401: Op: i > T 1% June 1,

1/0 Scheduling

@ I/0 scheduling:
To schedule a set of I/0 requests means to determine a good
order in which to execute them

@ Origin order: the order in which applictions issue system
calls: May NOT the best order!
@ Scheduling can

@ Improve overall system performance
@ Share device access fairly among processes
@ Reduce the average waiting time for I/O to complete

o Example: Disk read request from Apps.
Appl: O; App2: 100; App3: 50;
Now at 100;
The OS may serve the applications in the order App2, App3,
Appl.

hen@ustc.edu.cn http:// f0117401: Operatin; tem THHEAURE 5% June 1, 2015 34 / 56

1/0 Scheduling

@ OS maintaining a wait queue of request for each device

@ Device-status Table

dev card reader 1
statu idle
device: line printer 3, request for 1
status: busy line printer
address: 38546
¢ disk unit 1 length: 1372
¢ idle

device: disk unit 2
status: idle

device: disk unit 3 -1
status: busy =>| request for ~| reauest for —
disk unit 3 disk unit 3
: file: xxx file: yyy
operation: read operation: write
address: 43046 address: 03458
length: 20000 length: 500

o I/0 scheduling,
Some 0Ses try fairness, some not

anchen@ustc

1/0 Scheduling

@ Another way to improve performance is by using storage
space in main memory or on disk
o Buffering (4 H%)
e Caching
@ Spooling

lanchen@ustc.edu.cn http://staff 0117401: 0 ing System T L3 5% June 1, ¢ 34 / 56

Outline

e Kernel 1/0 Subsystem

@ Buffering (£ pL%])

u.cn http://staff 0117401: Op: i > T 1% June 1,

Buffering (4 /FHL%E])

@ Buffering (4 FHL#])

@ Buffer — A memory area that stores data while they are
transferred between two devices or between a device and an
application

@ Store data in memory while transferring between devices

@ Why buffering?

@ To cope with device speed mismatch.
Example: Receive a file via modem and store the file to
local hard disk.
@ Speed: The modem is about a thousand times slower than the
hard disk.
@ Two buffers are used.

@ To cope with device transfer size mismatch.
Example: Send/receive a large message via network.
@ At sending side: the large message is fragmented into small
network packets.
@ At receiving side: the network packets are placed in a
reasembly buffer.

@ To maintain “copy semantics”
Example: When write() data to disk, it first copy the data
from application’ s buffer to a kernel buffer.

Buffering (4 /FHL%E])

@ Sun Enterprise 6000 Device-Transfer Rates

gigaplane
bus
SBUS

SCSl bus

fast
ethernet

hard disk

ethernet

laser
printer

modem
mouse

keyboard

0 0.01 01 1 10 100

Buffering (4 /FHL%E])

@ Single buffer (%)
o APP.workspace (0S, Ty) 0S.buffer (Device,Tr) Device
—

@ Suppose the computing time of APP is T,
if current T¢ can parallel with the next T,

we have Tuyerage = max (Tc, Tp) + Ty
user APP 0S

Compute (T¢)

workspace 08 tr:lfansfer buffer devwi‘ input 1/0 device
M | T

. Trl Tr2 Tr3 Tr4
Device
Tyl Tyl Tyl
0s M M M
Tcl Tcl Tcl
APP < < <

u.cn http://staff 0117401: Operating em T+ % June 1, 2015

Buffering (4 /FHL%E])

@ Double buffer (L&)
o ~max (Tc,Tr) + HEEMA (Tc < Tp) RFELTH (Tc > Tp)

user APP 0S
Compute (T¢)
-
* 1/0 device
B

) Trl (buffer 1) T12 (buffer 2) T13 (buffer 1)
Device
Tyl
08 .
Tcl
APP < t

u.cn http://staff 0117401: Operating em T+ % June 1, 2015

Buffering (4 /FHL%E])

@ Double buffer (4% F)
@ Another usage of single buffer and double buffers: in
communication between two machines
Machine A Machine B Machine A Machine B

Send { Feceive
Buffer Buffer

Receivj :J Send
Buffe uffer Buffer Buffer

single buffer Double buffer

lancheneustc.edu.cn http:/, F 01: 0 ing System A AR 5% June 1, 201¢ 36 / 56

Buffering (4 /FHL%E])

@ Circular buffer (fAIRE)
o Multiple (types of) buffers + multiple buffer pointers

@ Empty buffers and Next;;
Full buffers and Nextg;
the current buffer in consumption

@ Similar to the PC problem.
@ Buffer pool (%)

o WA ZIFRAE MK
o ARBZBEFRAE HENLNE P

heneustc.edu.cn http:// f0117401: Operatin: tem THHEAURE 5% June 1, 2015

Outline

e Kernel 1/0 Subsystem

@ Caching, Spooling & device reservation

u.cn http://staff 0117401: Op: i > T 1% June 1,

Caching, Spooling & device reservation

@ Caching - fast memory holding copy of data
@ Always Jjust a copy
o Key to performance

@ Spooling - hold output for a device

o Dedicated device can serve only one request at a time

e Spooling is a way of dealing with I/0 devices in a
multiprogramming system

o Example: Printing

© Device reservation - provides exclusive access to a device

@ System calls for allocation and deallocation
o Watch out for deadlock

hen@ustc.edu.cn http:// f0117401: Operatin; tem THHEAURE 5% June 1, 2015 38 / 56

Spooling

@ Out-line I/0 (BEALI/0), 42 M 9B AL (peripheral machine)

Input peripheral

et machine .

I:l i peripheral Output
— machine device

a— '

@ SPOOL:
Simultaneous Peripheral Operation On-Line
(Sh3R3% & BRALIFATARAE > BLAL)
o Dedicated device — sharable device
@ Using processes of multiprogramming system

xlanchen@ustc.edu.cn http://staff 0117401: Operating System 1 VRE % June 1, 2015

Spooling

@ SPOOL:
Simultaneous Peripheral Operation On-Line
(P3R4 & BEALFFATHRAE - BALAL)
@ Structure
o Input-well (B A#), output-well (F&H)
@ Input-buffer, output-buffer
°
°

Input-process SP;,, output-process SP,,¢
Requested-queue

SP in | SPout

Input device
I \\“ﬂ Input buffer ‘ Input-well
Output buffer | Output-well
Output device ”/%AAAAABAAAAAAAAAAJ P

memory disk

lanchen@ustc.edu.cn http:/, £ 0 0 i em THHE AR 5% June 1, 2015

Outline

e Kernel 1/0 Subsystem

@ Error Handling

m IR 5 June 1, ¢

Error Handling

@ OS can recover from disk read, device unavailable,
transient write failures

o Example: read() again, resend(), ..., according to some
sepecified rules

@ Most return an error number or code when I/0 request fails

@ System error logs hold problem reports

lanchen@ustc.edu.cn http://staff 0117401: 0 ing System T L3 5% June 1, 201¢ 41 / 56

Outline

e Kernel 1/0 Subsystem

@ I/0 Protection

u.cn http://staff 0117401: Op: i > T 1% June 1,

1/0 Protection I

@ User process may accidentally or

purposefully attempt to disrupt)
. . . ——case n kernel
normal operation via illegal I/0
instructions X)
. T d F
@ To prevent users from performing e o
illegal I/0
e All I/0 instructions defined to refum
be privileged to user
e I/0 must be performed via . user
system calls —systen call s
@ Memory-mapped and I/0 port
memory locations must be
protected too Use of a System Call to Perform 1/0

lanchen@ustc.edu.cn http://staff 0117401: Opi i c em T 2 38 5% June 1, ¢

43 / 56

Outline

e Kernel 1/0 Subsystem

@ Kernel Data Structures

u.cn http://staff0117401: Operating S 7 i% June 1, 2015 14 / 56

Kernel Data Structures

@ Kernel keeps state info for I/0 components, including

@ open file tables,
@ network connections,
@ character device state

@ Many, many complex data structures to track buffers, memory
allocation, “dirty’ blocks

@ Some use object-oriented methods and message passing to
implement I/0

heneustc.edu.cn http:// f0117401: Operatin: tem THHEAURE 5% June 1, 2015

Kernel Data Structures

@ Example: UNIX I/O Kernel Structure

system-wide open-file table active-inodg
table
file-system record 1
inode pointer
per-process pointer to read and write functions
i | pointer to select function
. " open-file table| p
file descripto pointer to ioctl function
pointer to close function network-
information|
table
_ ™ >
USer-process memory networking (socket) record
pointer to network info

pointer to read and write functions
pointer to select function
pointer to ioctl function
pointer to close function

kernel memory

Outline

e Transforming I/0 Requests to Hardware Operations

u.cn http://staff0117401: Operating S 7t i% June 1, 2015 16 / 56

I/0 Requests to Hardware Operations

@ Consider reading a file from disk for a process:

@ Determine device holding file

@ Translate name to device representation
© Physically read data from disk into buffer
@ Make data available to requesting process
@ Return control to process

heneustc.edu.cn http:// f0117401: Operatin: tem THHEAURE 5% June 1, 2015

request 1/0

system call

can already
satisfy request?

send request to device
driver, block process if
appropriate

I

process request, issue
commands to controller,
configure controller to
block until interrupted

device-controller commands

monitor device

Life Cycle of An I/0 Request

1/0 completed,
input data
available, or
output completed

f

return from system call

kernel
1/0 subsystem

transfer data
(if appropriate) to
process,
return conmpletion
or_error _code

kernel
1/0 subsystem

device
driver

determine which 1/0
completed, indicate state
change to 1/0 subsystem

interrupt
handler

receive interrupt, store
data in device-driver
buffer
if input, sign to unblock

devi
controller

device driver

interrupt

1/0 completed,

pt when 1/0
completed

generate interrupt

time

Outline

e Performance

anchen@ustc

Performance

@ I/0 a major factor in system performance:

Demands CPU to execute device driver, kernel I/0 code
Context switches due to interrupts
Data copying

Network traffic especially stressful

anchenou .cn http://st 0117401: Op m TR E 5 June 1, 2015 50 / 56

Intercomputer

Communications

character
typed

stem call

mpletes
s|e HE
s|S ==
== 1
interrupt interrupt
generated handled
gle 2lg
8|8 8|8

interrupt

handled
device
driver

interrupt
generated

network

adapter

sending system

network

network
packet
roceived

network
adapter

nterrupt
generated

2

B

device
driver

receiving system

Improving Performance

@ Reduce number of context switches

@ Reduce data copying

@ Reduce interrupts by using large transfers, smart
controllers, polling

@ Use DMA

@ Balance CPU, memory, bus, and I/0 performance for highest
throughput

anchen@ustc.edu.cn http://staff 0117401: Operating ¢ MR R G% June 1, 2015

Device-Functionality Progression

new algorithm

application code

kernel code

device-driver code

=
.
=
k]
@
w
@©
@
=
[&]
£

device-controller code (hardware)

increased efficiency
increased abstraction

increased development cost

increased time (generations)

device code (hardware)

Outline

Q &AL

anchen@ustc

o 1/0 Hardware
@ Polling (4197 X)
o Interrupts (PBIZ A,)
@ Direct Memory Access (DMAZ &X,)
@ I/0 hardware summary
e Application I/0 Interface
@ Block and Character Devices
@ Network Devices
@ Clocks and Timers
@ Blocking (%) and Nonblocking (FEFLE) I/0
e Kernel I/0 Subsystem
@ I/0 Scheduling
@ Buffering (£ %))
Caching, Spooling & device reservation
Error Handling
1/0 Protection
Kernel Data Structures
e Transforming I/0 Requests to Hardware Operations

e Performance

Q 4t

anchen@ustc.edu.cn http://staff 0117401: Operating ¢ MR R G% June 1, 2015

HA |

anchen@ustc n http://

	I/O Hardware
	Polling (轮询方式)
	Interrupts (中断方式)
	Direct Memory Access (DMA方式)
	I/O hardware summary

	Application I/O Interface
	Block and Character Devices
	Network Devices
	Clocks and Timers
	Blocking (阻塞) and Nonblocking (非阻塞) I/O

	Kernel I/O Subsystem
	I/O Scheduling
	Buffering (缓冲机制)
	Caching, Spooling & device reservation
	Error Handling
	I/O Protection
	Kernel Data Structures

	Transforming I/O Requests to Hardware Operations
	Performance
	小结和作业

