0117401: Operating System 计算机原理与设计

Chapter 1-1: OS overview

陈香兰

xlanchen@ustc.edu.cn
http://staff.ustc.edu.cn/~xlanchen

Computer Application Laboratory, CS, USTC @ Hefei Embedded System Laboratory, CS, USTC @ Suzhou

March 11, 2015

温馨提示:

为了您和他人的工作学习, 请在课堂上**关机或静音**。

不要在课堂上接打电话。

Outline

- What is OS?
 - 操作系统的定义和目标
 - Roles of operating system
 - 操作系统的层次模型
- The Development Process of Operating Systems
 - 操作系统的发展动力
 - 1945~1955, 无操作系统
 - 1955~1965, 批处理系统
 - 1965~1980,引入分时
 - 1980~now, 百花齐放
- ③ 其他操作系统
 - Personal-Computer Systems
 - Parallel Systems
 - Distributed Systems
 - Embedded System
- 作业、实验和小结

What is OS?

- What is operating system?
- What operating system do?
- The role of operating system
 - User view: different user has different opinion.
 - easy of use? performance? resource utilization? battery life?
 - user of pc? mainframe or minicomputer? workstations and servers connected via networks?
 - System view: a resource allocator; a control problem.

Outline

- What is OS?
 - 操作系统的定义和目标
 - Roles of operating system
 - 操作系统的层次模型
- - 操作系统的发展动力
 - 1945~1955, 无操作系统
 - 1955~1965, 批处理系统
 - 1965~1980,引入分时
 - 1980~now, 百花齐放
- - Personal-Computer Systems
 - Parallel Systems
 - Distributed Systems

Components of Computer System: viewpoint 1

Computer system = hardware + software (+data)

- Operating System(操作系统)
 是硬件之上的第一层软件,可以看成是对计算机硬件系统的第一次扩充。
- 所有运行在操作系统上层的应用软件(applications)都会或多或少、或直接或间接地调用操作系统提供的功能

Components of Computer System: viewpoint 2

Computer system = hardware + os + applications + users

Problems:

What is the hardware of a computer system? How a computer system up and running? How a program up and running?

A modern computer system

Problem:

What operating systems do you know?

- 各种研究型操作系统,等等

Problem:

What operating systems do you know?

- Windows series, Unix series, SUN Sorlaris, FreeBSD, Apple Mac OS, Linux series, ...
- A variety of real-time, non-real-time, embedded OSes
 - μ C/OS-II, RTEMS, VxWorks, QNX, PalmOS, iOS, ...
- 各种网络操作系统、分布式操作系统、集群操作系统、并行操作系统
- 各种研究型操作系统,等等

• 没有一个统一的、适用的定义!

- An Operating System is a program that
 - Manages the computer hardware
 - Provides a basis for application programs
 - Acts as an intermediary between the computer user and the computer hardware
- ② OS is a resource allocator that
 - Manages all resources
 - Decides between conflicting requests for efficient and fair resource use
- OS is a control program that
 - Controls execution of programs to prevent errors and improper use of the computer
- ◎ 操作系统是一组控制和管理计算机软硬件资源、合理地对各类作业进行调度以及方便用户的程序的集合【汤】。

- 没有一个统一的、适用的定义!
- An Operating System is a program that
 - Manages the computer hardware
 - Provides a basis for application programs
 - Acts as an intermediary between the computer user and the computer hardware

- 没有一个统一的、适用的定义!
- An Operating System is a program that
 - Manages the computer hardware
 - Provides a basis for application programs
 - Acts as an intermediary between the computer user and the computer hardware
- ② OS is a resource allocator that
 - Manages all resources
 - Decides between conflicting requests for efficient and fair resource use
- OS is a control program that
 - Controls execution of programs to prevent errors and improper use of the computer
- ●操作系统是一组控制和管理计算机软硬件资源、合理地对各类作业进行调度以及方便用户的程序的集合【汤】。

- 没有一个统一的、适用的定义!
- An Operating System is a program that
 - Manages the computer hardware
 - Provides a basis for application programs
 - Acts as an intermediary between the computer user and the computer hardware
- ② OS is a resource allocator that
 - Manages all resources
 - Decides between conflicting requests for efficient and fair resource use
- OS is a control program that
 - Controls execution of programs to prevent errors and improper use of the computer
- ●操作系统是一组控制和管理计算机软硬件资源、合理地对各类作业进行调度以及方便用户的程序的集合【汤】。

- 没有一个统一的、适用的定义!
- An Operating System is a program that
 - Manages the computer hardware
 - Provides a basis for application programs
 - Acts as an intermediary between the computer user and the computer hardware
- OS is a resource allocator that
 - Manages all resources
 - Decides between conflicting requests for efficient and fair resource use
- OS is a control program that
 - Controls execution of programs to prevent errors and improper use of the computer
- ▲ 操作系统是一组控制和管理计算机软硬件资源、合理地对各类作业 进行调度以及方便用户的程序的集合【汤】。

- 在计算机硬件上配置OS的(设计)目标有以下几点【汤】:
 - - Execute user programs and make solving user problems easier

 - - Use the computer hardware in an efficient manner
 - - 适应软硬件的发展需求
 - - 可移植性、互操作性
- 方便性和有效性是操作系统最重要的两个目标。

- 在计算机硬件上配置OS的(设计)目标有以下几点【汤】:
 - ▲ 方便性
 - Execute user programs and make solving user problems easier
 - Make the computer system convenient to use
 - - Use the computer hardware in an efficient manner
 - - 适应软硬件的发展需求
 - - 可移植性、互操作性
- 方便性和有效性是操作系统最重要的两个目标。

- 在计算机硬件上配置OS的(设计)目标有以下几点【汤】:
 - ▲ 方便性
 - Execute user programs and make solving user problems easier
 - Make the computer system convenient to use
 - ② 有效性
 - Use the computer hardware in an efficient manner (提高软硬件资源的利用率)
 - - 适应软硬件的发展需求
 - - 可移植性、互操作性
- 方便性和有效性是操作系统最重要的两个目标。

- 在计算机硬件上配置OS的(设计)目标有以下几点【汤】:
 - ▲ 方便性
 - Execute user programs and make solving user problems easier
 - Make the computer system convenient to use
 - ❷ 有效性
 - Use the computer hardware in an efficient manner (提高软硬件资源的利用率)
 - 可扩充性
 - 适应软硬件的发展需求
 - 开放性
 - 可移植性、互操作性
- 方便性和有效性是操作系统最重要的两个目标。

- 在计算机硬件上配置OS的(设计)目标有以下几点【汤】:
 - ▲ 方便性
 - Execute user programs and make solving user problems easier
 - Make the computer system convenient to use
 - ❷ 有效性
 - Use the computer hardware in an efficient manner (提高软硬件资源的利用率)
 - 可扩充性
 - 适应软硬件的发展需求
 - 开放性
 - 可移植性、互操作性
- 方便性和有效性是操作系统最重要的两个目标。

- 在计算机硬件上配置OS的(设计)目标有以下几点【汤】:
 - ▲ 方便性
 - Execute user programs and make solving user problems easier
 - Make the computer system convenient to use
 - ❷ 有效性
 - Use the computer hardware in an efficient manner (提高软硬件资源的利用率)
 - 可扩充性
 - 适应软硬件的发展需求
 - 开放性
 - 可移植性、互操作性
- 方便性和有效性是操作系统最重要的两个目标。

Outline

- What is OS?
 - 操作系统的定义和目标
 - Roles of operating system
 - 操作系统的层次模型
- - 操作系统的发展动力
 - 1945~1955, 无操作系统
 - 1955~1965, 批处理系统
 - 1965~1980,引入分时
 - 1980~now, 百花齐放
- - Personal-Computer Systems
 - Parallel Systems
 - Distributed Systems
 - Embedded System

- 对操作系统作用的理解,有不同的观点【汤】。
- - 四类资源:处理机、存储器、I/O设备、文件
- - 虚拟机:覆盖了软件的机器
 - 。层次性

- 对操作系统作用的理解,有不同的观点【汤】。
- 用户与计算机硬件系统之间的接口(interface)
 - 命令接口(Command Line Interface, CLI)、 图形用户接口(Graphical User Interface, GUI)
 - 编程接口 (系统调用接口(system call))
- ② 计算机资源的管理者(resource allocator)
 - 四类资源:处理机、存储器、I/O设备、文件
- ◎ 扩充机器 (或虚拟机Virtual Machine)
 - 虚拟机:覆盖了软件的机器
 - 。层次性

- 对操作系统作用的理解,有不同的观点【汤】。
- 用户与计算机硬件系统之间的接口(interface)
 - 命令接口(Command Line Interface, CLI)、 图形用户接口(Graphical User Interface, GUI)
 - 编程接口 (系统调用接口(system call))

② 计算机资源的管理者(resource allocator)

- 对操作系统作用的理解,有不同的观点【汤】。
- 用户与计算机硬件系统之间的接口(interface)
 - 命令接口(Command Line Interface, CLI)、 图形用户接口(Graphical User Interface, GUI)
 - 编程接口(系统调用接口(system call))
- ◆ 计算机资源的管理者(resource allocator)
 - 四类资源:处理机、存储器、I/O设备、文件
- - 虚拟机:覆盖了软件的机器
 - 。层次性

- 对操作系统作用的理解,有不同的观点【汤】。
- ◆ 计算机资源的管理者(resource allocator)

- 对操作系统作用的理解,有不同的观点【汤】。
- 用户与计算机硬件系统之间的接口(interface)
 - 命令接口(Command Line Interface, CLI)、 图形用户接口(Graphical User Interface, GUI)
 - 编程接口(系统调用接口(system call))
- ② 计算机资源的管理者(resource allocator)
 - 四类资源:处理机、存储器、I/O设备、文件
- 動 扩充机器(或虚拟机Virtual Machine)
 - 虚拟机:覆盖了软件的机器
 - 层次性

Outline

- What is OS?
 - 操作系统的定义和目标
 - Roles of operating system
 - 操作系统的层次模型
- - 操作系统的发展动力
 - 1945~1955, 无操作系统
 - 1955~1965, 批处理系统
 - 1965~1980,引入分时
 - 1980~now, 百花齐放
- - Personal-Computer Systems
 - Parallel Systems
 - Distributed Systems
 - Embedded System

操作系统的层次模型

- 什么是层次模型(layered modularization)?
- 是一种经典的操作系统的结构模型 【汤】
 - 最高层:接口
 - 中间层:对对象进行操纵和管理的软件集合
 - 最底层: 0S操纵和管理的对象,包括各类软硬件资源
- 以Linux, Windows和嵌入式操作系统RTEMS为例

举例:类UNIX操作系统的经典体系结构图

举例:Windows操作系统的经典体系结构图

Hardware interfaces

(Buses, I/O devices, interrupts, interval timers, DMA, memory cache control, and so on)

举例:RTEMS体系结构

- RTEMS:一种微内核抢占式实时操作系统
 - 现在:
 Real Time Executive for Multiprocessor Systems;
 - 最早:Real Time Executive for Missile Systems
 - 后来:Real Time Executive for Military Systems
- 4.0.0核心代码约9万行,目前最新版本为4.11
- 维护网站:https://www.rtems.org/

APP
newlib
libcsupport
SAPI RTEMS
SCORE
Libbsp Libcpu

Outline

- - 操作系统的定义和目标
 - Roles of operating system
 - 操作系统的层次模型
- The Development Process of Operating Systems
 - 操作系统的发展动力
 - 1945~1955, 无操作系统
 - 1955~1965, 批处理系统
 - 1965~1980,引入分时
 - 1980~now, 百花齐放
- - Personal-Computer Systems
 - Parallel Systems
 - Distributed Systems
 - Embedded System

操作系统的发展动力

- 操作系统形成至今(1956 GM OS & GM-NAA I/O-), 出现了上百种操作系统
 - 大型机、小型机、微机、嵌入式、实时、分布等等
- 推动操作系统发展的主要动力有4个方面【汤】:

● 历程:

● 无OS时代→批处理系统→分时系统→实时系统→PC→分布式和并行系统→

- 操作系统形成至今(1956 GM OS & GM-NAA I/O-), 出现了上百种操作系统
 - List of operating systems:
 - FMS (FORTRAN Monitor System, FORTRAN监控系统)
 - OS/360 (IBM为系列机360配备的操作系统)
 - CTSS (Compatible Time Sharing System)
 - MULTICS (MULTiplexed Information and Computer Service)
 - UNIX类、Linux
 - CP/M
 - Windows \ Macintosh
 - Mach
 - VxWorks、嵌入式Linux系列、uC/OS-II、RTEMS
 - ····· (List of OSes)
- 推动操作系统发展的主要动力有4个方面【汤】:
- 历程:

- 操作系统形成至今(1956 GM OS & GM-NAA I/O-), 出现了上百种操作系统
 - 本实验室操作系统方面的研究工作
 - 基干服务体/执行流模型的操作系统:MiniCore
 - 安全操作系统
 - 分布式操作系统
 - 可重构混成操作系统
 - 车控操作系统
 - 机器狗操作系统
- 推动操作系统发展的主要动力有4个方面【汤】:
- 历程:
 - 无OS时代→批处理系统→分时系统→实时系统→PC→分布式和并行系统→

- 操作系统形成至今(1956 GM OS & GM-NAA I/O-),出现了上百种操作系统
- 推动操作系统发展的主要动力有4个方面【汤】:
 - 不断提高计算机资源利用率的需要
 - ② 方便用户
 - 器件的不断更新换代
 - 计算机体系结构的不断发展

• 历程:

● 无OS时代→批处理系统→分时系统→实时系统→PC→分布式和并行系统→ 嵌入→移动系统→ ···

- 操作系统形成至今(1956 GM OS & GM-NAA I/O-),出现了上百种操作系统
- 推动操作系统发展的主要动力有4个方面【汤】:
 - 不断提高计算机资源利用率的需要
 - ② 方便用户
 - 器件的不断更新换代
 - 计算机体系结构的不断发展

• 历程:

● 无OS时代→批处理系统→分时系统→实时系统→PC→分布式和并行系统→ 嵌入→移动系统→ ···

● 1945~1955, 无操作系统时期

- 1945~1955, 无操作系统时期
- ❷ 1955~1965, 批处理系统

- 1945~1955, 无操作系统时期
- ❷ 1955~1965,批处理系统
 - 单道批处理系统(simple batch processing)

- ❶ 1945~1955,无操作系统时期
- ❷ 1955~1965,批处理系统
 - 单道批处理系统(simple batch processing)
 - ② 多道批处理系统(multiprogramming system)

- 1945~1955. 无操作系统时期
- ❷ 1955~1965. 批处理系统
 - 单道批处理系统(simple batch processing)
 - ② 多道批处理系统(multiprogramming system)
- 1965~1980,分时系统(Time-sharing system)

- ❶ 1945~1955,无操作系统时期
- ② 1955~1965,批处理系统
 - 单道批处理系统(simple batch processing)
 - ② 多道批处理系统(multiprogramming system)
- ③ 1965~1980, 分时系统(Time-sharing system)
- 1980~,百花齐放

- 1945~1955. 无操作系统时期
- ❷ 1955~1965. 批处理系统
 - 单道批处理系统(simple batch processing)
 - ② 多道批处理系统(multiprogramming system)
- 1965~1980, 分时系统(Time-sharing system)
- 1980~. 百花齐放
 - 实时系统(Real-Time system)

- 1945~1955,无操作系统时期
- ② 1955~1965,批处理系统
 - 单道批处理系统(simple batch processing)
 - ② 多道批处理系统(multiprogramming system)
- ③ 1965~1980, 分时系统(Time-sharing system)
- 1980~,百花齐放
 - 实时系统(Real-Time system)
 - 其他操作系统: 分布式、并行、安全、...

Outline

- - 操作系统的定义和目标
 - Roles of operating system
 - 操作系统的层次模型
- The Development Process of Operating Systems
 - 操作系统的发展动力
 - 1945~1955. 无操作系统
 - 1955~1965, 批处理系统
 - 1965~1980,引入分时
 - 1980~now, 百花齐放
- - Personal-Computer Systems
 - Parallel Systems
 - Distributed Systems
 - Embedded System

History of the OS(1945~1955, 无操作系统)

- Tube-based (电子管)
 - ENIAC
 - 17.468 vacuum tubes
 - 5,000 additions/sec,
 - 1800 square feet, 30 tons

History of the OS(1945~1955, 无操作系统)

- Tube-based (电子管)
- Program are hardwired on plug boards
- One program at a time, Need professional operator
 - User VS. operator
- Only useful to Numerical calculations

History of the OS(1945~1955, 无操作系统)

- Tube-based (电子管)
- Program are hardwired on plug boards
- One program at a time, Need professional operator
- Only useful to Numerical calculations
- No OS at all !
 - Manual system (人工操作)

Outline

- - 操作系统的定义和目标
 - Roles of operating system
 - 操作系统的层次模型
- The Development Process of Operating Systems
 - 操作系统的发展动力
 - 1945~1955, 无操作系统
 - 1955~1965, 批处理系统
 - 1965~1980,引入分时
 - 1980~now, 百花齐放
- - Personal-Computer Systems
 - Parallel Systems
 - Distributed Systems
 - Embedded System

History of the OS(1955~1965, 批处理系统)

- Transistor based (晶体管)
- Jobs on cards or tapes
 - Job (作业)
 - Control cards
- Language:
 - ASM
 - High level language
 - FORTRAN, ALGOL, COBOL
- Applications
 - Scientific APPs & Engineering APPs
- Batch system

1954年,美国贝尔实验室,第一台晶体管计算机TRADIC

TX-0,MIT林肯实验室,1956,它将键盘、打印机、 磁带阅读机和打孔机集成在一起,操作员可以通过键盘 编程, 生成印好的磁带后直接输入机器;配有一台可编 程显示器。

专题1:Batch system,批处理系统

• 批处理系统概述

• 专题1.1:单道批处理系统

● 专题1.2:脱机IO

• 专题1.3:多道批处理系统

批处理系统的工作方式

- 用户(user)将作业(.job)交给系统操作员(operator)
- 系统操作员将许多用户的作业组成一批作业,输入到计算机系统中, 在系统中形成一个自动转接的连续的作业流
 - 作业是成批的(batched)
- ◎ 启动操作系统
- 系统自动、依次执行每个作业
- 由操作员将作业结果交给用户

批(batch)的含义:

• 供一次加载的磁带或磁盘,通常由若干个作业组装而成, 在处理中使用一组相同的系统软件

- 批处理系统中作业的组成:
 - 用户程序 + 数据 + 作业说明书 (作业控制语言)
- 批作业处理:对批作业中的每个作业进行相同的处理
 - 从磁带读入用户作业和编译链接程序,编译链接用户作业, 生成可执行程序;启动执行;执行结果输出

批处理系统

批处理系统经历了两个阶段

- Simple batch systems,单道批处理系统
- Multiprogramming systems,多道批处理系统

专题1.1:单道批处理系统

- 单道批处理系统简介
- 单道批处理系统的工作过程
- 单道批处理系统的分析

- Input devices: card readers, tape drives
- Output devices: line printers, card punches and tape drives
- Operator BATCH similar jobs to speed up processing
 - User VS. operator
 - Compare to : Manual system
- Monitor (OS), load program and execute
 - Always resident in memory
 - FIFO: Transfer control automatically from one job to the next
- Only One Job in Memory at a time

- Input devices: card readers, tape drives
- Output devices: line printers, card punches and tape drives
 - Line printers(行式打印机)
 - Card punches(打孔机): A computer-actuated punch or a hand punch that punches holes in a punch card or punched card.
- Operator BATCH similar jobs to speed up processing
 - User VS. operator
 - Compare to : Manual system
- Monitor (OS), load program and execute
 - Always resident in memory
- Only One Job in Memory at a time

- Input devices: card readers, tape drives
- Output devices: line printers, card punches and tape drives
- Operator BATCH similar jobs to speed up processing
 - User VS. operator
 - Compare to : Manual system
- Monitor (OS), load program and execute
 - Always resident in memory
 - FIFO: Transfer control automatically from one job to the next
- Only One Job in Memory at a time

- Input devices: card readers, tape drives
- Output devices: line printers, card punches and tape drives
- Operator BATCH similar jobs to speed up processing
 - User VS. operator
 - Compare to : Manual system
- Monitor (OS), load program and execute
 - Always resident in memory
 - FIFO: Transfer control automatically from one job to the next
- Only One Job in Memory at a time

- Input devices: card readers, tape drives
- Output devices: line printers, card punches and tape drives
- Operator BATCH similar jobs to speed up processing
 - User VS. operator
 - Compare to : Manual system
- Monitor (OS), load program and execute
 - Always resident in memory
 - FIFO: Transfer control automatically from one job to the next
- Only One Job in Memory at a time

单道批处理系统的工作过程

- 处理过程
 - 监督程序 (monitor)
 - 系统对作业的处理都是成批进行的、 且内存中始终只保持一道作业。
 - 批处理系统的引入是为了 提高系统资源的利用率和吞吐量
- 特征
 - 自动性、顺序性、单道性

单道程序运行情况

用户进程的行为序列:

执行
$$\rightarrow$$
 I/0 \rightarrow 执行 \rightarrow I/0 \rightarrow ... \rightarrow 执行 \rightarrow I/0 \rightarrow 执行

单道批处理系统分析

Analysis

- Serial Card reader: Jobs execute one by one
- Mechanical I/O device: poor speed
 - CPU速度与I/O速度之间的矛盾
 - CPU: thousands of intructions/sec VS. Card reader: 20 cards/sec
 - CPU is often idle→CPU utilization is LOW

- Off-line I/O (脱机I/O)
 - a cheaper system reads from cards into tapes
- o 磁盘(Disk)
 - Allowed OS to keep all jobs on a disk
 - With direct access to several .jobs
 - Multiprogramming (多道程序) →CPU utilization(利用率)↑

单道批处理系统分析

Analysis

- Serial Card reader: Jobs execute one by one
- Mechanical I/O device: poor speed
 - CPU速度与I/O速度之间的矛盾
 - CPU: thousands of intructions/sec VS. Card reader: 20 cards/sec
 - CPU is often idle→CPU utilization is LOW

解决问题的办法:引入的新技术和成果

- Off-line I/O (脱机I/O)
 - a cheaper system reads from cards into tapes
- 磁盘(Disk)
 - Allowed OS to keep all jobs on a disk
 - With direct access to several jobs
 Could do Job scheduling to use resources and perform task efficiently
 - Multiprogramming (多道程序) →CPU utilization(利用率)↑

专题1.2:脱机I/0

脱机I/0

脱机I/O (时间:50年代末)

- 目的:解决人机矛盾和CPU与I/O设备之间速度不匹配的矛盾
- 方法:利用低速的外围机进行,纸带(卡片)→磁带(磁盘)
 - 脱机的内涵: 程序和数据都在脱离主机控制下。 由外围机控制完成。

脱机I/0

脱机I/O (时间:50年代末)

● 目的:解决人机矛盾和CPU与I/O设备之间速度不匹配的矛盾

人机矛盾:人工操作方式与机器利用率的矛盾

● 方法:利用低速的外围机进行,纸带(卡片)→磁带(磁盘)

• 脱机的内涵:

脱机I/0

脱机I/O (时间:50年代末)

● 目的:解决人机矛盾和CPU与I/O设备之间速度不匹配的矛盾

方法:利用低速的外围机进行,纸带(卡片)→磁带(磁盘)

• 脱机的内涵:

脱机I/0

脱机I/O (时间:50年代末)

● 目的:解决人机矛盾和CPU与I/O设备之间速度不匹配的矛盾

● 方法:利用低速的外围机进行,纸带(卡片)→磁带(磁盘)

• 脱机的内涵: 程序和数据都在脱离主机控制下, 由外围机控制完成。

专题1.3:多道批处理系统

- 多道批处理系统的概念和工作过程
- 多道程序对操作系统的功能需求
- 多道批处理系统的分析

多道批处理系统(multiprogramming system)

- 多道:系统中同时驻留多个作业
 - 共享内存
 - 复用CPU: 当一个作业因某个原因暂停运行时, 切换到另一个作业上运行
- 多道引入的优点:
 - 提高CPU利用率
 - 提高内存和I/O设备利用率
 - 提高了系统吞吐量
- 特征

 - ② 无序性、

512K

Memory layout for a multiprogramming system

多道批处理系统(multiprogramming system)

- 多道:系统中同时驻留多个作业
 - 共享内存
 - 复用CPU: 当一个作业因某个原因暂停运行时, 切换到另一个作业上运行
- 多道引入的优点:
 - 提高CPU利用率
 - 提高内存和I/O设备利用率
 - 提高了系统吞吐量
- 特征

 - ② 无序性、

Memory layout for a multiprogramming system

多道批处理系统(multiprogramming system)

- 多道:系统中同时驻留多个作业
 - 共享内存
 - 复用CPU: 当一个作业因某个原因暂停运行时, 切换到另一个作业上运行
- 多道引入的优点:
 - · 提高CPU利用率
 - 提高内存和I/O设备利用率
 - 提高了系统吞吐量
- 特征
 - ▲ 多道性、
 - △ 无序性、
 - ◎ 调度性(作业调度、进程调度)

Memory layout for a multiprogramming system

多道程序运行情况(四道时)

表示获得CPU

表示I/0进行中

多道程序对操作系统的功能需求

- Job Scheduling
 - How many & which jobs entered memory
- Memory management
 - where & how much memory: the system must allocate the memory to several jobs.
 - Memory protection for each job
- CPU scheduling
 - Which job in memory(job pool) would get the CPU
 - Job and CPU scheduling makes up 2-phrase of scheduling
- I/O routine supplied by the system.
- Allocation of devices.

多道批处理系统分析

- When the job have to wait for some task, such as an I/O op. to complete
 - Single Batch System: CPU→idle
 - Multiprogramming system: CPU→switch to another job and execute CPU is never idle)
- Advantages
 - Higher CPU, I/O, Memory Utilization
 - Higher system throughput
- Disadvantages
 - No User interaction with computer
 - Job time too long (why?)
 - Simple batch system VS. Multiprogramming system

多道批处理系统分析

- When the job have to wait for some task, such as an I/O op. to complete
 - Single Batch System: CPU→idle
 - Multiprogramming system: CPU→switch to another job and execute CPU is never idle)

Advantages

- Higher CPU, I/O, Memory Utilization
- Higher system throughput

Disadvantages

- No User interaction with computer
- Job time too long (why?)
 - Simple batch system VS. Multiprogramming system

Outline

- - 操作系统的定义和目标
 - Roles of operating system
 - 操作系统的层次模型
- The Development Process of Operating Systems
 - 操作系统的发展动力
 - 1945~1955, 无操作系统
 - 1955~1965, 批处理系统
 - 1965~1980,引入分时
 - 1980~now, 百花齐放
- - Personal-Computer Systems
 - Parallel Systems
 - Distributed Systems
 - Embedded System

History of the OS(1965~1980,引入分时)

- IC circuits (集成电路)
 - LSI,VLSI
- UNIX
- More Applications
- OS
 - Multiprogramming batch systems ↑
 - Time-sharing systems (分时系统)

专题2:分时系统

- 分时系统的需求及其解决
- 经典案例
- 分时系统下的工作方式
- 关键技术、设计目标和实现

MIT CTSS IBM709

Time-sharing system 分时系统

- 需求:User need interaction with computer
 - Response time < 1 sec
- 解决方法:
 - Share CPU by time pieces (时间片)
 - Time-sharing (multitasking)
- Users share Main frame
 - One main frame VS. Multi users & Multi terminal
- Time-sharing system is a logical extension of multiprogramming.
- 经典操作系统:MULTICS、UNIX

经典案例:UNIX

- 一群计算机迷 在贝尔实验室开发出UNIX
- 初衷:可以在一台无人使用的DEC PDP-7 小型计算机上玩星际探险游戏
- Ken Thompson, Dennis Ritchie 1983年图灵奖获得者 1999年4月 美国国家技术金奖

汤普逊和里奇在DEC PDP-7计算机旁工作

分时系统下的工作方式

- 一台主机连接了若干个终端, 每个终端有一个用户在使用
 - 交互式的向系统提出命令请求
 - 系统接受每个用户的命令
 - 采用时间片轮转方式处理服务请求
 - 通过交互方式在终端上向用户显示结果
 - 用户根据上步结果发出下道命令

分时系统的关键技术

- Receive input in time (及时接收)
- Process in time (及时处理)
- 解决思路:
 - Mutual job (交互作业) always in memory
 - Time pieces
- 分时系统的特征
 - 多路性、独立性、及时性、交互性

分时系统的设计目标

- 分时操作系统所追求的设计目标:
 - 及时响应,其依据是响应时间
- 响应时间:
 - 从终端发出命令到系统给予回答所经历的时间
- 影响响应时间的因素:
 - 机器处理能力
 - 请求服务的时间长短
 - 系统中连接的终端数目
 - 服务请求的分布
 - 调度算法 (时间片的选取)

分时系统的实现

- 单道与分时的结合:
 - 单道分时
- 分时与批处理相结合:
 - 原则:分时优先,批处理在后
 - 具有前后台的分时:
 - "前台":需频繁交互的作业
 - "后台":时间性要求不强的作业
- 分时与多道相结合
 - 多道分时

Outline

- - 操作系统的定义和目标
 - Roles of operating system
 - 操作系统的层次模型
- The Development Process of Operating Systems
 - 操作系统的发展动力
 - 1945~1955, 无操作系统
 - 1955~1965, 批处理系统
 - 1965~1980,引入分时
 - 1980~now, 百花齐放
- - Personal-Computer Systems
 - Parallel Systems
 - Distributed Systems
 - Embedded System

History of the OS(1980~now, 百花齐放)

- Development of Computer architecture (图)
 - 32bits→64bits
 - Workstations and PCs
 - Parallel processors
 - Computer networks
 - Cluster
- Special purpose computer system Types
 - Parallel systems
 - Real-time systems
 - Embedded systems
 - Distributed systems

Migration of OS Concepts and Features

专题3:实时系统

- 实时系统
- 实时任务的分类
- 实时系统的实现和应用
- 实时系统与批处理系统、分时系统的比较

实时系统

- 诵常在一些专门的应用中,用来控制设备
 - 这种系统往往具有及时响应的时间限制
 - 严格 vs. 不严格
- 定义:

实时系统是指使计算机能及时响应外部事件的请求,在规定的 严格时间内完成对该事件的处理,并控制所有实时设备和实时 任务协调一致地工作的操作系统

- 按领域分类:
 - 第一类:实时过程控制
 - 第二类:实时通信(信息)处理

实时任务的分类

- 按任务执行是否呈现周期性来划分
 - 周期性的,有规律;
 - 非周期性的,无规律,但有截止时间
 - 开始截止时间 vs. 完成截止时间
- 根据对截止时间的要求来划分
 - 硬实时任务 vs. 软实时任务
- 实时操作系统追求的设计目标:
 - 满足实时性要求: 对外部请求在严格时间范围内作出反应
 - 高可靠性

实时系统的实现和应用

- 硬实时系统: Hard real-time system
 - Secondary storage limited or absent, data stored in short-term memory, or read-only memory (ROM)
 - Conflicts with time-sharing systems, not supported by general-purpose operating systems
- 软实时系统: Soft real-time system
 - Limited utility in industrial control or robotics
 - Useful in applications (multimedia, virtual reality) requiring advanced operating-system features
- 典型:VxWorks、QNX、RTEMS

实时系统与批处理系统和分时系统的区别

• 专用系统:

• 许多实时系统是专用系统,而批处理与分时系统通常是通用系统

• 实时控制:

实时系统用于控制实时过程,要求对外部事件的迅速响应,具有 较强的中断处理机构

• 高可靠性:

• 实时系统用于控制重要过程,要求高度可靠,具有较高冗余(如双机系统)

• 事件驱动和队列驱动:

实时系统的工作方式: 接受外部消息,分析消息,调用相应处理程序进行处理。

实时、分时的比较

• 多路性:相同

• 独立性:相同

• 及时性:实时系统要求更高

• 交互性:分时系统交互性更强

• 可靠性:实时系统要求更高

专题小结

- 到目前为止,介绍了三种最基本的操作系统类型[汤]
 - 批处理系统
 - △ 分时系统
 - ◎ 实时系统
- 一个实际的操作系统,往往兼有上述三种基本操作系统类型的功能
- 下面简单介绍其他类型的操作系统

Outline

- What is OS?
 - 操作系统的定义和目标
 - Roles of operating system
 - 操作系统的层次模型
- 2 The Development Process of Operating Systems
 - 操作系统的发展动力
 - 1945~1955. 无操作系统
 - 1955~1965, 批处理系统
 - 1965~1980,引入分时
 - 1980~now, 百花齐放
- ③ 其他操作系统
 - Personal-Computer Systems
 - Parallel Systems
 - Distributed Systems
 - Embedded System
- 作业、实验和小结

Personal-Computer Systems,个人计算机系统

- Personal computers (PCs)
 - 计算机为单用户服务
- I/O devices 键盘、鼠标、显示器、打印机
- PC系统所追求的设计目标是:
 - 界面友好,使用方便(User convenience & responsiveness), 有丰富的应用软件
 - 不必过于追求CPU利用率

常见的PC system用的操作系统

- 0S
 - MS-DOS
 - 0S/2
 - Microsoft windows ...
 - NT, 95, 98, 2000, xp, windows me, Win7, Win8, windows vista
 - Apple Macintosh
 - Linux (...)
 - ..

Outline

- - 操作系统的定义和目标
 - Roles of operating system
 - 操作系统的层次模型
- - 操作系统的发展动力
 - 1945~1955, 无操作系统
 - 1955~1965, 批处理系统
 - 1965~1980,引入分时
 - 1980~now, 百花 齐放
- 其他操作系统
 - Personal-Computer Systems
 - Parallel Systems
 - Distributed Systems

并行系统 Parallel Systems

- Multiprocessor systems with more than one CPU in close communication
- Tightly coupled system 紧耦合系统
 - processors share memory and a clock; communication usually takes place through the shared memory

• 优点:

- Increased throughput
- Economical
- Increased reliability
- graceful degradation
- fail-soft systems

并行系统(Cont.)

- Symmetric multiprocessing (SMP,对称多处理器)
 - Each processor runs an identical copy of the operating system.
 - Many processes can run at once without performance deterioration.

• 现在的大多数通用操作系统都支持SMP,例如Linux、UNIX、Windows

并行系统(Cont.)

- Asymmetric multiprocessing 非对称多处理 ASMP
 - Each processor is assigned a specific task; master processor schedules and allocates work to slave processors.
 - More common in extremely large systems

Outline

- - 操作系统的定义和目标
 - Roles of operating system
 - 操作系统的层次模型
- - 操作系统的发展动力
 - 1945~1955, 无操作系统
 - 1955~1965, 批处理系统
 - 1965~1980,引入分时
 - 1980~now, 百花 齐放
- 其他操作系统
 - Personal-Computer Systems
 - Parallel Systems
 - Distributed Systems

Distributed Systems 分布式系统

- 分布式系统:处理和控制的分散
- Loosely coupled system 松耦合系统
 - each processor has its own local memory; processors communicate with one another through various communications lines, such as high-speed buses or telephone lines
- Advantages of distributed systems
 - Resources Sharing 资源共享
 - Computation speed up load sharing 负载平衡
 - Reliability 可靠
 - Communications 通信

分布式系统上的操作系统

- Network Operating System 网络操作系统
 - provides file sharing
 - provides communication scheme
 - runs independently from other computers on the network
- Distributed Operating System 分布式操作系统
 - less autonomy between computers
 - gives the impression there is a single operating system controlling the network 单一映像

Outline

- - 操作系统的定义和目标
 - Roles of operating system
 - 操作系统的层次模型
- - 操作系统的发展动力
 - 1945~1955, 无操作系统
 - 1955~1965, 批处理系统
 - 1965~1980,引入分时
 - 1980~now, 百花 齐放
- 其他操作系统
 - Personal-Computer Systems
 - Parallel Systems
 - Distributed Systems
 - Embedded System

Embedded System

- 嵌入式系统是在各种设备、装置或系统中,完成特定功能的软硬件系统
 - 它们是一个大设备、装置或系统中的一部分, 这个大设备、装置或系统可以不是"计算机"
 - 通常工作在反应式或对处理时间有较严格要求环境中
- 由于它们被嵌入在各种设备、装置或系统中,因此称为嵌入式系统
- 嵌入式系统具有最广泛的应用

- 嵌入式操作系统与通用操作系统有很大不同
 - Small size Low power
 - Special environment, special function
 - 开发方式也不同
 - 交叉开发
 - Host, simulator VS. target
- 经典:VxWorks、嵌入式Linux系列、RTEMS、WindowsCE、PalmOS

作业一

- 阅读至少2本操作系统相关书籍,
 - 给出这些书中关于操作系统的定义,要列出出处。
 - 阐明操作系统的公共设计目标和某些操作系统特有的设计目标, 要列出出处。
 - 阐明操作系统的作用,要列出出处。
- 操作系统的基本类型是哪三种?它们的关键技术有哪些?
- 多道程序设计的主要优点是什么?多道程序对操作系统的功能需求有哪些?

视频作业 (可选)

• 请制作一个小视频,介绍不同人群对"什么是操作系统"的理解。

实验一(必做)

• 安装虚拟机

- 在虚拟机(VirtualBox)上安装一款Linux发行版操作系统。 (推荐Ubuntu/KUbuntu,或按助教指定)
- 熟悉Linux下的软件安装方法
- 安装一个可用的集成开发环境(推荐:eclipse CDT) 和GCC编译工具链(大多自带)
- · 学会编写简单的shell脚本
- 注意:为防止数据因重装系统丢失,建议将数据与系统分开管理

■ 1人1组

- 检查方法和要求: 提交详细的安装说明书,要求列出遇到的困难和解决的方法
- 提交报告的时间:以邮件发送时间为准
- 截止时间:待定

小结

- What is OS?
 - 操作系统的定义和目标
 - Roles of operating system
 - 操作系统的层次模型
- The Development Process of Operating Systems
 - 操作系统的发展动力
 - 1945~1955. 无操作系统
 - 1955~1965, 批处理系统
 - 1965~1980,引入分时
 - 1980~now, 百花齐放
- 其他操作系统
 - Personal-Computer Systems
 - Parallel Systems
 - Distributed Systems
 - Embedded System
- 作业、实验和小结

谢谢!

资料:穿孔卡片等

穿孔卡片(punched card);在硬纸板上打孔以记录信息的工具。(图:IBM12行80列穿孔卡)

资料:穿孔纸带机等

上世纪60年代,科学家在检查电脑"哈维尔"上的穿孔纸带阅读"世界最老电脑"修后重启 比iphone慢800万倍

专题1.2:SPOOLing技术

SP00Ling技术

- 1961年,英国曼彻斯特大学,Atalas机
- Simultaneous Peripheral Operation On-Line (同时的外围设备联机操作——假脱机技术)
- 基本思想:

SP00Ling技术

- 1961年,英国曼彻斯特大学,Atalas机
- Simultaneous Peripheral Operation On-Line (同时的外围设备联机操作——假脱机技术)
- 基本思想: 利用磁盘作缓冲,将输入、计算、输出分别组织成独立的任务流, 使I/O和计算真正并行

SPOOLing系统工作原理

- 作业进入到磁盘上的输入井
- 按某种调度策略选择几种搭配得当的作业,并调入内存
- 作业运行的结果输出到磁盘上的输出井
- 结果从磁盘上的输出井送到打印机
- 使用进程代替外围机

SPOOLing系统的组成示意图

(ロ) (日) (日) (日) (日) (日)