0117401: Operating System
HIAUR B 5 it

Chapter 3: Process

A& Z
xlanchen@ustc.edu.cn
http://staff.ustc.edu.cn/~xlanchen

Computer Application Laboratory, CS, USTC @ Hefei
Embedded System Laboratory, CS, USTC @ Suzhou

April 1, 2015

anchenau .cn http://staff 0117401: Op: 7 3 i April 1, 20

AT BAA TAEET -
HERE LXK -

RE g LAEIT 875 o

en@ustc.edu.cn http://staff 0117401: Operating System T+ HU/R 2 5% April 1, 2015

Overview

Q ZEBFHRFEFHRANATH &4

e Process Concept

e Process Scheduling

e Operation on processes

e Interprocess Communication (# #2884z, IPC)
e Example of IPC Systems

e Communication in C/S Systems

Q 4AtkL

anchen@ustc.edu.cn http://staff 0117401: Operating ¢ I ® 5% April 1,

Q@ % EAFHRPAF HEIATH &4
o LHEAFH AL R
@ Seriel execution of programs (425 691f 5 #AT)
@ Concurrent execution of programs (#2585 7 & WAT)

c<lancheneustc.edu.cn http://staff0117401: Operating System T+JAL/R I 5%

%

Q siERFHAFEFALIITHEH
o ZHEAFHAMA L

xlanchen@ustc.edu.cn http://staff 0117401: Operating System 1 URIE 5% April 1, 2015 5/ 91

Multiprogramming(% i 42)%) techniques

@ From Simple Batch system —Multiprogramming system

@ Memory must be shared by multiple programs
@ CPU must be multiplexing(& JHl) by multiple programs
@ 4 basic components:

@ Process management
Q Memory management

e I/O system management
@ file management

2 xlanchen@ustc.edu.cn http://staff 0117401: Operating tem THHEAURE 5% April 1,

some easily confused terms

@ In our course:

o Program(#2/)%):
passive entity, usually a file containing a list of
instructions stored on disk (often called an executable
file).

o Tasks(f£%):
a general reference

o Jobs(#Eidk):
in batch system, user programs (and data) waiting to be
loaded and executed

o Processes(##2):
a program in execution

@ Usually, the term job and process are used interchangeably.

hen@ustc.edu.cn http:// f0117401: Operatin; tem THHEAURE 5%

of multiprogramming techniques

o Gtk £SEALT » BEZ AN BITHARESGE LR
BA RS > 724

e How to ensure correct concurrent?

@ Related theory:

o Conditions of the concurrent execution of program
o Theoretical model: Precedence graph (aJ#2H)

@ Analysis on the serial execution of programs based on
precedence graph

@ Analysis on the current execution of programs based on
precedence graph

anchen@ustc.edu.cn http://staff 0117401: Operating ¢ MR R G% April 1,

Precedence Graph (aJ#2 A&)

@ Goal :

B R EAE G S AP s #HABRZ R G RATRE

Definition

Precedence graph (AJ#2 &) is a Directed Acyclic Graph
(A% AIFHE, DAG).

@ Node(4& &) :
—APATET (m—5E8 - —MRFERHR)
@ Edge(is, directed edge(F HiL)) :

The precedence relation (A& % &) “—7 >
—= {(P;,P;) | Py st A2 P46 HAT AT AT 2 }

xlanchen@ustc.edu.cn http://staff0117401: Operating System i I3 April 1, 2015

Precedence Graph (aJ#2 A&)

e If (P;,P;) €—, then P; — P;
Here,
P; is called the predecessor(#i#2) of P;, and
P; the subsequent(JG4t) of P;

o KA AWML BN 44 5 (initial node)
0 AABUMLE BARA%IEL & (final node)

o 4 A HiEH — /M AE (weight) &
%Lk BT A AL & R R AT R

lancheneustc.edu.cn http://staff 0117401: Operating System T+ AU/ 2 5% April 1, 2015

Precedence Graph (aJ#2 A&)

@ Example:

)

anchen@ustc.edu.cn http://staff 0117401: Operating MR EG% April 1, 9/ 91

Q siERFHAFEFALIITHEH

@ Seriel execution of programs (#2/)F 8900 F HA4T)

xlanchen@ustc.edu.cn http://staff 0117401: Operating System 1 URIE 5% April 1, 2015 10 / 91

Seriel execution of programs (25 &) F #AT)

o —AMERKMARFERE 0% TSP o B EPATH + L4 4% B
LA G EAPAT » ST —ARFRRITE - B — AR
T AT o

18] 4
HF

o IREZMPAEFFFIENIMAN S
o CREATHE
o PRAMBAR

+ 2 xlanchen@ustc.edu.cn http://staff 0117401: Operating System it A AL/R ¥ 5% April 1, 2015 11 /91

Seriel execution of programs (25 &) F #AT)

0 E—/NRFHET » % K5 B WATIRF 6 5] o
T @GH]F 4 o S1F2S280 90 £ SSHAT AT AT 7 ©
KNG 5 SAsL IR JESSWAT 7 A BEIAT ©
Q Sl:a=x+3
Q S2:b=y+4
©Q S3:c=at+b
Q S4:d=a+tc

o990 o 9O

#5184 Wik R P AT HRGE A RBIR R

xlanchen@ustc.edu.cn http://staff 0117401: Operating System T+ HU/R 2 5% April 1, 2015 12 / 91

7 IR AT B B 4 AR

1 R 5
o I BALF T IR MAT

o

2 FH M
oﬁ%%ﬁﬁ@%%%?iﬁ%oﬁ&éﬂﬁﬁo—ﬂ%%ﬁﬁ’
BRIRZINEZF A o

o RBAFWATH 69 fn4s AFAR R > A RIFAA R 9 R -

44 2 xlanchen@ustc.edu.cn http://staff.0117401: Operating System 7+JAU/R I 5% April 1, 2015 13 / 91

Q siERFHAFEFALIITHEH

@ Concurrent execution of programs (#2585 7 & WAT)

xlanchen@ustc.edu.cn http://staff 0117401: Operating System 1 URIE 5% April 1, 2015 14 / 91

Concurrent execution of programs (#2587 & AT

)

GI e *G) e)

A2 7 I R AT 6 AT AL B

&2 xlanchen@ustc.edu.cn http://staff 0117401: Operating System T+FAU/R 2 5% April 1, 2015 15 / 91

T2 5 % ST B 6 AR

o HERAF “HAT— — HAFIAT — — AT

o WTHEREZ BEIRTHRENAELF RGN E

o RHAF L -
o Bl TENKEF » X EKNZN=n > NEMITRFH :
1. N:=N+1:; print(N); N:=0; N&JMEIRRAn+1:n+1:0

2. print(N); N:=0; N:=N+1; N&JFERXKXAn;:0; 1
3. print(N); N:=N+1 ; N:=0; N&4EIRAK An;n+1:0

A\

lancheneustc.edu.cn http://staff 0117401: Operating System it April 1, 2015 16 / 91

25+ & W AT89 54 (Bernstein’ s conditions)

o £ EM3AMAFMT » LI “RITHILE" o
o AR T PATRIE “THRILIL” > FI AT R IATH A o
o Bk 1 ML RAE I AT St BAE 8 > F R el X

@ Definitions, notation and terminology:

o R (p) AT Fp A RITHE B AL O TEG RS
o 5V (py) » RRAZFp AT BT S PTA T R

e 1966, Bernstein: if programs p; and p, meet the following
conditions, they can be executed concurrently, and have
reproducibility (] B-IL1E)

o If process p; writes to a memory cell M;, then no process p;
can read the cell M;.

e If process p; read from a memory cell M;, then no process p;
can write to the cell M;.

e If process p; writes to a memory cell M;, then no process p;
can write to the cell M;.

R(p1) W (p2) UR(p2) W (p1) UW(p1) W (p2) =@

xlanchen@ustc.edu.cn http://staff 0117401: Operating System 1 VR 5% April 1, 2015 17 / 91

Outline

e Process Concept
@ the Processes
@ Process State
@ Process Control Block (PCB)

u.cn http://staff 0117401: Op

April 1, 2015 18 / 91

Outline

e Process Concept
@ the Processes

m AR 5 April 1, 2018 19 / 91

the processes

o MALEH BAL M KA F kAL > R
Q #RE(TH MWL » £ KA ALY BT 2 RAHARF R -
VLR T K i 4 8 4 4 38 47
Q@ HRMKE > BRALG I RAALA IR LW
Q@ ARIERSF AT B IFRPAT LA RALE AT F
5 3 AT 038 o DL B

lancheneustc.edu.cn http://staff 0117401: Operating System T+ AU/R 2 5% April 1, 2015 20 / 91

Process Concept I

@ An OS executes a variety of programs:

@ Batch system - jobs
o Time-shared systems - user programs or tasks
@ PC - several programs: a word processor, a web browser, etc.

@ we call all of them process

@ a program in execution;
@ process execution must progress in sequential fashion

u.cn http://staff0117401: Operating S 7 i% April 1, 2015 21 / 91

Process Concept II

@ text section<«program code \l,
@ program counter + other
registers<current activity 'T‘
@ stack<«temporary data heap
@ data section<«=global variables data
@ heap text
‘ 0

COMPARE: Program vs. Process?

@ Program: a passive entity (#4&169)

@ Process: a active entity (#&E#49)

nchen@ustc.edu.cn http://staff 0117401: Operating System it April 1, 2015

A28 B R AFAE

AN L KA I

IR
B
A
2 M AR

lanchen@ustc.edu.cn http://staff 0117401: Operating System it 38 5 April 1, 2015 23 / 91

A2 69 B RAFAE

Q@ AN : R AGIY

“EHelE A B AIIT BT R A A AT
VA A

o AA A
Q ik
Q@ Bl
Q AVt
Q@ LMt

%2 xlancheneustc.edu.cn http://staff 0117401: Operating System T+ AU/ 2 5% April 1, 2015 23 / 91

A28 B R AFAE

Q@ A FAKNIFMR

© 0 ©
® o B
F oGk
FOEOW
&

lancheneustc.edu.cn http://staff 0117401: Operating System T+ AU/ 2 5% April 1, 2015 23 / 91

A28 B R AFAE

Q@ A FAKNIFMR

R
B

o MAEL Mt IETGEREL LEARL TR IRF TR
BB RREL o

FFH
4 A

xlanchen@ustc.edu.cn http://staff 0117401: Operating System 7+ HU/R 3 5% April 1, 2015 23 / 91

A28 B R AFAE

Q@ A FAKNIFI

Q HAM
Q it

Q Ak

o MBI EABRIH ~ AT itk B ATt o
o FH “ATHIM
o OSsb/ R A4 38 R ARIE A2)7 Z 7] RS 1R

4 AR

E47 o

xlanchen@ustc.edu.cn http://staff 0117401: Operating System 7+ HU/R 3 5% April 1, 2015

A28 B R AFAE

AN L AR I

IR
G- R c 3
P

LA HFAE
o MM LEE » R FTIRTHR/FH ~ FIEBZ A MAZIEH 3k =354,

HALMAG = R + BB+ BALIER B

%2 xlancheneustc.edu.cn http://staff 0117401: Operating System T+ AU/ 2 5% April 1, 2015 23 / 91

Outline

e Process Concept

@ Process State

m AR 5 April 1, 2018 24 / 91

Process State

@ As a process executes, it changes its state.

State Models (31}1,%%75%9_3—'1)

QO BAAN “ZHRA” A
eﬂk“%”%“%i”ﬁﬁ“ﬁ&§”fﬂ
Q A “HA” KA “LRAZT BEA

xlanchen@ustc.edu.cn http://staff 0117401: Operating System 1 545 April 1, 2015

ZRAT B

o ZA AR KE
Q ready (3£4): “ZFR%E» RARCPU”

@ rumning (A7)
Q vaiting (Q?f%, also blocked(FLE), sleeping(B#HE))

interrupt

scheduler dispatch

1/0 or event completio /0 or event wait

4 types of state transferring

> xlanchen@ustc.edu.cn http://staff 0117401: Operating System ++JEAURIT 5% April 1, 2015 26 / 91

ZRAT B

o =M ARG RE
Q ready (3k%): “FTFELEL > ARCPU”
@ DataStructure: ready queue

@ running (A7)
@ waiting (54F, also blocked(fBLE), sleeping(BEAR))

interrupt

scheduler dispatch

1/0 or event completio: /0 or event wait

4 types of state transferring

> xlanchen@ustc.edu.cn http://staff 0117401: Operating System +JEAURIT 5% April 1, 2015 26 / 91

“’—:‘ fg& 29 % ﬁ—_d

o ZARARIGRKA
@ ready (3k%): “FFELE > ARCPU
@ running (3A4T)
@ waiting (%4%, also blocked(FAE), sleeping(BEAR))
The process is waiting for some event to occur:

@ I/0 completion, reception of a signal,

resource allocation,
etc.

@ DataStructure: waiting queue

interrupt

scheduler dispatch

1/0 or event completio /0 or event wait

4 types of state transferring

lanchen@ustc.edu.cn http:/,

R 5% April 1, 2015 26 / 91

2 "BERET BEA

@ Two more states is added to the “three state” model.
@ new (#FHKA) : The process is beig created
@ initialization, resource preallocation, etc.
@ terminated (£1E3KZA): The process has finished execution,
normally or abnormally.

@ removed from ready queue, but still not destroyed.
@ other process may gather some information from the terminated

processes

admitted

interrupt

scheduler dispatch

1/0 or event completio /0 or event wait

6 types of state transferring

u.cn http://staff 0117401: Operating em THFA 5% April 1, 2015

3 “Seven state’ model

o HBREAF NI —LFRE » BEAMKLEETH » Hrtst A “F4F7
BA s SEAGBREERE » hTEE LKA ;
{EA AR A B 4 i AR IR 6 — 2o B) > 4% 433 A2 45 B T AL 4K 48 2 4T o
SRR R £ A
Q XHMPHEL
Q XK#fEMFR
Q BUEALNER
Q T (swapping) #)F &
@ i & (work load)iA ¥ 895 &

xlanchen@ustc.edu.cn http://staff 0117401: Operating System i+JLAUR 32 5% April 1, 2015 28 / 91

3 “Seven state’ model

o HBREAF NI —LFRE » BEAMKLEETH » Hrtst A “F4F7
BA s SEAGBREERE » hTEE LKA ;
{EA AR A B 4 i AR IR 6 — 2o B) > 4% 433 A2 45 B T AL 4K 48 2 4T o
SRR R £ A
Q XHMPHEL
Q XK#fEMFR
Q BUEALNER
Q T (swapping) #)F &
@ i & (work load)iA ¥ 895 &

R T ——

xlanchen@ustc.edu.cn http://staff 0117401: Operating System i+JLAUR 32 5% April 1, 2015 28 / 91

3 “Seven state’ model

o HAEAAF A —RE » BIAKLEETH » otk A “FHA
KE SEHFGRAERE > A TUREARE RS
{2 f R AR A #AZIIRG— R A » (£ /FHARY N RAEY BT o
IR R R A
Q %4APER
Q N#AEMEFR
Q BEAL/NER
Q@ T #(swapping)ty & &
Q@ M &K (work load) ¥ &9 & &

Sl e kA

o “HAT REFXA-—FRE > MA-LRE

o HALGLA THILRA @ #abstsh » LK
o AT HRE FHRL » FHEE » L AFEMATE

xlanchen@ustc.edu.cn http://staff 0117401: Operating System 7+ HU/R 3 5% April 1, 2015 28 / 91

3 “Seven state’ model

o ERARBKY T NEHRIGHILREZNE » AR ERS
AR B R A 4

Fri 6 MREH B

noustc.edu.cn http://staff 0117401: Operating System T+ AURHE 5% April 1, 2015 28 / 91

3 “Seven state’ model

Suspen

Suspend

Blocked
Suspend

28 / 91

Outline

e Process Concept

@ Process Control Block (PCB)

u.cn http://staff0117401: Operating S 7 i% April 1, 2015 29 / 91

Process Control Block (z#23%#4]3r, PCB)

@ Each process is represented in the OS by a PCB,
also called Task Control Block, TCB
ABREZG T —F RERIELEH
o UBRMALUBETIEE Y
o FHBAL

o 1R1E A HARIBPCBRAZH| A & B 7 & AT 0y % A2

PCBR#AZF L E—1E

xlanchen@ustc.edu.cn http://staff 0117401: Operating System 7+ HU/R 3 5% April 1, 2015 30 / 91

Process Control Block (z#23%#4]3r, PCB)

@ Info
proc

rmation associated with each
ess

Process state (...)

Program counter

CPU registers

CPU-scheduling information
Memory-management information
Accounting information: time used,
time limit,

1/0 status information

process state

process number

program counter

registers

memory limits

list of open files

anchenou

.cn http://)117401: Operating System it

April 1, 2015

31 / 91

CPU Switch From Process to Process

process P, operating system process P,

interrupt or system call

executing J-L
T save state into PCB,
B
.

.

reload state from PCB; 1

ridle interrupt or system call executing

YV
save state into PCB;

idle

idle

executing U

lanchenoustc.edu.cn http://staff 0117401: O i S em T I 5%

Examples 1

o WA KB/HEMARKE

o struct task_struct in Linux0.11 & Linux 2.6.26
e struct OS_TCB in ﬂC/OS—II

typedef struct os_tcb {
0S_STK *0STCBStkPtr; /* Pointer to current top of stack */
#if 0S_TASK_CREATE_EXT EN > 0
void *OSTCBExtPtr; /* Pointer to user definable data for TCB extension */
0S_STK *0STCBStkBottom; /* Pointer to bottom of stack */
INT32U OSTCBStkSize; /* Size of task stack (in number of stack elements) */
INT16U OSTCBOpt; /* Task options as passed by OSTaskCreateExt() */
INT16U 0STCBId; /* Task ID (0..65535) */
#endif
struct os_tcb *0STCBNext; /* Pointer to next TCB in the TCB list */
struct os_tcb *0STCBPrev; /* Pointer to previous TCB in the TCB list */
#if ((0S_Q_EN > 0) & (0S_MAX QS > 0)) || (0S_MBOX_EN > 0) || (0S_SEM_EN > 0) ||
(0S_MUTEX_EN > 0)
0S_EVENT *0STCBEventPtr; /* Pointer to event control block */
#endif
#if ((0S_Q_EN > 0) & (0S_MAX QS > 0)) || (0S_MBOX_EN > 0)

lancheneustc.edu.cn http:/, £ 0 01: 0 ing S TR 2 5 i April 1, 2015

Examples 11

void *OSTCBMsg; /* Message received from OSMboxPost() or 0SQPost() */
#Hendif
#if (OS_VERSION >= 251) && (0S_FLAG EN > 0) && (0S_MAX_FLAGS > 0)
#if 0S_TASK_DEL EN > 0
0S_FLAG_NODE *OSTCBFlagNode; /* Pointer to event flag node */
#Hendif
0S_FLAGS OSTCBFlagsRdy; /* Event flags that made task ready to run */
#endif
INT16U OSTCBD1ly; /* Nbr ticks to delay task or, timeout waiting for event */
INT8U OSTCBStat; /* Task status */
INT8U OSTCBPrio; /* Task priority (0 == highest, 63 == lowest) */
INT8U OSTCBX; /* Bit position in group corresponding to task priority (0..7) */
INT8U OSTCBY; /* Index into ready table corresponding to task priority */
INT8U OSTCBBitX; /* Bit mask to access bit position in ready table */
INT8U OSTCBBitY; /* Bit mask to access bit position in ready group */
#if 0S_TASK_DEL_EN > 0
BOOLEAN OSTCBDelReq; /* Indicates whether a task needs to delete itself */
#Hendif
} 0S_TCB;

lanchen@ustc.edu.cn http://staff 0117401: Operating System F L3 5% April 1, 201¢ 34 / 91

Outline

e Process Scheduling
@ Process Scheduling Queues
@ Schedulers

@ Context Switch(ETF Uinik)

u.cn http://staff 0117401: Op

April 1, 2015

Process Scheduling

The objective of
to have some process running at all times, to maximize CPU

utilization.

| \

The objective of

to switch the CPU among processes so frequently that users can

interact with each program whilt it is running.

What the system need?

| A\

anchen@ustc.edu.cn http://staff 0117401: Operating System +tJi Y L5 43 April 1, 2015 36 / 91

Process Scheduling

The objective of

to have some process running at all times, to maximize CPU
utilization.

| \

The objective of

to switch the CPU among processes so frequently that users can

interact with each program whilt it is running.

What the system need?

the process scheduler selects an available process to execute
on the CPU.

anchen@ustc.edu.cn http://staff 0117401: Operating System itJ& 515 April 1, 2015 36 / 91

Outline

e Process Scheduling
@ Process Scheduling Queues

u.cn http://staff 0117401: Op: i > T 1% April 1, 2015

Process Scheduling Queues

Processes migrate among the various queues

@ Job queue — set of all processes in the system

@ Ready queue — set of all processes residing in main
memory, ready and waiting to execute

@ Device queues — set of processes waiting for an I/0 device

anchenou .cn http://staff0117401: Operating System T+J3L z 7 April 1, 2015 38 / 91

Ready Queue And Various I/0 Device Queues

queue header PCB; PCBy
ready head > > —
queue tail registers registers

mag

head ———=
tape tail -
unit O at [+
mag head -~
tape ot
unit 1 at PCB3 PCBy4 PCBg

AR
v
v
J

disk head

unit O tail o
PCB
terminal head > —
: T
unit O tail

anchenau .cn http://)117401: ing System F 3 i April 1, ¢

Representation of Process Scheduling

; ready queue ‘{ CPU)
1/0 queue }(—{ 1/0 request }(—

time slice

expired
child fork
esecutes child

wait for an
interrupt

interrupt
occurs

Queueing-diagram representation of process scheduling

Outline

e Process Scheduling

@ Schedulers

m AR 5 April 1, ¢

Schedulers I

Long-term (% #0) scheduler (or Jjob scheduler)

@ selects which processes should be brought into the ready

queue

v

Short-term (42#1) scheduler (or CPU scheduler)

@ selects which process should be executed next and allocates
CPU

xlanchen@ustc.edu.cn http://staff 0117401: Operating System 1 54 April 1, 2015 42 / 91

The primary between long-term &

short-term schedulers I

@ The prilmary distinction between long-term & short-term
schedulers lies in frequency of execution

o Short-term scheduler is invoked very frequently (UNIT: ms)
= must be fast

o Long-term scheduler is invoked very infrequently (UNIT:
seconds, minutes) = may be slow

o WHY?

@ The long-term scheduler controls the degree of
multiprogramming (% @425 %)

@ the number of processes in memory.
e stable?

xlanchen@ustc.edu.cn http://staff 0117401: Operating System 1 VR 5% April 1, 2015

The primary between long-term &

short-term schedulers II

@ Processes can be described as either:

I/0-bound (I/0%% &R) process

o spends more time doing I/0 than computations, many short CPU
bursts

CPU-bound (CPUZ &%) process

@ spends more time doing computations; few very long CPU bursts

@ IMPORTANT for long-term scheduler:

@ A good process mix of I/0O-bound and CPU-bound processes.

xlanchen@ustc.edu.cn http://staff 0117401: Operating System 1 54 April 1, 2015 14 / 91

@ The long-term scheduler may be absent or minimal

e UNIX, MS Windows, ...
@ The stability depends on

@ physical limitation
@ self-adjusting nature of human users

April 1, 2015 45 / 91

Addition of Medium Term (¥ #) Scheduling

@ Medium-Term (P H1) Scheduler

@ can reduce the degree of multiprogramming
o the scheme is called swapping (% #t): swap in VS. swap out

swap out partially executed swap in
swapped-out processes
ready queue ,CPU! nd

I/0 waitin;
@]
queues

Addition of medium-term scheduling to the queueing diagram

m AR 5 April 1, 2015 46 / 91

Outline

e Process Scheduling

@ Context Switch(ETF Uinik)

u.cn http://staff0117401: Operating S 7 i% April 1, 2015 47 / 91

Context Switch (LT {47d%)

@ CONTEXT (ETF)

@ when an interrupt occurs; When scheduling occurs

the context is represented in the of the process

@ CPU registers

@ process state
@ memory-management info

@ operation: state save VS. state restore

2 xlanchen@ustc.edu.cn http://staff 0117401: Operating System 7+3 z April 1, 2015 48 / 91

Context Switch (LT {47d%)

@ Context switch

@ When CPU switches to another process, the system must save
the state of the old process and load the saved state for
the new process

o Context-switch time is overhead; the system does no useful
work while switching

o Time dependent on hardware support (typical: n us)

@ CPU & memory speed
@ N of registers
@ the existence special instructions

2 xlanchen@ustc.edu.cn http://staff 0117401: Operating tem THHEAURE 5% April 1, 2015 48 / 91

o I

o M Z| gL

o LA EFER

o LT Uik
linux-0.11
linux-2.6.26
uC/0S-11

anchen@ustc.edu.cn http://staff 0117401: Operating ¢ MR R G% April 1, 2015 49 / 91

Outline

e Operation on processes
@ Process Creation
@ Process Termination

u.cn http://staff0117401: Operating S 7 i% April 1, 2015 50 / 91

Operation on processes

@ The processes in most systems can execute concurrently, and
they may be created and deleted dynamically.

@ The 0OS must provide a mechanism for

@ process creation
@ process termination

u.cn http://staff0117401: Operating S 7 i% April 1, 2015 51 / 91

Outline

e Operation on processes
@ Process Creation

u.cn http://staff 0117401: Op: i > T 1% April 1, 2015

Process Creation I

@ Parent process (X ##2) create children processes (F##2),
which, in turn create other processes, forming a tree of

processes

@ Most OSes identify processes according to a unique process
identifier (pid).

@ typically an integer number

@ UNIX & Linux

ps -el

hen@ustc.edu.cn http:// f0117401: Operatin; em T+ FAUR I 5% April 1, 2015 53 / 91

Process Creation II

anchen@ustc n http://

Parent and children

@ Resource sharing

o In general, a process will need certain resources (CPU time,
memory, files, I/0 devices) to accomplish its task.
o When a process creates a subprocesses

@ Parent and children may share all resources, or
@ Children may share subset of parent’ s resources, or
@ Parent and child may share no resources

@ Execution
@ Parent and children execute concurrently
@ Parent waits until children terminate

@ Address space

@ Child duplicate of parent
@ Child has a program loaded into it

lancheneustc.edu.cn http:/, £ 0 01: 0 ing S TR 2 5 i April 1, 2015 55 / 91

UNIX examples: fork + exec

@ fork system call creates new process
@ exec system call used after a fork to replace the process’
memory space with a new program

parent resumes

child

#include <unistd.h>
pid_t fork(void);

#include <unistd.h>

extern char **environ;

int execl(const char *path, const char *arg, ...);
int execlp(const char *file, const char *arg, ...):;
int execle(const char *path, const char *arg,
int execv(const char *path, char *const argv[]);
int execvp(const char *file, char *const argv|]);

*

., char * const envp|]);

April

56 / 91

C Program Forking Separate Process

int main(void) {

pid__t pid;

/* fork another process */

pid = fork();

if (pid < 0) { /* error occurred */
forintf(stderr, “Fork Failed”);
exit(-1);

} else if (pid == 0) { /* child process */
execlp(“/bin/ls”, “Is”, NULL);

}else { /* parent process */
/* parent will wait for the child to complete */
wait (NULL);
printf (“Child Complete”);
exit(0);

anchenou .cn http://staff 0117401: Op m AR 5

April 1, 2015

57 / 91

Outline

e Operation on processes

@ Process Termination

u.cn http://staff0117401: Operating S 7 i% April 1, 2015 58 / 91

Process Termination

@ Process executes last statement and asks the 0S to delete
it by using the exit() system call.

e Output data (a status value, typically an integer) from
child to parent (via wait())
e Process’ resources are deallocated by the 0S

@ Termination can be caused by another process

o Example: TerminateProcess() in Win32

@ Users could kill some jobs.

hen@ustc.edu.cn http:// f0117401: Operatin; tem THHEAURE 5% April 1, 2015 59 / 91

Process Termination

@ Parent may terminate execution of children processes
(abort)

@ Child has exceeded allocated resources
o Task assigned to child is no longer required
o If parent is exiting

Some operating system do not allow child to continue if

its parent terminates

@ All children terminated - cascading termination

@ UNIX Example:

o exit(), wait()
e If the parent terminates, all its children have assigned as
their new parent the init process.

2 xlanchen@ustc.edu.cn http://staff 0117401: Operating System 7+3 z April 1, 2015 59 / 91

Example: echo. Describe the whole life of an

process executing echo

#include <stdio.h>
int main(void){
char string[80];
mnt i
printf(“HELLO! NICE TO MEET YOU!\n”);
for (i=0;i<10;i++){
printf(“Input %d: 7,i);
scanf(“%s”,string);
printf(“You say: %s\n”,string);

/
printf(“GOODBYE!\n”);

xlanchen@ustc.edu.cn http://staff 0117401: Operating System 1 54 April 1, 2015 60 / 91

Outline

e Interprocess Communication (428 i@4{Z, IPC)
@ Shared-Memory systems
@ Message-Passing Systems

u.cn http://staff0117401: Operating S 7 i% April 1, 2015 61 / 91

Interprocess Communication (3 #283:843 » IPC)

@ Processes executing concurrently in the 0S may be either
independent processes or cooperating processes

@ Independent process cannot affect or be affected by the

execution of other processes
@ Cooperating process can affect or be affected by the

execution of other processes

@ Advantages of allowing process cooperation

Information sharing: a shared file VS. several users
@ Computation speed-up: 1 task VS. several subtasks in
parallel with multiple processing elements (such as CPUs or

1/0 channels)
@ Modularity
@ Convenience: 1 user VS. several tasks

@ Cooperating processes require an [IPC mechanism that will
allow them to exchange data and information.

April 1, 2015

hen@ustc.edu.cn http:// f0117401: Operatin; tem THHEAURE 5%

Interprocess Communication (3 #283:843 » IPC)

@ Two fundamental models of IPC
G’ Message-passing (fﬁ:@f?i%) model

@ useful for exchange smaller amount of data, because no
conflicts need be avoided.

@ easier to implement

@ exchange information via system calls such as send(),
receive()

@ Shared-memory (#£F A 4) model

@ faster at memory speed via memory accesses.
@ system calls only used to establish shared memory regions

ProcessA II ProcessA
1
Shared memory :
ProcessB M :2
ProcessB
2| 1
kernel II kernel
(a)Msg passing (b)shared memory

lanchenoustc.edu.cn http://staff 0117401: Op i § em T V3 5%

Outline

e Interprocess Communication (428 i@4{Z, IPC)
@ Shared-Memory systems

u.cn http://staff 0117401: Op: i > T 1% April 1, 2015

Shared-Memory systems

@ Normally, the OS tries to prevent one process from
accessing another process s memory.

@ Shared memory requires that two or more processes agree to
remove this restriction.

o They can exchange information by R/W data in the shared
areas.

@ The form of data and the location are determined by these
processes and not under the 0S’ s control.

@ The processes are responsible for ensuring that they are not
writing to the same location simultaneously.

2 xlanchen@ustc.edu.cn http://staff 0117401: Operating . April 1, 2015 64 / 91

Example: Producer-Consumer Problem

(&7 & -8 % A& =)

@ Producer-Consumer Problem (& & #-74 % A » PCl7 AR):
Paradigm for cooperating processes

o producer (%4 7 #) process produces information that is
consumed by a consumer (7§ % #) process.

anchen@ustc.edu.cn http://staff 0117401: Operating ¢ t+E 545 April 1, 2015 65 / 91

Example: Producer-Consumer Problem

(&7 & -8 % A& =)

@ Producer-Consumer Problem (4 & &-74 % & 9# » PCIe#1):
Paradigm for cooperating processes

o producer (%4 & #) process produces information that is
consumed by a consumer (7§ % #) process. Example:

. assembly code object models
complier assembler loader

anchen@ustc.edu.cn http://staff 0117401: Operating ¢ MR R G% April 1, 2015 65 / 91

Example: Producer-Consumer Problem

(&7 & -8 % A& =)

@ Producer-Consumer Problem (4 & #-74 % &9 » PCIe| A):
Paradigm for cooperating processes

e producer (4 7 #) process produces information that is
consumed by a consumer (7§ % #) process.

@ Shared-Memory solution

@ a buffer of items shared by producer and consumer

pro ducer consumer

hen@ustc.edu.cn http:// f0117401: Operatin; tem THHEAURE 5% April 1, 2015 65 / 91

Example: Producer-Consumer Problem

(&7 & -8 % A& =)

@ Producer-Consumer Problem (4 & #-74 % &9 » PCIe| A):
Paradigm for cooperating processes

e producer (4 7 #) process produces information that is
consumed by a consumer (7§ % #) process.

@ Shared-Memory solution

@ a buffer of items shared by producer and consumer

pro ducer consumer

@ Two types of buffers

@ unbounded-buffer places no practical limit on the size of
the buffer
@ bounded-buffer assumes that there is a fixed buffer size

anchen@ustc.edu.cn http://staff 0117401: Operating MR EG% April 1, 2015 65 / 91

Bounded-Buffer — Shared-Memory Solution

while (true) {
/* Produce an item */
while (((in + 1) % BUFFER_SIZE) == out)
: /* do nothing — no free buffers */
buffer[in] = item;
in = (in + 1) % BUFFER SIZE;

while (true) {

while (in == out)
#define BUFFER SIZE 10 ; // do nothing — nothing to consume
typedef struct {

// remove an item from the buffer

} item:“ item = buffer[out];

’ out = (out + 1) % BUFFER SIZE;
item buffer[BUFFER SIZE];) AR (I8
int in = 0; // index of the next empty buffer

int out = 0; // index of the next full buffer
@ all empty? all full?
@ Solution is correct, but can only use BUFFER SIZE-1

April 1, 201F 66 / 91

Outline

e Interprocess Communication (428 i@4{Z, IPC)

@ Message-Passing Systems

u.cn http://staff0117401: Operating S 7 i% April 1, 2015 67 / 91

Message-Passing Systems

@ Message passing (fﬁ4@f%i%)

@ provides a mechanism for processes to communicate and to
synchronize their actions without sharing the same address
space.

@ processes communicate with each other without resorting to
shared variables

@ particularly useful in a distributed environmet.

@ IPC facility provides at least two operations:
Q send(message) — message size fixed or variable
(2] receive(message)
@ If process P and Q wish to communicate, they need to:
@ establish a communication link between them
@ cxchange messages via send/receive
@ Implementation of communication link

@ physical (e.g., shared memory, hardware bus)
@ logical (e.g., logical properties)

2 xlanchen@ustc.edu.cn http://staff 0117401: Operating tem THHEAURE 5% April 1, 2015 68 / 91

Implementation Questions

@ How are links established?
@ Can a link be associated with more than two processes?

@ How many links can there be between every pair of
communicating processes?

@ What is the capacity of a 1ink?

@ Is the size of a message that the link can accommodate
fixed or variable?

@ Is a link unidirectional or bi-directional?

anchen@ustc.edu.cn http://staff 0117401: Operating ¢ +HEARE 5% April 1, 2015 69 / 91

Communication

@ Processes must name each other explicitly:

o send(P, message) - send a message to process P
o receive(Q, message) - receive a message from process Q

@ Properties of communication link in this scheme

@ Links are established automatically

@ A link is associated with exactly one pair of communicating
processes

@ Between each pair there exists exactly one link

o The link may be unidirectional, but is usually bi-directional

@ Symmetry VS asymmetry

o send(P, message)
o receive(id, message) - receive a message from any process

lanchen@ustc.edu.cn http://staff 0117401: 0 ing System 7 L3 5% April 1, 2015 70 / 91

Communication

@ Messages are directed and received from mailboxes (also
referred to as ports)

o Each mailbox has a unique id (such as POSIX message queues)
@ Processes can communicate only if they share a mailbox
@ Primitives are defined as:

@ send(A, message) — send a message to mailbox A
@ receive(A, message) — receive a message from mailbox A

@ Properties of communication link in this scheme

Link established only if processes share a common mailbox

A link may be associated with more than two processes

Each pair of processes may share several communication links
Link may be unidirectional or bi-directional

lanchen@ustc.edu.cn http://staff 0117401: 0 ing System 7 L3 5% April 1, 201¢ 71 / 91

Communication

@ Mailbox sharing problem

e P1, P2, and P3 share mailbox A
@ P1, sends; P2 and P3 receive
o Who gets the message?

@ Solutions to choose

@ Allow a link to be associated with at most two processes

@ Allow only one process at a time to execute a receive
operation

@ Allow the system to select arbitrarily the receiver. Sender
is notified who the receiver was.

2 xlanchen@ustc.edu.cn http://staff 0117401: Operating tem THHEAURE 5% April 1, 2015 71 / 91

Communication

@ Who is the owner of a mailbox?

@ a process

@ only owner can receive messages through its mailbox, others
can only send messages to the mailbox.
@ when the process terminates, its mailbox disappears.

e the 0S

@ the mailbox is independent and is not attached to any
particular process.

@ Operations

@ create a new mailbox
(3 send/receive messages through mailbox
© destroy a mailbox

u.cn http://staff0117401: Operating S 7 i% April 1, 2015 71 / 91

Synchronization

@ Message passing may be either blocking or non-blocking
@ Blocking is considered synchronous

@ Blocking send has the sender block until the message is
received

e Blocking receive has the receiver block until a message is
available

@ Non-blocking is considered asynchronous

e Non-blocking send has the sender send the message and
continue

@ Non-blocking receive has the receiver receive a valid
message or null

@ Difference combinations are possible.

@ If both are blocking ;zrendezvous(ﬁ%%}yi)

@ The solution to PC problem via message passing is trivial
when we use blocking send()/receive.

2 xlanchen@ustc.edu.cn http://staff 0117401: Operating tem THHEAURE 5% April 1, 2015 72 / 91

Buffering

@ Queue of messages attached to the link; implemented in one
of three ways

@ Zero capacity — 0 messages
Sender must wait for receiver (rendezvous)

© Bounded capacity — finite length of n messages
Sender must wait if link full

Q Unbounded capacity — infinite length
Sender never waits

anchenou .cn http://st 0117401: Op m TR E 5 April 1, 2015 73 / 91

Outline

e Example of IPC Systems
@ POSIX Shared Memory
@ Mach
@ Windows XP

u.cn http://staff 0117401: Op

April 1, 2015 74 / 91

Outline

e Example of IPC Systems
@ POSIX Shared Memory

u.cn http://staff0117401: Operating S 7 i% April 1, 2015 75 / 91

POSIX Shared Memory

POSIX API for shared memory

#include<sys/ipc.h>

#include<sys/shm.h>

int shmget(key_t key, size_t size, int shmflg);

int shmetl(int shmid, int cmd, struct shmid__ds *buf);

#include<sys/types.h>

#include<sys/shm.h>

void* shmat(int shmid, const void* shmaddr, int shmflg);
int shmdt(const void* shmaddr);

% 2 xlanchenoustc.edu.cn http://staff 0117401: Operating System T+JHU/R 2 5% April 1, 2015 76 / 91

POSIX Shared Memory

C program illustrating POSIX shared-memory API

#include <stdio.h>
#include <sys/shm.h>
#include <sys/stat.h>

int main(){
int segment_id;
char* shared_memory;
const int size = 4096;

segment_id = shmget(IPC_PRIVATE, size, S IRUSR|S IWUSR);
shared_memory = (char*) shmat(segment id, NULL, 0);

sprintf(shared memory, “Hi there!”);
printf(“%s\n” ,shared memory);

shmdt(shared memory);
shmctl(segment id, IPC_RMID, NULL);
return 0;

anchenou . 0117401 : ing System Tt A AR 7 April 1, 2015 76 / 91

POSIX Shared Memory

#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>
#include <sys/stat.h>

int main(void) {
key_t key;
int shm_id;
const int shm_size=4096;
char * shm_addr;

key=ftok(“.” ,” m’);

shm_id=shmget(key,shm_size, IPC_CREAT|IPC_EXCL|S_IRUSR|S_IWUSR

shm_addr=(char*)shmat(shm_id,0,0);

sprintf(shm_addr,” hello, this is 11111111\n”);
printf(“111111:”);

printf(shm_addr);

sleep(10);

printf(“111111:”);

printf(shm_addr);

shmdt(shm_addr);

shmct1(shm_id, IPC_RMID,0);

return 0;

);

0117401: Operating Syste

POSIX Shared Memory

program using shared memory: program?2
#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>
#include <sys/stat.h>

int main(void) {
key_t key;
int shm_id;
const int shm size=4096;
char * shm_addr;
key=ftok(“.” ,” m’);
5hm7id=shmgct(key, shm_size,S_IRUSR | 871WUSR) H

shm_addr=(char*)shmat(shm_id,0,0);

printf(“22222222:”);

printf(shmiaddr) B

sprintf(shm_addr,“ this is 22222222\n”);
shmdt(shmﬁaddr) H

return 0;

April

Outline

e Example of IPC Systems

@ Mach

m AR 5 April 1, 2018 77 / 91

Outline

e Example of IPC Systems

@ Windows XP

u.cn http://staff0117401: Operating S 7 i% April 1, 2015 78 / 91

LPC in Windows XP

@ Subsystems

@ application programs can be considered clients of the
Windows XP subsystems server.

@ application programs communicate via a message-passing
mechanism: local procedure-call (LPC) facility.

@ Port object: two types

@ connection ports: named objects, to set up communication
channels
e communication ports

@ for small message, use the port’ S message queue

@ for a larger message, use a section object, which sets up a
region of shared memory.
this can avoids data copying

lanchen@ustc.edu.cn http://staff 0117401: 0 ing System T 30 4% April 1, 201¢ 79 / 91

LPC in Windows XP

@ Local procedure calls in Windows XP.

Client Server
Connection
request Corninection | Handle
Port [

Handle Client

Communication Port

Server
Communication Part

Shared
Section Object
(< =256 bytes)

Handle

Figure 3.17 Local procedure calls in Windows XP.

79 / ¢

Outline

e Communication in C/S Systems

u.cn http://staff0117401: Operating S 7t i% April 1, 2015 80 / 91

Client-Server Communication

@ Sockets (BHEF)
@ Remote Procedure Calls (i@A2it #4278 JF » RPC)
@ Remote Method Invocation (@A 7 AP F » RMI) (Java)

xlanchen@ustc.edu.cn http://staff 0117401: Operating System 1 VR 5% April 1, 2015 81 / 91

Sockets (BHF)

@ A socket is defined as an endpoint for communication

o Concatenation of IP address and port
@ The socket 161.25.19.8:1625 refers to port 1625 on host
161.25.19.8

@ Communication consists between a pair of sockets
host X
(146.86.5.20)

socket

(146.86.5.20:1625)
web server

(161.25.19.8)

socket
(161.25.19.8:80)

anchenou .cn http://st 0117401: Op m TR E 5 April 1, 2015 82 / 91

Remote Procedure Calls(iz#2:3 4218, RPC)

@ Remote procedure call (RPC) abstracts procedure calls
between processes on networked systems.

@ Stubs — client-side proxy for the actual procedure on the
server.

@ The client-side stub locates the server and marshalls the
parameters.

@ The server-side stub receives this message, unpacks the
marshalled parameters, and peforms the procedure on the
server.

xlanchen@ustc.edu.cn http://staff 0117401: Operating System 1 54 April 1, 2015 83 / 91

Remote Procedure Calls(:z#2

=4

$4 | A, RPC)

@ Execution of a remote precedure call (RPC)

client

user calls kernel
to.send RPC
mossage to
procedure X

kernel sends
message to
matchmaker to
findt port number|

messages

From: client
To: server
Port: matcl

server

kernel places
port P in user
RPG message

Re: address
for RPC X'

matchmaker
receives
message, looks
Up answer

l

kernel sends
RPC

From: server
To: client
Por

rt: kemel
Re: RPC X
Port: P

From: client
To: server

matchmaker
replies fo client
with port P

kernel leceives

reply, passes
it to user

Port: port P
<conlents>

From: RPG
Port: P

daemon
listening lo
port P receives.
message

To: client
Port: kemel
<output>

Gaemon
processes
request and
processes send
output

pril 1

015

Remote Method Invocation(iT#2 7 /%78 H, RMI)

@ Remote Method Invocation (RMI) is a Java mechanism similar

to RPCs.

@ RMI allows a Java program on one machine to invoke a method
on a remote object.

JVM

program

remote
object

lanchen@ustc.edu.cn http:/,

taff 0117401:

Op

5%

84 / 91

Remote Method Invocation(iT#2 7 /%78 H, RMI)

@ Marshalling Parameters

client

remote object

val = server.someMethod(A,B)

‘ stub

{

boolean someMethod (Object x, Object y)

implementation of someMethod

skeleton

A, B, someMethod

boolean return value

u.cn http://staff 0117401: Op

April 1, 2015

84 / 91

Outline

Q 14AtL

anchen@ustc

N2

% BRI AT I R WAT 09 KA
o $HEMFH A K

@ Seriel execution of programs (/7 895 #4T)

@ Concurrent execution of programs (#2583 & #47)
Process Concept

@ the Processes

@ Process State

@ Process Control Block (PCB)

Process Scheduling

@ Process Scheduling Queues

@ Schedulers

@ Context Switch(LT sUindk)

Operation on processes

@ Process Creation

@ Process Termination

Interprocess Communication (3##4%8 1815, IPC)
@ Shared-Memory systems

@ Message-Passing Systems

Example of IPC Systems

@ POSIX Shared Memory

@ Mach

@ Windows XP

e Communication in C/S Systems

A 2 Fe A Ak

lanchenoustc.edu.cn http://staff 0117401: O i S em T I 5%

86 / 91

@ Read related code in Linux or uC/0S-II

@ Subsubsection “An Example: Mach” of subsection
“Examples of IPC Systems”

@ Subsubsection “An Example: Windows XP” of subsection
“Examples of IPC Systems”

@ Subsection “Communication in Client-Server Systems”

anchenou .cn http://st 0117401: Op m TR E 5 April 1, 2015

87 / 91

AN X —FZREALPOHAREFRLIELEH (L PHREIHE —

o
RE X —KBERAATOREART] (KRG R/ FRHND| /P A BALIN

o WAAZXANUNT| LIEN—ANRARF T — st A0 R4 o

&2 xlancheneustc.edu.cn http://staff 0117401: Operating System T+ AU/ 2 5% April 1, 2015 88 / 91

£ b

o #2578 F HATA H EPAT A L F R Z 4 ?
o T+ A &Bernsteinf# ?
o Tf%?@ﬁ/]“u é7

S;ta=5—x;
Sy ib=a-x;
S3ic=4-x;
S4:d=b+c;
S;ie=d+3
° uﬂﬁ'li@

Q EYASAS; AT I L ATH) > WSz AeS, X T A L IATHY o
o MiZZEJ2ARIMEALAMX Bl » XL PP XTHAEZGTL
7| H B4 o

@ iE1inux-0.1169 AR » X 3| L # A2 HIB LM A ST o
HAlinux-0. 11 P # BN RAR LR X Z -

&2 xlanchenoustc.edu.cn http://staff0117401: Operating System THILALRIE 5% April 1, 2015 89 / 91

o LA .
o k¥ SEMAEE
o LEARFE
o IOR KA /CPUE £
o H#F FET L

anchen@ustc.edu.cn http://staff 0117401: Operating ¢ MR R G% April 1, 2015 90 / 91

ik J

anchen@ustc n http://

	多道程序技术和程序并发执行的条件
	多道程序技术的难点
	Seriel execution of programs (程序的顺序执行)
	Concurrent execution of programs (程序的并发执行)

	Process Concept
	the Processes
	Process State
	Process Control Block (PCB)

	Process Scheduling
	Process Scheduling Queues
	Schedulers
	Context Switch(上下文切换)

	Operation on processes
	Process Creation
	Process Termination

	Interprocess Communication (进程间通信, IPC)
	Shared-Memory systems
	Message-Passing Systems

	Example of IPC Systems
	POSIX Shared Memory
	Mach
	Windows XP

	Communication in C/S Systems
	小结和作业

