0117401: Operating System

TENNRIESIgT

Chapter 9: Virtual Memory(E %)

&=
xlanchen@ustc.edu.cn
http://staff.ustc.edu.cn/~xlanchen

Computer Application Laboratory, CS, USTC @ Hefei
Embedded System Laboratory, CS, USTC @ Suzhou

May 13, 2015

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRES51&T May 13, 2015

ATERMMANTIEES),
EEiIRE RV EFEE.

AErmigs HIFITEIE,

B&& = xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRIE51&T May 13, 2015 2/74

0 Background

e Demand Paging (12 F&18M)
e Copy-on-Write (SRt & l)
© Page Replacement (TTE Bik)
e Allocation of Frames

e Thrashing ($:31)

e Memory-Mapped Files

e Allocating Kernel Memory
e Other Issues

@ Operating System Examples

@ wnreL

k&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System &R 5% May 13, 2015 3/74

0 Background

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRE51&T May 13, 2015 4774

Background

@ Instructions must be loaded into memory before execution.
@ Solutions in chapter 8:

Program entire Physical memory

@ Sometimes, jobs may be too big or too many.
How to expand the main memory?

e Physically? COST TOO HIGH!
e Logically? /

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRE51&T May 13, 2015

Background

@ Virtual memory: Why and How?

e Some code may get no, or only little, opportunity of execution,
for example, code for error handlers

e Some data may get no opportunity of access

o Locality of reference (2 FRIEE04ERIE), 1968, Denning

e Temporal locality (B8] /FERHE)
@ Spatial locality (Z[8]FEB1H)

e Idea: partly loading (E853% A\). demand loading
(FRFEHRAN). replacement (Ek)

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRE51&T May 13, 2015

Background

@ Virtual Memory (EE3TEf#23)
ERABBEKEEINENERIIGE, ENEEELRATFEE
INCAF ZER —MIFfERR R 4R

o Logical size:

NRBREES: NEEE +IIMFEE

MHERRRES: It ATETER; RFEE +IMFRE
@ Speed: close to main memory
e Cost per bit: close to secondary storage (disks)

@ Virtual memory : separation of user logical memory from

physical memory.
e Only part of the program needs to be in memory for execution
o Logical address space can therefore be much larger than physical
address space
o Allows address spaces to be shared by several processes
e Allows for more efficient process creation

May 13, 2015 5/74

B&&E = xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EH/RE 5%

Background

page 0
age 1

s <
EE N
EE N
— EE N
* EEN

O0od
memory map .

page v physical memory

virtual memory

Example: virtual memory that is larger than physical memory

B&& = xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EH/RE 5% May 13, 2015 5/74

Background

@ Virtual memory can be implemented via:
@ Demand paging

@ Paging technology +
pager (i§KiED1) and page replacement
@ Pager VS. swapper
the unit of swapping in/out is not the entire process but page.

©@ Demand segmentation

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRE51&T May 13, 2015

FEHATF RS HYASIE

Q Xt REEMEIE

o — MRS MZ RRARFIEIT
Q ittt

o RVFAEHIZGITHILIER, (#%7) HARKRE
O E#lE

o B EMIH 7

o EMMERLAZ KT HRIE I ERLAY,
o Z XM HRMR BTSN N ECHEM LM

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRES51&T May 13, 2015 6/74

Virtual-address Space (Rt 31k ZS [8])

@ The virtual address space of a process refers to

the logical (or virtual) view of how a process is Max
stored in memory. stack
o Typically: 0~xxx & exists in contiguous memory |

@ In fact, the physical memory are organized
(partitioned) in page frames & the page frames

assigned to a process may not be f
contiguous=MMU heap
data
0 code

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRE51&T May 13, 2015 7174

@ Shared library using virtual memory

stack stack

— - -~ ~
shared library shared pages shared library|
— —
t f

heap heap

data data

code code

© Shared memory
© Speeding up process creation

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRES51&T May 13, 2015 8/74

© Demand Paging (FREFT)
@ Basic Concepts (Hardware support)
@ Performance of Demand Paging

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRE51&T May 13, 2015 9/74

Demand Paging (3 ZEifM)

@ Do not load the entire program in physical memory at program
execution time.
NO NEED!

@ Bring a page into memory only when it is needed

@ Less /0 needed

@ Less memory needed
© Faster response

@ More users

@ A page is needed <« Reference to it

e Invalid reference =-Abort
e Not-in-memory =-Bring to memory

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRE51&T May 13, 2015

Demand Paging (3 ZEifM)

@ Swapper VS. Pager

e A swapper manipulates the entire processes
o Lazy swapper

Never swaps a page into memory unless the page will be needed
@ Swapper that deals with individual pages is a pager

>

swap out o] 10J 201 30
program A 4lf! Sﬂ Gﬁ 7lﬁ

8 otond

1200130140150

program B }\gwap in_|16LT7LA8L190)
2001210J22[1230]

~

main memory

Example: Transfer of a paged memory to contiguous disk space

lanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ &#l/RIE 5i&1 May 13, 2015 10/74

a Demand Paging (3% FifAMN)
@ Basic Concepts (Hardware support)

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRE51&T May 13, 2015 11/74

Hardware support

@ The modified page table mechanism
© Page fault

© Address translation

© Secondary memory (as swap space)

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRES51&T May 13, 2015 12/74

1) The modified page table mechanism

@ Valid-Invalid Bit (PRESENT bit) Frame# valid-invalid bit
e With each page table entry a valid-invalid =
bit is associated v
@ VvV =-in-memory, i = not-in-memory \|/
e Initially valid-invalid bit is set to i on all
entries i
e During address translation, if i
valid-invalid bit in page table entry is i = page table
page fault

© Reference bits (for pager out)
© Modify bit (or dirty bit)
© Secondary storage info (for pager in)

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRES51&T May 13, 2015 13/74

1) The modified page table mechanism

@ Page table when some pages are not in main memory

0

1
0_A valid-invalid 2 Q
1 B frame# /bit 3
2 ¢ 1A EEE
3D 5
4 E 6] € H
5| F 7 D]
ofs ‘= |=em
logical memory ~ Page table 10 RN

11 ~_

12

13

14

15

physical memory

B&& = xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EH/RE 5% May 13, 2015 13/74

2) Page Fault (TR TT1#IFE)

@ First reference to a page will trap to OS:
page fault(#k T3/ A%/ W)

@ Page fault trap (FRT1IR &)

o Exact exception (trap), {&HFE
Restart the process in exactly the same place and state.
Re-execute the instruction which triggered the trap

@ Execution of one instruction may cause multiply page faults

B:
B e Page fault may occur at every memory

reference

A
B @ One instruction may cause multiply page

faults while fetching instruction or r/w

2
[MOVABI— operators

Example: One instruction and 6 page faults

w b U1 O

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRES51&T May 13, 2015

2) Page Fault (fiRT1#4[Z)

@ Page Fault Handling:
@ OS looks at an internal table to decide:

@ Invalid reference = abort
@ Just notin memory =

©Q Get empty frame
© Swap page into frame

@ Pager out & pager in

© Modify the internal tables & Set validation bit = v
© Restart the instruction that caused the page fault

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRES51&T May 13, 2015

2) Page Fault (fiRT1#4[Z)

load M

3 page is on backing store

operating system

!

trap
1 reference
6 restart
instructio
5 reset Teelfiame 4 bring in\/
page table missing page

physical memory

Steps in handling a page fault

B&& = xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRIE51&T

May 13, 2015

14774

3) address translation

@ Address translation hardware + page fault handling

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRES51&T May 13, 2015 15/74

Resume the execution

@ Context save ({fR7FI17)
Before OS handling the page fault, the state of the process must
be saved

e Example: record its register values, PC
@ Context restore (k€ H117)

The saved state allows the process to be resumed from the line
where it was interrupted.

@ NOTE: distinguish the following 2 situation

o Illegal reference=-The process is terminated
o Page fault= Load in or pager in

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRES51&T May 13, 2015 16 /74

© Demand Paging (FREFT)

@ Performance of Demand Paging

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRE51&T May 13, 2015 17174

Performance of Demand Paging

@ Let p = Page Fault Rate (0 < p < 1.0)
e If p =0, no page faults
e If p=1.0, every reference is a fault

@ Effective Access Time (EAT)

EAT = (1—p)x memory access
+p x page fault time

page fault time = page fault overhead
+swap page out
+swap page in
+restart overhead

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRE51&T May 13, 2015

Performance of Demand Paging

@ Example

e Memory access time = 200ns
o Average page-fault service time = 8ms

EAT = (1—-p)x200+p x8ms
= (1—p) x 200+ p x 8,000,000
200 + p x 7,999, 800

@ If one access out of 1,000 causes a page fault, then

p = 0.001
EAT = 8,199.8ns = 8.2us

This is a slowdown by a factor of 525 = 40!!

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRE51&T May 13, 2015

Performance of Demand Paging

@ Example

@ Memory access time = 200ns
e Average page-fault service time = 8ms

EAT = (1—-p)x200+p x8ms
= (1—p) %200+ p x 8,000,000
200 + p x 7,999, 800

@ If we want performance degradation < 10%, then
EAT =200+ p x 7,999,800 < 200 (1+ 10%) =220

P x 7,999,800 < 20
p < 20/7,999,800 ~ 0.0000025

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRE51&T May 13, 2015 18/74

Method for better performance

@ To keep the fault time low

@ Swap space, faster then file system

© Only dirty page is swapped out, or

© Demand paging only from the swap space, or

© Initially demand paging from the file system, swap out to swap
space, and all subsequent paging from swap space

@ Keep the fault rate extremely low
e Localization of program executing

@ Time, space

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRES51&T May 13, 2015 19/74

© Copy-on-write (BBt E)

k&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EH1RIE 5% May 13, 2015 20/74

Process Creation

@ Virtual memory allows other benefits during process creation:

@ Copy-on-Write (Bat &)
© Memory-Mapped Files (later)

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRES51&T May 13, 2015 21/74

Copy-on-Write (5 it & fl)

@ Copy-on-Write (COW, S £ fll)

e allows both parent and child processes to initially share the same
pages in memory

o If either process modifies a shared page, only then is the page
copied

@ COW allows more efficient process creation as only modified
pages are copied

@ Free pages are allocated from a pool of zeroed-out pages

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRE51&T May 13, 2015 22/74

Copy-on-Write (5 it & fl)

@ Example:

process; physical memory processs

| PpageA 1

| L pageB

—L» pageC 1 |

Before Process 1 Modifies Page C

B&&E = xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EH/RE 5% May 13, 2015 22/74

Copy-on-Write (5 it & fl)

@ Example:

process; physical memory process,

| — PpageA <—L

| L— pageB — |

pageC 1 |

copy of page C

After Process 1 Modifies Page C

B&&E = xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EH/RE 5% May 13, 2015 22/74

@ rage Replacement (TE E#)

@ Basic Page Replacement
First-In-First-Out (FIFO) Algorithm
Optimal Algorithm
Least Recently Used (LRU) Algorithm
LRU Approximation Algorithms
Counting Algorithms
Page-Buffeing Algorithms

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRE51&T May 13, 2015 23/74

What happens if there is no free frame?

@ Page replacement (T1E &%)
Find some page in memory, but not really in use, swap it out

e Algorithm?

e Performance?
want an algorithm which will result in minimum number of page
faults

@ Same page may be brought into memory several times

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRES51&T May 13, 2015 24/74

Need of Page Replacement (T EH & #) I

@ Free page frame is managed by OS using free-frame-list
@ Over-allocation: No free frames; All memory is in use.

. valiéi—invalid Q
rame# /bit
(1) | g M 3 v/ 0[monitor
PC— 0a
4v]
2 I{/l 5 |v 2 D
3 i
logical memory age table 3 H
or user 1 or user 1 4| load M
5.) @
6 A
valid-invalid - E
0_A frame# /bit physicalmemory ~ ~__ =~
11 B 6 |v
i
2l D 2 v
3 E 7 v
logical memory page table
or user 2 for user 2

Example of over-allocation

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRES51&T May 13, 2015 25/74

Need of Page Replacement (TIE &) II

@ What happens if there is no free frame?

@ Solution:

Page replacement (F17E & i)
Prevent over-allocation of memory by modifying page-fault
service routine to include page replacement

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRES51&T May 13, 2015 26/74

@ Page Replacement (TIE &%)
@ Basic Page Replacement

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRE51&T May 13, 2015 27 /74

Basic Page Replacement

@ Basic Page Replacement

@ Find the location of the desired page on disk
@ Find a free frame:

o Ifthereis a free frame, use it
@ If thereis no free frame, use a page replacement algorithm to select
a victim frame

© Bring the desired page into the (newly) free frame;
Update the page and frame tables
© Restart the process

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRE51&T May 13, 2015 28/74

Basic Page Replacement

frarrf# valid-invalid bit
/

page
f V|4 reset page
table for victim -

new page |
page table ‘W

desired page

2 change 1 swap out ,D
i| toinvalid y
\/

physical memory

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRES51&T May 13, 2015 28/74

Basic Page Replacement

@ NO MODIFY, NO WRITTEN (to disk/swap space)
e Use modify (dirty) bit to reduce overhead of page transfers
@ Only modified pages are written to disk
e This technique also applies to read-only pages
@ For example, pages of binary code

@ Page replacement completes separation between logical memory
and physical memory

e Large virtual memory can be provided on a smaller physical
memory
@ Demand paging, to lowest page-fault rate, two major problems

@ Frame-allocation algorithms
© Page-replacement algorithms

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRE51&T May 13, 2015 28/74

Page Replacement Algorithms

@ GOAL: to lowest page-fault rate

@ Different algorithms are evaluated by running it on a particular
string of memory references (reference string) and computing the
number of page faults on that string

@ A reference string is
a sequence of addresses referenced by a program
Example:
e An address reference string:
0100 0432 0101 0612 0102 0103 0104 0101 0611 0103 0104 0101
06100102 0103 0104 0101 0609 0102 0105
e Assuming page size = 100 B, then its corresponding page reference
string is:
14161616161

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRES51&T May 13, 2015 29/74

Page Replacement Algorithms

© How many page faults?

e Determined by the number of page frames assigned to the process
o For the upper example: 14161616161

o If > 3, then only 3 page faults
e If =1, 11 pages faults

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRES51&T May 13, 2015 29/74

Page Replacement Algorithms

© How many page faults?

e Determined by the number of page frames assigned to the process
@ For the upper example: 14161616161

@ If > 3, then only 3 page faults
o If =1, 11 pages faults

o N B~ O
T T T

number of page faults

S
T

1 I i | 1 i
1 2 3 4 5 6
number of frames

Graph of Page Faults Versus The Number of Frames

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRES51&T May 13, 2015 29/74

Page Replacement Algorithms

@ In all our examples, the reference strings are

Q 1,2341,251,23,4,5
@70120304230321,201,70,1

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRES51&T May 13, 2015 29/74

@ rage Replacement (TE E#)

@ First-In-First-Out (FIFO) Algorithm

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRE51&T May 13, 2015 30/74

First-In-First-Out (FIFO) Algorithm

@ The simplest page-replacement algorithm: FIFO

o For each page: a time when it was brought into memory
e For replacement: the oldest page is chosen
e Data structure: a FIFO queue

@ Replace the page at the head of the queue
@ Insert a new page at the end of the queue

@ Example 1: 15 page faults, 12 page replacements

o 4 2 3 0 8 2 1 2
2| [4] 4] 4] o 0| [o]
0] o] [o] [8] [3

reference string
7 0 1 2 0 3

page frames

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRE51&T May 13, 2015 31/74

First-In-First-Out (FIFO) Algorithm

©Q Reference string:
1,2,3,41,2,51,2,3,4,5

o If 3 frames

1 5
2 3 9 page faults
3 4
o If 4 frames
1 4
2 5 10 page faults
3
4

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRE51&T May 13, 2015 31/74

First-In-First-Out (FIFO) Algorithm

@ More memory, better performance? MAY BE NOT!!

e Belady’ sanomaly (DIK#RENER):
more frames = more page faults

16|
1) 14
=
& 121
©
2 10|
o
6 8}k
3
£ 6
>
[= 4_
2_
1 | 1 1 | 1
1 2 3 4 5 6 7
number of frames

FIFO illustrating Belady’ s Anomaly

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRE51&T May 13, 2015

@ rage Replacement (TE E#)

@ Optimal Algorithm

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRE51&T May 13, 2015 32/74

Optimal Algorithm

@ Optimal page-replacement algorithm:
Replace page that will not be used for longest period of time

o It has the lowest page-fault rate
e It will never suffer from Belady’ s anomaly

@ Example1: 9 page faults, 6 page replacements

reference string
7 01 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1

page frames

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRE51&T May 13, 2015 33/74

Optimal Algorithm

@ 4 frames example
1,2,3,41,25/1,2,3,45

6 page faults

@ OPT: Difficult to implement
e How to know the future knowledge of the reference string?

@ So, itis only used for measuring how well other algorithm
performs

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRE51&T May 13, 2015

@ rage Replacement (TE E#)

@ Least Recently Used (LRU) Algorithm

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRE51&T May 13, 2015 34/74

Least Recently Used (LRU) Algorithm

@ LRU: an approximation of the OPT algorighm
Use the recent past as an approximation of the near future
e To replace the page that has not been used for the longest period
of time

e For each page: a time of its last use
e For replace: the oldest time value

@ Examplel: 12 page faults; 9 page replacements

eference string
7 0 1 2 0 3 0 3 0 3 2 2 0 1 7 0 A1

page frames

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRE51&T May 13, 2015 35/74

Least Recently Used (LRU) Algorithm

@ LRU: an approximation of the OPT algorighm
Use the recent past as an approximation of the near future

e To replace the page that has not been used for the longest period
of time

e For each page: a time of its last use
e For replace: the oldest time value

© Referencestring: 1,2,3,4,1,2,5,1,2,3,4,5

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRE51&T

May 13, 2015 35/74

Least Recently Used (LRU) Algorithm

HOW to implement LRU replacement?
@ Counter implementation

e Every page entry has a counter;
every time page is referenced through this entry, copy the clock
into the counter

e When a page needs to be changed, look at the counters to
determine which are to change

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRE51&T May 13, 2015 35/74

Least Recently Used (LRU) Algorithm

HOW to implement LRU replacement?
© Stack implementation - keep a stack of page numbers in a double
link form:
e When page referenced: Move it to the top
@ Requires 6 pointers to be changed
o No search for replacement

reference string
4 7 07 1 01 2 1t 2 7 1 2

stack
before
a

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRE51&T May 13, 2015 35/74

@ rage Replacement (TE E#)

@ LRU Approximation Algorithms

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRE51&T May 13, 2015 36/74

LRU Approximation Algorithms

@ Reference bit

e With each page associate a bit, initially =0
e When page is referenced bit set to 1
@ Replace the one which is 0 (if one exists)

@ We do not know the order, however

@ Additinal-Reference-Bits Algorithm:
Reference bits + time ordering, for example: 8 bits
e HW modifies the highest bit, only

e Periodically, right shift the 8 bits for each page
e 00000000, ..., 01110111, ..., 11000100, ..., 11111111

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRE51&T May 13, 2015

LRU Approximation Algorithms

@ Second chance (clock) Algorithm
o Need only 1 reference bit, modified FIFO algorithm

@ First, a page is selected by FIFO
@ Then, the reference bit of the page is checked:

O=-replace it
1=-not replace it, get a second chance with reference bit: 1—0, and

time—current

37/74

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRE51&T May 13, 2015

LRU Approximation Algorithms

© Second chance (clock) Algorithm
e Implementation: Clock replacement

@ Clock order

refir‘?snce pages refir:nce pages
[[
[o] [e]

fetm (o]

[
a = e
|
13

circular queue of pages circular queue of pages

(a)

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRE51&T May 13, 2015 37/74

LRU Approximation Algorithms

© Enhanced Second-Chance Algothm

o Reference bit + modify bit
e 4 page classes (ia)fiz, {&e4fi)

(0, 0) - best page to replace

(0, 1) - not quite as good

(1, 0) - probably be used again soon

(1, 1) - probably be used again soon, and be dirty

@ Replace the first page encountered in the lowest nonempty class.

@ Scan for (0, 0)
@ Scanfor (0, 1), & set reference bits to 0
© Loop back to step (a)

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRE51&T May 13, 2015 37/74

@ rage Replacement (TE E#)

@ Counting Algorithms

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRE51&T May 13, 2015 38/74

Counting Algorithms

@ Counting algorithms:
Keep a counter of the number of references that have been made
to each page

@ LFU Algorithm: replaces page with smallest count

© MFU Algorithm: based on the argument that the page with the
smallest count was probably just brought in and has yet to be
used

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRES51&T May 13, 2015 39/74

@ rage Replacement (TE E#)

@ Page-Buffeing Algorithms

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRE51&T May 13, 2015 40/ 74

Page-Buffeing Algorithms

@ System commonly keep a pool of free frames
@ When replacement occurs, two frames are involved
@ A free frame from the pool is allocated to the process
@ The desired page is read into the frame
@ A viction frame is chosen

@ Written out later and the frame is added to the free pool

@ NO NEED to write out before read in

@ An expansion

e Maintain a list of modified pages
e When a paging device is idle, select a modified page, write it out,
modify bit—0

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRE51&T May 13, 2015 41/74

Page-Buffeing Algorithms

@ Another modification

@ Free frame with old page
e The old page can be reused

@ Less write out and less read in

o VAX/VMS
@ Some UNIX: + second chance
o ...

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRE51&T May 13, 2015

e Allocation of Frames

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRE51&T May 13, 2015 42 /74

Allocation of Frames

@ Minimum number of pages

e Each process needs minimum number of pages
o Determined by ISA (Instruction-Set Architecture)

@ We must have enough frames to hold all the different pages that any
single instruction can reference

e Example: IBM 370
6 pages to handle SS MOVE instruction:

@ Instruction is 6 bytes, might span 2 pages
@ 2 pages to handle from
@ 2 pages to handle to
@ Two major allocation schemes
e Fixed allocation; priority allocation
© Two replacement policy
e Global vs. local

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRES51&T May 13, 2015

Allocation scheme 1: Fixed Allocation

@ Equal allocation
For example, if there are 100 frames and 5 processes, give each
process 20 frames.

m
frame number for any process = Y
m = total memory frames
n = number of processes

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRE51&T May 13, 2015 44/ 74

Allocation scheme 1: Fixed Allocation

© Proportional allocation
Allocate according to the size of process

@ example:
m = 64
s; = size of process p; S, = 10
5 = s s, = 127
m = total number of frames 10
. Si ap = — x64=5
a; = allocation for p; = T xm 137
127
as = — x64~059
2 137 °

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRE51&T May 13, 2015 44/ 74

Allocation scheme 1: Priority Allocation

@ Use a proportional allocation scheme using priorities rather than
Size
@ If process P; generates a page fault,
@ Select for replacement one of its frames

@ Select for replacement a frame from a process with lower priority
number

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRES51&T May 13, 2015 45/74

Replacement policy: Global vs. Local Allocation

@ Global replacement

process selects a replacement frame from the set of all frames;
one process can take a frame from another

e Problem: a process cannot control its own page-fault rate

@ Local replacement
each process selects from only its own set of allocated frames

@ Problem?

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRES51&T May 13, 2015 46 /74

e Thrashing (¥1zf1)
@ Cause of trashing
@ Working-Set Model (T fESE1&HY)
@ Page-Fault Frequency (ERTIER)

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRE51&T

May 13, 2015 47174

@ Thrashing (313h)

@ Cause of trashing

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRE51&T May 13, 2015 48 /74

Thrashing (#1z0)

@ If a process does not have “enough” pages, the page-fault rate
is very high. This leads to:

e Low CPU utilization
@ OS thinks that it needs to increase the degree of multiprogramming
@ Another process added to the system, getting worse!

@ Thrashing = a process is busy swapping pages in and out

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRE51&T May 13, 2015 49 /74

Thrashing (#1z0)

@ Cause of trashing: unreasonable degree of multiprogramming
(AEENSERERFE)

thrashing

CPU utilization

degree of multiprogramming

May 13, 2015 49/74

B&&E = xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EH/RE 5%

Thrashing (#1z0)

@ How to limit the effects of thrashing

o Local replacement algorithm? not entirely sloved.

e We must provide a process with as many frames as it
needs-locality

e How do we know how many frames is needed?

@ working-set strategy <Locality model

@ Locality model: This is the reason why demand paging works
@ Process migrates from one locality to another
@ Localities may overlap

@ Why does thrashing occur?
Ysize of locality > total memory size

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRE51&T May 13, 2015 49 /74

Thrashing (3}z5)

34

a2

28

i | }'1““”}"“‘ ‘u:‘*'!}‘::‘f‘f:‘!r‘ %h'
R TR ‘ '

i

U | 001 nHI i” I
wnm Mu : s 11
1|mw L | ”'\ ‘h o
el il it -
| ; il ” L “\II ol
i e T s

K |
T T

oxaculion lime ——»

Locality In A Memory-Reference Pattern

lanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ &#l/RIE 511

May 13, 2015

49/74

@ Thrashing (313h)

@ Working-Set Model (T{E£EEHY)

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRE51&T May 13, 2015 50/ 74

Working-Set Model (T {ESE1&RY)

@ The working-set model is based on the assumption of locality.

o let
A = working — set window

= a fixed number of page references
For example: 10,000 instructions

@ Working set (TfE£E):
The set of pages in the most recent A page references.

e An approximation of the program’ s locality.

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRE51&T May 13, 2015

Working-Set Model (T {ESE1&RY)

@ Example: A =10

page reference table
...2815777751623412344434344413234443444...
A | A |
4 t
WS(t,) = {1,2,5,6,7} WS(t,) ={3.4)

@ Working set size:

WSS;(working set of Process P;)
= total number of pages referenced in the most recent A

e Varies in time, depend on the selection of A

@ if A too small will not encompass entire locality
@ if A too large will encompass several localities
© if A = oo = will encompass entire program

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRE51&T May 13, 2015 51/74

Working-Set Model (T {ESE1&RY)

@ For all processes in the system, currently

D = XWSS; = total demand frames

@ D > m = Thrashing
e Policy:
if D > m, then suspend one of the processes

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRE51&T May 13, 2015 51/74

Keeping Track of the Working Set

@ Approximate with: interval timer + reference bits
@ Example: A = 10,000

e Timer interrupts after every 5000 time units
e Keep in memory 2 bits for each page
e Whenever a timer interrupts, copy and sets the values of all
reference bits to 0
o If one of the bits in memory = 1 = page in working set
@ Why is this not completely accurate?

o IN!! But where?

@ Improvement:

@ 10 bits and interrupt every 1000 time units

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRES51&T May 13, 2015

e Thrashing (333)

@ Page-Fault Frequency (ERTTSR)

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRE51&T May 13, 2015 53/74

Page-Fault Frequency Scheme

@ Page-Fault Frequency: helpful for controlling trashing

e Trashing has a high page-fault rate.
e Establish “acceptable” page-fault rate

@ If actual rate too low, process loses frame
@ If actual rate too high, process gains frame

@ .
5 increase number
= of frames
3
K upper bound
@
o
©
o
lower bound
decrease number
of frames

number of frames

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRES51&T May 13, 2015

Working sets and page fault rates

working set
| i
1 | |
I 1
| !
i 1
|
page 1 1
fault : :
rate I "
I 1
| i
1 1
0 ; '

time

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRES51&T May 13, 2015 55/ 74

e Memory-Mapped Files

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRE51&T May 13, 2015 56 /74

Memory-Mapped Files

@ Memory-mapped file I/0
allows file I/0 to be treated as routine memory access by
mapping a disk block to a page in memory

@ Afile is initially read using demand paging. A page-sized portion
of the file is read from the file system into a physical page.
Subsequent reads/writes to/from the file are treated as ordinary
memory accesses.

@ Simplifies file access by treating file I/0 through memory rather
than read() write() system calls

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRES51&T May 13, 2015 57/74

Memory-Mapped Files

@ Also allows several processes to map the same file allowing the
pages in memory to be shared

1
2

1 3

3

2 4

3 5

4 i 6

5

6 4

Process A R | Process B

phisical memo

h5d |
k file

213
dis

B&& = xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EH/RE 5% May 13, 2015 57/74

Shared Memory in Windows using Memory-Mapped

I/0

process;

shared
memory

T memory-mapped file

shared
memory

processs

shared
memory

k&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EH1RIE 5%

May 13, 2015

58/74

Memory—mapped 1/0

@ Many computer architectures provide memory-mapped /0

@ Ranges of memory addresses are set aside and are mapped to the
device registers.

Directly read/write the mapped range of memory address for
transfer data from/to device registers

Fast response times

For example: video controler

@ Displaying text on the screen is almost as easy as writing the text into
the appropriate memory-mapped locations.

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRES51&T May 13, 2015 59/74

@ Allocating Kernel Memory

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRE51&T May 13, 2015 60 /74

Allocating Kernel Memory

@ Kernel memory
Treated differently from user memory

@ Process’ s logical (virtual) address space VS. kernel address space

o different privilege
@ allow page fault or not?

@ Often allocated from a free-memory pool

e Kernel requests memory for structures of varying sizes
e Some kernel memory needs to be contiguous

© Buddy system ({kf¥Z %)
@ Slab allocator (slab% B2 28)

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRES51&T May 13, 2015

1. Buddy System ({kf & %)

@ Allocates memory from
fixed-size segment consisting of physically-contiguous pages
@ Memory allocated using power-of-2 allocator
e Satisfies requests in units sized as power of 2
@ Request rounded up to next highest power of 2
e When smaller allocation needed than current size is available,
current chunk split into two buddies of next-lower power of 2,
continue until appropriate sized chunk available
physically contiguous pages

256 KB ‘
I L
[1
‘ 128 KB ‘ ‘ 128 KB ‘
AL AR
‘ 64 KB ‘ ‘ 64 KB ‘
By Br

@ s

Buddy System Allocator

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRES51&T May 13, 2015 62/74

2. Slab Allocator (slab% E228) I

@ Slab allocator: Alternate strategy

kernel objects caches ~ slabs
L \\
3KB d —
objects
=
7 KB D\ /
objects L
Lo //
D/ physical contiguous pages

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRES51&T May 13, 2015 63/74

2. Slab Allocator (slab% E228) 11

@ Slab is one or more physically contiguous pages

e Cache consists of one or more slabs
@ Single cache for each unique kernel data structure

@ Each cache filled with objects - instantiations of the data structure

e When cache created, filled with objects marked as free
e When structures stored, objects marked as used
e If slab is full of used objects, next object allocated from empty slab

@ If no empty slabs, new slab allocated

@ Benefits: no fragmentation, fast memory request satisfaction

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRES51&T May 13, 2015 64/74

e Other Issues

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRE51&T May 13, 2015 65/74

@ Prepaging

o To reduce the large number of page faults that occurs at process
startup

@ Prepage all or some of the pages a process will need, before they
are referenced

o But if prepaged pages are unused, I/0 and memory was wasted

@ Assume s pages are prepaged and « of the pages is used

@ Is cost of s x o save pages faults > or < than the cost of prepaging
s (1 — &) unnecessary pages?
@ « near zero = prepaging loses

© Page Size

o Page size selection must take into consideration:

@ Fragmentation
@ Table size

© 1/0 overhead
O Locality

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRES51&T May 13, 2015

© TLB Reach - The amount of memory accessible from the TLB
o TLB Reach = (TLB Size) x (Page Size)

@ Ideally, the working set of each process is stored in the TLB,
Otherwise there is a high degree of page faults

@ Increase the Page Size.
This may lead to an increase in fragmentation as not all applications
require a large page size

@ Provide Multiple Page Sizes.
This allows applications that require larger page sizes the
opportunity to use them without an increase in fragmentation

© Inverted page tables

@ This can reduce the memory used to store page tables.
o Need an external page table (one per process) for the infomation
of the logical address space

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRES51&T May 13, 2015 66 /74

Other Issues

© Program structure

int[128,128] data; // Each row is stored in one page

Program 1

Program 2

for (j = 0; j <128; j++)
for (i=0;i<128; i++)
datali,j] = 0;

for (i=0;i<128; i++)
for (j=0; j < 128; j++)
datali,j] = 0;

128 x 128 = 16,384 page

faults 128 page faults

B&& = xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EH/RE 5% May 13, 2015

@ 1/0 Interlock - Pages must sometimes be locked into memory

e Consider I/0 - Pages that are used for copying a file from a device
must be locked from being selected for eviction by a page
replacement algorithm

buffer j =0
disk drive

Reason why frames used for I/0 must be in memory

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRES51&T May 13, 2015 66 /74

@ Operating System Examples

k&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EH1RIE 5% May 13, 2015 67/74

Operating System Examples

@ Windows XP
@ Solaris

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRES51&T May 13, 2015 68 /74

Windows XP

@ Uses demand paging with clustering. Clustering brings in pages
surrounding the faulting page.
@ Processes are assigned working set minimum and working set
maximum
@ 50~345 pages
e Working set minimum is the minimum number of pages the
process is guaranteed to have in memory,
e A process may be assigned as many pages up to its working set
maximum
e When page fault:
@ if <working set maximum, allocates a new page

@ if =max, uses local page-replacement policy
@ When the amount of free memory in the system falls below a
threshold, automatic working set trimming is performed to
restore the amount of free memory

e Working set trimming removes pages from processes that have
pages in excess of their working set minimum

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRES51&T May 13, 2015 69 /74

@ Maintains a list of free pages to assign faulting processes

e Parameter lotsfree- threshold (amount of free memory) to begin
paging, 1/64 the size of physical memory
e check the amount of free pages 4 times per second

@ Paging is performed by pageout process using modified
second-chance algorithm (with two hands)

o Desfree- threshold parameter to increasing paging

e Minfree- threshold parameter to being swapping

@ Scanrate is the rate at which pages are scanned. This ranges from
slowscan to fastscan

e Pageout is called more frequently depending upon the amount of
free memory available

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRES51&T May 13, 2015 70/ 74

Solaris 1I

8192
fastscan

scan rate

100
slowscan

T l 1
minfree desfree lotsfree
amount of free memory

Solaris 2 page scanner

B&& = xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRIE51&T

May 13, 2015

71174

Q@ aERrEL

&&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRE51&T May 13, 2015 72/74

0 Background

e Demand Paging (12 F&18M)
e Copy-on-Write (SRt & l)
© Page Replacement (TTE Bik)
e Allocation of Frames

e Thrashing ($:31)

e Memory-Mapped Files

e Allocating Kernel Memory
e Other Issues

@ Operating System Examples

@ wnreL

k&= xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System &R 5% May 13, 2015 731774

11 ! |

B&& = xlanchen@ustc.edu.cn http://staff.ust0117401: Operating System i+ EHRIE51&T May 13, 2015 74174

	Background
	Demand Paging (按需调页)
	Basic Concepts (Hardware support)
	Performance of Demand Paging

	Copy-on-Write (写时复制)
	Page Replacement (页面置换)
	Basic Page Replacement
	First-In-First-Out (FIFO) Algorithm
	Optimal Algorithm
	Least Recently Used (LRU) Algorithm
	LRU Approximation Algorithms
	Counting Algorithms
	Page-Buffeing Algorithms

	Allocation of Frames
	Thrashing (抖动)
	Cause of trashing
	Working-Set Model (工作集模型)
	Page-Fault Frequency (缺页频率)

	Memory-Mapped Files
	Allocating Kernel Memory
	Other Issues
	Operating System Examples
	小结和作业

