0117401: Operating System

SR 5%

Chapter 13: 10 Systems (IO%HH)

RE=
xlanchen@ustc.edu.cn
http://staff.ustc.edu.cn/~xlanchen

Computer Application Laboratory, CS, USTC @ Hefei
Embedded System Laboratory, CS, USTC @ Suzhou

June 1, 2016

.cn http://staff 0117401: Operatin TR RS & June 1, 2016

=i
TR
P2
Al

AT ERME A TIEES],
EEIRE FRYEFRE,

ANEERE FEITHIE,

http://staff 0117401: Operating System TTHEAJRH S

° 1/0 Hardware

@ Polling (RiA =)

o Interrupts (FRETA)

@ Direct Memory Access (DMAFT)

@ 1/0 hardware summary
e Application 1/0 Interface

@ Block and Character Devices

@ Network Devices

@ Clocks and Timers

@ Blocking (Kﬂ%) and Nonblocking (Eﬂfﬁﬂ%) 1/0
e Kernel 1/0 Subsystem

@ 1/0 Scheduling

Buffering (Z&i#/LHH])

Caching, Spooling & device reservation

1/0 Protection

o

o

@ Error Handling

o

@ Kernel Data Structures

o Transforming 1/0 Requests to Hardware Operations

Performance
NEEFAFEL

.cn http://staff 0117401: Operatin tem THEN R S5& June 1, 2016

Chapter Objectives

@ Explore the structure of an 0S's 1/0 subsystem.
@ Discuss the principles of 1/0 hardware and its complexity.

@ Provide details of the performance aspects of 1/0 hardware
and software.

du.cn http: aff 0117401: June 1, 2016 4 / 56

1%
5a

Overview

@ 1/0 devices

@ vary widely

@ The control of devices connected to the computer is a major

concern of OS designers.

How OS manages and controls various peripherals? J

.edu.cn http://staff 0117401: Op

° 1/0 Hardware
@ Polling (R =)
@ Interrupts (R AT
@ Direct Memory Access (DMAJFT)
@ 1/0 hardware summary

fi7& = xlanchena edu.cn http://staff0117401: Operat ystem HENEH 5% June 1, 2016 6/ 56

1/0 Hardware

@ Incredible variety of 1/0 devices

<
Processor—memory @
sybsystem @
“ cache @
hi .
graphics bridge/memory 4| memory, | SCST controller
ontroller

monitor processor

SCSI bus

controller

i _ T bus:
PCI bu T o
Wires & protocals

Fas1() device

IDE disk controller expansion bus interface

\
Slow devace \—Fexpansion busj—‘)
I I

@ @ parallel serial

port port

SR

1/0 Hardware

@ Common concepts : CPU—PORT—BUS—Controller
e Port (imO)
o Bus (2%) (daisy chain(3{L#E) or shared direct access)

@ PCI (Peripheral Component Interconnect(4MEREsfEEE))
@ SCSI (Small computer systems interface)
@ Expansion bus

e Controller (#=#I8§) (host adapter)
@ How can the processor command controller?

o Controller has one or more registers for data and control
signals.

@ The processor communicates with the controller by reading
and writing bit patterns in the registers.

u.cn http: aff 0117401: 1T % 1 51% June 1, 2016

1/0 Hardware

@ Two communication techniques:

@ Direct I/0 instructions

@ Access the port address

@ Each port typically contains of four registers, i.e
control, data-in and data-out.

@ Instructions: In, out

., status,

@ Memory-mapped I/0

@ Example: 0xa0000 ~ Oxfffff are reserved to ISA graphics cards
and BIOS routines

@ Some systems use both techniques.

cn http://staff 0117401: Operat tem THEN R S5& June 1, 2016

5a

1/0 Hardware

@ 1/0 address range

Device I/0 Port Locations on PCs (partial)

I/O address range .
(hexadecimal) device

000-00F DMA controller
020-021 interrupt controller
040-043 timer
200-20F game controller
2F8-2FF serial port (secondary)
320-32F hard-disk controller
378-37F parallel port
3D0-3DF graphics controller
3F0-3F7 diskette-drive controller
3F8-3FF serial port (primary)

u.cn http:// 0117401 er em 1% 5% June 1, 2016

1/0 Control Methods

@ Polling (Feil)730)

@ Interrupts (M=)

Q@ DMA (DMATED)

Q@ (EW+ L. THEENHE

du.cn http://staff 0117401: Operatir tem THEN R S5& June 1, 2016

Outline

° 1/0 Hardware
@ Polling (Bi7=L)

.edu.cn http://staff 0117401: Op

Polling (#1H)7770)

@ Need handshaking (iE=F)

@ State of device

@ command-ready

@ In command register
@ 1: a command is available for the controller

@ busy

@ In status register
@ 0: ready for the next command; 1: busy

Q Error

@ To indicate whether an 1/0 is ok.

u.cn http: aff 0117401: it & 1 53% June 1, 2|

Polling (#1H)7770)

@ Basic handshaking notion for writing output

Host repeatedly reads the busy bit until it is O

@ Host sets write bit in command register and writes a byte
into data-out register

© Host sets command-ready bit

@ Vhen controller notices command-ready, sets busy bit

e Controller gets write command and data, and works

G’ Controller clears command-ready bit, error bit and busy bit

@ Stepl: Busy-wait cycle to wait for I/0 from device
=polling

.cn http://staff 0117401: Operatin tem THEN R S5& June 2016 10 / 56

° 1/0 Hardware

@ Interrupts (R AT

.cn http://staff 0117401: Op

Interrupts (HHT/7=0)

@ CPU Interrupt-request line triggered by 1/0 device
@ Interrupt handler receives interrupts
@ Basic interrupt scheme

@ Raise — Catch — Dispatch — Clear

1 8259
__,| master

Devices[[:l> I;‘

— 8259

. slave

- CPU 0S

—
—

u.cn http:// 0117401: er em 1% 1 51% June 1, 2016

Interrupts (HHT/7=0)

@ Interrupt-Driven 1/0 Cycle

CPU
1

—>

I/0 controller

device driver initiates 1/0 \\\\\\\\\‘

interrupts between instructions

CPU executing checks for

initiates I/0

Y

CPU receiving interrupt,
transfers control to

interrupt handler

input ready, output
complete, or error
generates interrupt signal

5

interrupt handler
processes data,
returns from interrupt

6

CPU resumes
processing of
interrupted task

Interrupts (HHT/7=0)

@ More sophisticated interrupt-handling features:
Most CPU have two interrupt request line.

@ Nonmaskable
© Maskable to ignore or delay some interrupts

@ Efficient dispatching without polling the devices

° Interrupt vector: to dispatch interrupt to correct
handler

e Interrupt chaining: to allow more device & more
interrupt handlers

@ Distinguish between high- and low-priority interrupts:

e Interrupt priority: the handling of low-priority
interrupts is deferred without masking, even preempted.

@ Interrupt mechanism also used for exceptions

du.cn http: aff 0117401: i EN RS & June 1, 2016

Interrupts (HHT/7=0)

@ Example:

Intel Pentium Processor

Event-Vector Table

vector vector
description description
number number
0 divide error 11 segment no present
1 debug exception 12 stack fault
2 null interrupt 13 general protection
3 breakpoint 14 page fault
4 INTO-detected overflow 15 (Intel reserved, do not use)
5 bound range exception 16 floating-point error
6 invalid opcode 17 alignment check
7 device not available 18 machine check
8 double fault 19-31 (Intel reserved, do not use)
9 coprocessor segment overrun (reserved) 32-255 maskable interrupts
10 invalid task state segment

Outline

° 1/0 Hardware

@ Direct Memory Access (DMAJFT)

taff 0117401 : i stem &% June 1, :

Direct Memory Access (DMAJTT()

e Direct Memory Access (DMAAT():

Used to avoid programmed 1/0 for large data movement.
and bypasses CPU to transfer data directly between
I/0 device and memory

@ Requires DMA controller

e the host prepares a DMA command block in memory

@ a pointer to the source of a transfer
@ a pointer to the destination of the transfer
@ a count of the number of bytes to be transfered

@ CPU writes the address of the DMA command block to DMA
controller, and then goes on with other work.

du.cn http: aff 0117401: 115 5%

June 1, 2016 14 / 56

Direct Memory Access (DMAJTT()

@ Handshaking between DMA controller & device controller

@ Device controller raises DMA-request when one word is
available

@ DMA controller seizes memory bus. places the desired
address on memory-address wires, and raises DMA-acknowledge

© Device controller transfers the word to memory, and

removes the DMA-request signal. Goto 1

@ DMA controller interrupts the CPU.

June 1, 2016 14 / 56

1%
5a

du.cn http: aff 0117401:

Direct Memory Access (DMAJTT()

@ Six Step Process to Perform DMA Transfer

1. device driver is told
to transfer disk data to CPU
buffer at address X.

5. DMA controller
transfers bytes to

2. device driver tells
disk controller to trans—
fer C bytes from disk to

buffer X, increasing

dd d cache
memory é rc,ss ar.l . buffer at address X
decreasing C until C=0
6. when C=0, DM DViA/bus/ X
. when C=0, ,A interrupt)7CPU memory bus—| memory
interrupts CPU to signal
X) controller
transfer completion I
(} | ‘ PCI bus)

IDE disk
controller

@ Cycle stealing: when DMA seizes the memory bus, CPU is
momentarily prevented from accessing main memory

3. disk controller initiates
DAM transfer

4. disk controller sends each
byte to DMA controller

Outline

° 1/0 Hardware

@ 1/0 hardware summary

taff 0117401 : i stem &% June 1, :

1/0 hardware summary

A bus
A controller
An 1/0 port and its registers

The handshaking relationship between the host and a device
controller

The execution of this handshaing in a pooling loop via
interrupts

the offloading of this work to a DMA controller for large
transfer

du.cn http: aff 0117401: i EN RS & June 1, 2016 16 / 56

e Application 1/0 Interface
@ Block and Character Devices
@ Network Devices
@ Clocks and Timers

@ Blocking (PHZE) and Nonblocking (JEFHZE) 1/0

edu.cn http://staff 0117401: Operati stem THENEH 5% June 1, 2016

1/0 control challenges

@ Wide variety of devices
@ Two challenges

Applications — OS « Devices

o How can the 0OS give a convenient, uniform I/0 interface to
applications?

@ How can the OS be designed such that new devices can be
attached to the computer without the OS being rewritten?

@ For device manufacturers, device-driver layer hides
differences among 1/0 controllers from kernel

.cn http://staff 0117401: Operating tem THEANEHE 5%

1/0 control challenges

kernel
[9)
—
o
2
Fo kernel I/0 subsystem
3
SCST keyboard| mouse PCI bus | floppy ATAPI
device | device | device ... device | device | device
driver | driver | driver driver | driver | driver
SCSI | keyboard| mouse PCI bus | floppy ATAPI
device | device | device e device | device | device
¢ ¢ontrolletontrollegontrolle ontrolletontrolletontrolle
15}
s | | I | I |
£ ATAPT
f1 —| |devides
scst PR O
. eyboard | mouse LA PCI bus disk (disks,
devices .
drives tapes,
drives)

A Kernel I/0 Structure

.cn http:/, £ 011740 i tem LRI 5%

Application I/0 Interface

@ For applications, I/0 system calls encapsulate device
behaviors in generic classes

o EMIME: NMARFSAFRNYERELRK -

@ Device-driver layer hides differences among 1/0 controllers
from kernel

@ Devices vary in many dimensions

Character-stream or block

Sequential or random-access

Sharable or dedicated

Speed of operation

read-write, read only, or write only

du.cn http: aff 0117401:

1%
5a

June 1, 2016

Characteristics of I/0 Devices

’ aspect ‘ variation example
data-transfer mode | character terminal
block disk
access method sequential modem
random CD-ROM
transfer schedule synchronous tape
asynchronous keyboard
sharing dedicated tape
sharable keyboard
device speed latency
seek time
transfer rate
delay between operations
1/0 direction read only CD-ROM
write only graphics controller
read-write disk

£.0117401:

Major Device Access Conventions

Block 1/0
Character-stream 1/0
Memory-mapped file access
Network sockets

Clock and Time

du.cn http: aff 0117401: June 1, 2016 21 / 56

1%
5a

Outline

e Application 1/0 Interface
@ Block and Character Devices

taff 0117401 : i stem &% June 1, :

Block and Character Devices

@ Block devices include disk drives

o Commands include read, write, seek
e Raw I/0 or file-system access
@ Memory-mapped file access possible

@ Character devices include keyboards, mice, serial ports

@ Commands include get, put
e Libraries layered on top allow line editing

u.cn http: aff 0117401: it & 1 53% June 1, 2|

Outline

e Application 1/0 Interface

@ Network Devices

taff 0117401 : i stem &% June 1, :

Network Devices

@ Varying enough from block and character to have own
interface

@ Unix and Windows NT/9x/2000 include socket interface

@ Separates network protocol from network operation
@ Server — socket, bind, listen, accept

@ Client — socket, connect

@ Includes select functionality

@ Approaches vary widely (pipes, FIFOs, streams, queues,
mailboxes)

.cn http://staff 0117401: Operating tem THEANEHE 5%

Outline

e Application 1/0 Interface

@ Clocks and Timers

taff 0117401 : i stem &% June 1, :

Clocks and Timers

@ Provide current time, elapsed time, timer
@ Hardware clocks
@ Real Time Clock (RTC, SEATEYHH)

@ Time Stamp Counter (TSC, BY[a]Biit#%Es
@ Programmable Interval Timer (PIT, ®]4miZ[8]fRERTES

@ used for timings, periodic interrupts

@ ioctl (on UNIX) covers odd aspects of 1/0 such as clocks
and timers

edu.cn http://staff 0117401: Oper: S 115 June 1, 2016

Clocks and Timers

@ Real Time Clock (RTC, SKREfAYEh)

Integrated with CMOS RAM, always tick.
Seconds from 00:00:00 January 1, 1970 UTC

@ Can be used as an alarm clock

@ IRQ8
@ Interrupt frequency: 2HZ78192HZ

1/0 address (port no): 0x70, 0x71
Example:

@ Motorola 146818: CMOS RAM + RTC

o Second<«s year, month, date, week HOW?

du.cn http: aff 0117401: i EA R S& June 1, 2016

Clocks and Timers

@ Time Stamp Counter (TSC, Bf[E)BEit%428)
@ 64bit TSC register in the processor
@ Pentium and after
@ Incremented at each clock signal on CLK input pin

@ example: CPU frequency 400MHZ
adds 1 per 2.5 ns = adds 400 x 10° per second

@ Instruction: rdtsc
e How to know CPU frequency?

u.cn http: aff 0117401: 115 5% June 1, 2

Clocks and Timers

@ Programmable Interval Timer (PIT, ®]4RiZiEIFBEATES)

e 8253, 8254

e Issues time interrupt in a programmable time internal

o Can also be used to calculate processor frequency during
boot up.

e 8253

@ 14,3178 MHz crystal =4,772,727 Hz system clock =-1,193,180 Hz
to 8253
@ using 16 bit divisor = interrupt every 838 ns = 54.925493 ms

%
5a

June 1, 2

u.cn http: aff 0117401:

e Application 1/0 Interface

@ Blocking (PHZE) and Nonblocking (JEFHZE) 1/0

f5# £ xlanchene edu.cn http://staff 0117401: Operat ystem HENEH 5% June 1, 2016 28

Blocking (PHZE) and Nonblocking (FEFHZE) 1/0

@ Blocking (BHZE) — process suspended until 1/0 completed

e Easy to use and understand
o Insufficient for some needs

) Nonblocking (JFPHZE) — 1/0 call returns as much as
available

o User interface, data copy (buffered I1/0)
o Implemented via multi-threading

@ Returns quickly with count of bytes read or written

e Asynchronous (F#) — process runs while 1/0 executes

@ Difficult to use
@ 1/0 subsystem signals process when I1/0 completed

du.cn http: aff 0117401: O

1%
5a

June 1, 2016

Two 1/0 Methods

user

kernel

hardware

Requesting process

device driver
waiting

Interrupt handler

Hardware
data transfer

time ——>

(a)

Synchronous

user

kernel

hardware

T Requesting process

device driver

Interrupt handler

Hardware
data transfer

time ——>

(®)

Asynchronous

em THENEH 5% June 1, 2016

30 / 56

.cn http://staff 01

e Kernel 1/0 Subsystem
@ 1/0 Scheduling
Buffering (Z&{HHLH])

Caching, Spooling & device reservation

1/0 Protection

o

o

@ Error Handling

o

@ Kernel Data Structures

du.cn http: aff 0117401: Operatir

%
5a

June 1, 2016 31 / 56

Kernel 1/0 Subsystem Services

@ Kernel I/0 Subsystem Services

1/0 Scheduling
Buffering

Caching

Spooling

Device reservation
Error handling

v

du.cn http: aff 0117401: i EN RS & June 1, 2016

Outline

e Kernel 1/0 Subsystem
@ 1/0 Scheduling

.edu.cn http://staff 0117401: Op; E 1T % June 1, 2016

1/0 Scheduling

@ I/0 scheduling:
To schedule a set of I/0 requests means to determine a
gOOd order in which to execute them

e Origin order: the order in which applictions issue system
calls: May NOT the best order!

@ Scheduling can

o Improve overall system performance
@ Share device access fairly among processes
e Reduce the average waiting time for I/0 to complete

@ Example: Disk read request from Apps.
Appl: O; App2: 100; App3: 50;
Now at 100;
The OS may serve the applications in the order App2, App3,
Appl.

June 1, 2016 34 / 56

1%
5a

du.cn http: aff 0117401:

1/0 Scheduling

@ OS maintaining a wait queue of request for each device

e Device-status

Table

request for
line printer
address: 38546
length: 1372

T 1

devic card reader 1
status: idle

device: line printer &
status: busy

device: disk unit 1
status: idle

device: disk unit 2
status: idle

device: disk unit 3
status: busy -

o I/0 scheduling,

request for
disk unit 3

file: xxx
operation: read
address: 43046
length: 20000

request for =
disk unit 3

file: yyy
operation: write
address: 03458
length: 500

Some OSes try fairness, some not

1/0 Scheduling

@ Another way to improve performance is by using storage
space in main memory or on disk
o Buffering (ZE{HLHI)
e Caching
@ Spooling

cn http://staff 0117401: Operat tem THEN R S5& June 1,

e Kernel 1/0 Subsystem

@ Buffering (%‘{EP*JL%U)

cn http://staff 0117401: Operat tem THEN R 5% June 1,

Buffering (ZZ{HAHLH])

e Buffering (£EH#H)

@ Buffer — A memory area that stores data while they are
transferred between two devices or between a device and an
application

@ Store data in memory while transferring between devices
@ Why buffering?

@ To cope with device speed mismatch.
Example: Receive a file via modem and store the file to
local hard disk.
@ Speed: The modem is about a thousand times slower than the
hard disk.
@ Two buffers are used.

u.cn http: aff 0117401: it & 1 53% June 1, 2|

Buffering (ZZ{HAHLH])

e Buffering (£EH#H)

@ Why

Buffer — A memory area that stores data while they are
transferred between two devices or between a device and an
application

Store data in memory while transferring between devices

buffering?
To cope with device transfer size mismatch.
Example: Send/receive a large message via network.

@ At sending side: the large message is fragmented into small
network packets.

@ At receiving side: the network packets are placed in a
reasembly buffer.

cn http://staff 0117401: Operat tem THEN R S5& June 1,

Buffering (ZZ{HAHLH])

e Buffering (£EH#H)

@ Buffer — A memory area that stores data while they are
transferred between two devices or between a device and an
application

@ Store data in memory while transferring between devices

@ Why buffering?
G’ To maintain “copy semantics”
Example: When write() data to disk, it first copy the data
from application's buffer to a kernel buffer.

u.cn http: aff 0117401: it & 1 53% June 1, 2|

Buffering (ZZ{HAHLH])

@ Sun Enterprise 6000 Device-Transfer Rates

gigaplane
bus

SBUS

SCSl bus

fast
ethernet

hard disk

ethernet

laser
printer

modem
mouse

keyboard

17401: Op:

Buffering (Z&{H4/L

@ Single buffer (B4£%)
@ APP.workspace M} 0S.buffer M)
@ Suppose the computing time of APP is T,
if current T¢ can parallel with the next Ty,

we have Tuyerage = max (Te, Tr) 4 Ty
user APP
Compute (Tc)

workspace 08 LlﬁFHSfer buffer device input 1/0 device
W

Ty

Device

0s

. Tyl T2 Ti3 Ti4
Device
T, T Ty
0s vl il yl
Te Tel Tcl
APP L - - t

£0117401: Op

Buffering (ZZ{HAHLH])

@ Double buffer (&)
o ~max(Tc,Tr); BHEHIAN (Tc < Tr) BEESOATE (Tc > Tr)

user APP 0s
Compute (Tc)
|-
$ 1/0 device
]

. Trl (buffer 1) T12 (buffer 2) T3 (buffer 1)
Device
Ty
0s sl
Tcl
APP . N

edu.cn http://staff 0117401: Operati stem THENEH 5% June 1, 2016

Buffering (ZZ{HAHLH])

@ Double buffer (X&)

@ Another usage of single buffer and double buffers: in
communication between two machines

machine A machine B

machine A machine B

Send Receive
Buffer Buffer
Buffer D D Buffer Receive Send

Buffer Buffer

single buffer

£0117401: Op

Buffering (ZZ{HAHLH])

@ Circular buffer (fEHLEH)
o Multiple (types of) buffers + multiple buffer pointers

@ Empty buffers and Next;;
Full buffers and Nextg:
the current buffer in consumption

@ Similar to the PC problem.
@ Buffer pool (Z£&ith)

o HI=Fh, ZRiMX2%& MK
o MfRmMEMXFAR. HEAINEITH

edu.cn http://staff 0117401: Operati stem THENEH 5% June 1, 2016

Outline

e Kernel 1/0 Subsystem

@ Caching, Spooling & device reservation

taff 0117401 : i stem &% June 1, :

Caching, Spooling & device reservation

@ Caching - fast memory holding copy of data
e Always Just a copy
e Key to performance

@ Spooling - hold output for a device

e Dedicated device can serve only one request at a time

@ Spooling is a way of dealing with I/0 devices in a
multiprogramming system

o Example: Printing

@ Device reservation - provides exclusive access to a
device

@ System calls for allocation and deallocation
@ Watch out for deadlock

June 1, 2016

1%
5a

du.cn http: aff 0117401:

Spooling

e Out-line I/0 (Bi#L1/0), fEMSMEHL (peripheral
machine)

Input peripheral

e machine -

E peripheral Output
= machine device
A

@ SPOOL:

Simultaneous Peripheral Operation On-Line
(GMER I B ERHLHATIRAE, (BRARAL)

@ Dedicated device — sharable device

e Using processes of multiprogramming system

7= xlanchena edu.cn http://staff0117401: Operat vstem THEARHE S June 1, 2016 39 / 56

Spooling

e SPOOL:
Simultaneous Peripheral Operation On-Line
(OMER R B BRI TERAE, (ERBHAL)
e Structure
Input-well (EjAH), output-well (HjHFE)
Input-buffer, output-buffer

°
°
@ Input-process SP;,, output-process SP,,
@ Requested-queue

SPi, SPout
Input device
2 *{ Input buffer } } Input-well ‘
4 Output buffer } }Output—well‘
Output device [«
memory disk

£0117401: Op

Outline

e Kernel 1/0 Subsystem

@ Error Handling

taff 0117401 : i stem &% June 1, :

Error Handling

@ OS can recover from disk read, device unavailable,
transient write failures

o Example: read() again, resend(), ..., according to some
sepecified rules

@ Most return an error number or code when 1/0 request
fails

e System error logs hold problem reports

du.cn http: aff 0117401: June 1, 2016 41 / 56

1%
5a

Outline

e Kernel 1/0 Subsystem

@ 1/0 Protection

taff 0117401 : i stem &% June 1, :

1/0 Protection I

@ User process may accidentally or
purposefully attempt to disrupt
normal operation via illegal 1/0 .
instructions trap to

monitor

kernel

2
@ To prevent users from perform 1/0
performing illegal I/0

@ A1l I/0 instructions defined to

3
return

be privileged g to user
o I/0 must be performed via g user
system calls : program

@ Memory-mapped and I/0 port
memory locations must be
protected too

Use of a System Call to Perform
1/0

.cn http://staff 0117401: Operatin: em TTEARHE S

Outline

e Kernel 1/0 Subsystem

@ Kernel Data Structures

taff 0117401 : i stem &% June 1, :

Kernel Data Structures

@ Kernel keeps state info for 1/0 components, including

@ open file tables,
@ network connections,
@ character device state

@ Many, many complex data structures to track buffers,
memory allocation, "“dirty” blocks

@ Some use object-oriented methods and message passing to
implement 1/0

du.cn http: aff 0117401: i EA R S& June 1, 2016

Kernel Data Structures

@ Example: UNIX I/0 Kernel Structure

system-wide open-file table active-inodg
table
file-system record 1
inode pointer
per—process pointer to read and write functions
- - open—file tabld | pointer to select function
ile descripto pointer to ioctl function
pointer to close function network—
information|
table
— ™ | |
USer-process memory networking (socket) record
pointer to network info

pointer to read and write functions
pointer to select function
pointer to ioctl function
pointer to close function

kernel memory

Outline

e Transforming 1/0 Requests to Hardware Operations

taff 0117401 : i S it 5% June 1, ¢

1/0 Requests to Hardware Operations

@ Consider reading a file from disk for a process:

@ Determine device holding file

e Translate name to device representation
© Physically read data from disk into buffer
@ Make data available to requesting process
@ Return control to process

u.cn http: aff 0117401: 115 5% June 1, 2

The Typical Life Cycle of

user
Request /0 process
T
system call
kernel

can already
satisfy request?

send request to device
driver, block process if
appropriate

]

process request, issue

kernel
1/0 subsystem

commands to controller, device
configure controller to driver
block until interrupted
interrupt
device-controller commands handler
device

monitor device
controller

1/0 subsystem

An 1/0 Request

1/0 completed.
input data available, or
output completed

transfer data
(if appropriate) to process.
return conmpletion

or error code

determine which 1/0
completed, indicate state
change to 1/0 subsystem

f

receive interrupt, store
data in device-driver buffer
if input, sign to unblock
device driver

interrupt

1/0 completed,

interrupt when 1/0
completed

generate interrupt

[time

Outline

e Performance

[£.0117401: rati i 5%

Performance

e 1/0 is a major factor in system performance:

@ Demands CPU to execute device driver, kernel I/0 code
@ Context switches due to interrupts

@ Data copying

@ Network traffic especially stressful

1%
5a

June 1. 2016 50 / 56

du.cn http: aff 0117401:

Intercomputer Communications

network
character
packet
typed system call reeetved
completes
Slo
i H
ol
interrupt interrupt network .
generated handled adapter Network |traffic can also cause
ole oty a high context-switch rate
213 213
o S
interrupt interrupt Inte
handled generated gene
K network | @
3
©
it
S
device network device
driver adapter driver
devi twork
kernel cvice kernel networ’
driver subdaemon
Ells =]
8[3 g[S 8[s
P hart E=] vt Pl b
HE S S E
Sla ola ola
I S S
user |contex network | context,
- kernel - Kernel
process | switch daemon switch
sending system receiving system

Improving Performance

Reduce number of context switches
Reduce data copying

Reduce interrupts by using large transfers, smart
controllers, polling

Use DMA

Move processing primitives into hardware

Balance CPU, memory, bus, and 1/0 performance for highest
throughput

du.cn http: aff 0117401:

1%
5a

June 1, 2016

Device-Functionality Progression

Where should the
I/O functionality new algorithm

be implemented?

application code

>

kernel code

device-driver code

device-controller code (hardware)

increased efficiency
increased abstraction
increased flexibility

device code (hardware)

<:j increased development cost ‘

<
|

<increased time (generations) ‘

<

.cn http://staff 0117 i em THENEH 5% June 1, 2016

Outline

Q@ I\ EAEL

[£.0117401: rati i 5%

° 1/0 Hardware

@ Polling (RiA =)

o Interrupts (FRETA)

@ Direct Memory Access (DMAFT)

@ 1/0 hardware summary
e Application 1/0 Interface

@ Block and Character Devices

@ Network Devices

@ Clocks and Timers

@ Blocking (Kﬂ%) and Nonblocking (Eﬂfﬁﬂ%) 1/0
e Kernel 1/0 Subsystem

@ 1/0 Scheduling

Buffering (Z&i#/LHH])

Caching, Spooling & device reservation

1/0 Protection

o

o

@ Error Handling

o

@ Kernel Data Structures

o Transforming 1/0 Requests to Hardware Operations

Performance
NEEFAFEL

.cn http://staff 0117401: Operatin tem THEN R S5& June 1, 2016

AT !

	I/O Hardware
	Polling (轮询方式)
	Interrupts (中断方式)
	Direct Memory Access (DMA方式)
	I/O hardware summary

	Application I/O Interface
	Block and Character Devices
	Network Devices
	Clocks and Timers
	Blocking (阻塞) and Nonblocking (非阻塞) I/O

	Kernel I/O Subsystem
	I/O Scheduling
	Buffering (缓冲机制)
	Caching, Spooling & device reservation
	Error Handling
	I/O Protection
	Kernel Data Structures

	Transforming I/O Requests to Hardware Operations
	Performance
	小结和作业

