0117401: Operating System

TEALURE S 0T

Chapter 7: Deadlock

PR =

xlanchen@ustc.edu.cn
http://staff.ustc.edu.cn/“xlanchen

Computer Application Laboratory, CS, USTC @ Hefei
Embedded System Laboratory, CS, USTC @ Suzhou

April 20, 2016

.cn http://staff 0117401: Operatin:



:E:I:ﬂ- E—.
SRR

AT ERME A TIEES],
EEIRE FRYEFRE,

ANEERE FEITHIE,

http://staff 0117401: Operating System TTHEAJRH S



Objecttives

@ To develop a description of deadlocks, which prevent sets
of concurrent processes from completing their tasks

@ To present a number of different methods for preventing
or avoiding deadlocks in a compuer system.

du.cn http: aff 0117401: 1T % R 5% April 20, 2016



&M

o Background and System Model

e Deadlock Characterization
@ Necessary Conditions
@ Resource-Allocation Graph
@ Methods for Handling Deadlocks

e Deadlock Prevention (BFLENTIFH)

e Deadlock Avoidance (FEE{ESR)
@ Safe State (ﬁé\llj(,j&)

@ Resource-Allocation Graph Scheme
@ Banker's Algorithm CGRITHEE)

e Deadlock Detection (FEHE{&IM) and Recovery
Q | \EFEL

cn http://staff 0117401: Operatir tem THEN R 5% April 20, 2016

4/ a1



Outline

° Background and System Model

taff 0117401: i S it 515



The Deadlock Problem

deadlock situation

A set of blocked processes each holding a resource and waiting
to acquire a resource held by another process in the set.

v

Example 1

@ System has 2 disk drives.

@ P; and Py each hold one disk drive and each needs another one.

@ semaphores A and B, initialized to 1

Py Py
wait (A); wait (B)
wait (B); wait (A)

¢lanchen@us du.cn http://staff 0117401: Operating System &[RRI 5% April 20, 2016 6 / 47



Bridge Crossing Example

@ Traffic only in one direction.

o Each section of a bridge can be viewed as a
resource.

@ If a deadlock occurs, it can be resolved if one car backs
up (preempt resources and rollback).
@ Several cars may have to be backed up if a deadlock occurs.

e Starvation is possible.

edu.cn http://staff 0117401: Operat em THENEH 5% April 20, 2016 7/ A7



System Model

@ A system consists of a finite number of resources
@ The resources are partitioned into several types, each
consisting of some number of identical instance.

o physical resources: CPU cycles, memory space, 1/0
devices

e logical resources: files, semaphores, and monitors

@ System model

@ Resource types Ry, Ry, Ry

e Each resource type R; has W; instances.

o

@ Each process utilizes a resource as follows:

@ request: may wait until it can acquire the resource
@ use
e release

u.cn http: aff 0117401:



Outline

e Deadlock Characterization
@ Necessary Conditions
@ Resource-Allocation Graph
@ Methods for Handling Deadlocks

.edu.cn http://staff 0117401: Op




Outline

e Deadlock Characterization
@ Necessary Conditions

taff 0117401 : i stem &% 2 2016 10 / 47



Deadlock Characterization: Necessary Conditions

@ Deadlock can arise if four conditions hold
simultaneously.

Mutual exclusion(BRR):

only one process at a time can use a resource.

Hold and wait(3FBEHEE):

a process holding at least one resource is waiting to
acquire additional resources held by other processes.

No preemption(AFIF):

a resource can be released only voluntarily by the process
holding it, after that process has completed its task.
Circular wait ({8 F):

there exists a set {Py, Py, ..., Py} of waiting processes
such that Py is waiting for a resource that is held by P;, Py
is waiting for a resource that is held by Py, ..., P,_; is

waiting for a resource that is held by P,, and P, is waiting
for a resource that is held by Py.

0117401 em TTEAM RIS &



Outline

e Deadlock Characterization

@ Resource-Allocation Graph

taff 0117401 : i stem J1HA



Deadlock Characterization: Resource—-Allocation

Graph

System resource-allocation graph: A directed graph
@ A set of vertices V and a set of edges E.
@ V is partitioned into two types.

e P={P,, Py, ..., P}, the set consisting of all the
processes in the system.

] Q: Process

o R =1{R;. Ry, ..., Ry}, the set consisting of all resource
types in the system.

oo
) : Resource Type with 4 instances

du.cn http: aff 0117401: 115 5%



Deadlock Characterization: Resource—-Allocation

Graph

System resource-allocation graph: A directed graph
@ A set of vertices V and a set of edges E.

@ V is partitioned into two types.

@ £ is partitioned into two types.

e request edge(iEXKi1) — directed edge P;— R;

oo
oo
o

Ri : P; requests instance of R;

e assignment edge(#E2iZl) — directed edge R; —P;

° Ri: P; is holding an instance of R;

%
5a

du.cn http: aff 0117401: O



Example of a Resource Allocation Graph

Ry R3
\ \
\{
Ry *
Ry

Figure : example of a resource allocation graph

0117401 em TTEAM RIS &



Example of a resource Allocation Graph With A

Deadlock

!
Ry .

edu.cn http://staff 0117401:



Graph With A Cycle But No Deadlock

Figure : Graph With A Cycle But No Deadlock

0117401:



@ If graph contains no cycles = no deadlock.
@ If graph contains a cycle =

e if only one instance per resource type, then deadlock.
@ if several instances per resource type, possibility of
deadlock.

u.cn http: aff 0117401:



Outline

e Deadlock Characterization

@ Methods for Handling Deadlocks

taff 0117401 : i stem J1HA



Methods for Handling Deadlocks

@ Ensure that the system will never enter a deadlock state.
@ Deadlock prevention
@ Deadlock avoidance
@ Allow the system to enter a deadlock state and then
recover.
@ Deadlock detection and recovery from deadlock
Q Ignore the problem and pretend that deadlocks never occur

in the system; used by most operating systems, including
UNIX.

request — allocation — runtime

prevention avoidance detection
and
recovery

edu.cn http://staff 0117401: Operati stem THEAFHE 5%



e Deadlock Prevention (BLEITHFG)

.cn http://staff0117401:



Deadlock Prevention (FLEITIEG)

@ Deadlock prevention provides a set of methods for ensuring
that at least one of the necessary conditions cannot hold.

@ Restrain the ways request can be made.

Q@ Mutual Exclusion

e not required for sharable resources (read-only files);
must hold for nonsharable resources. (printer)

e In general, therefore, we cannot deny the
mutual-exclusion condition

du.cn http: aff 0117401: 115 5%



Deadlock Prevention (FLEITIEG)

@ Restrain the ways request can be made.

@ Hold and Wait

@ must guarantee that whenever a process requests a resource,
it does not hold any other resources.

@ Require process to request and be allocated all its
resources before it begins execution, or

@ allow process to request resources only when the process has
none.

e Disadvantage:

@ Low resource utilization;
@ starvation possible.

%

cn http://staff 0117401: Opere



Deadlock Prevention (FLEITIEG)

@ Restrain the ways request can be made.
@ No Preemption

@ [f a process that is holding some resources requests another
resource that cannot be immediately allocated to it, then
all resources currently being held are preempted.

@ Preempted resources are added to the list of resources for
which the process is waiting.

@ Process will be restarted only when it can regain its old
resources, as well as the new ones that it is requesting.

@ preempt the desired resources from the waiting process
and allocate them to the requesting process

@ if the resource are neither available nor held by a waiting
process, the requesting process must wait. While waiting, some
of its resources may be preempted by other requesting process

@ a process can be restarted only when it is allocated the

new resources it is requesting and recovers any resources
that were preempted.

cn http://staff 0117401: Operat tem FHENFEHESE



Deadlock Prevention (FLEITIEG)

@ Restrain the ways request can be made.

Q@ Circular Wait

e impose a total or‘dering of all resource types, and require
that each process requests resources in an increasing order
of enumeration.

@ always in an increasing order
@ may release some higher ordered resource before requesting
lower ordered resource

cn http://staff 0117401: Operat tem FHENFEHESE



e Deadlock Avoidance (FEEEESR)
@ Safe State (ZAIRE)
@ Resource—-Allocation Graph Scheme

@ Banker's Algorithm (%Eﬁ‘%ﬁ/f)

f5# £ xlanchene edu.cn http://staff 0117401: Operat ystem HENEH 5%




Deadlock Avoidance (BFEIRESR)

@ Requires that the system has some additional a priori
information available.

o Simplest and most useful model requires that each process
declare the maximum number of resources of each type that
it may need.

@ The deadlock-avoidance algorithm dynamically examines the
resource-allocation state to ensure that there can never
be a circular-wait condition.

@ Resource-allocation state is defined by the number of
available and allocated resources, and the maximum
demands of the processes.

u.cn http: aff 0117401:



e Deadlock Avoidance (FEEEESR)
@ Safe State (Z&KD)

edu.cn http://staff 0117401: Operati stem THEAFHE 5%



Safe State (Z4IRE)

@ When a process requests an available resource, system must
decide if immediate allocation leaves the system
in a safe state.

@ System is in safe state if there exists a (safe)
sequence (Z£F5)

<P17 P27 ey l:)n>

of ALL the processes in the systems such that for each P;,
the resources that P; can still request can be satisfied by
currently available resources + resources held by all the
P;, with j < i.
o That is:
@ If P; resource needs are not immediately available, then P;
can wait until all P; have finished.
@ When P; is finished, P; can obtain needed resources, execute,
return allocated resources, and terminate.

@ When P; terminates, P;y; can obtain its needed resources, and
so on.

u.cn http: ? i A=



Basic Facts: Safe, Unsafe , Deadlock State 1

@ If a system is in safe state = no deadlocks.
@ If a system is in unsafe state = possibility of deadlock.

@ Avoidance = ensure that a system will never enter an
unsafe state.

unsafe
deadlock

ﬂ

du.cn http:// 0117401: Operatir



Basic Facts: Safe, Unsafe , Deadlock State

@ Example, 12 tape drives and 3 processes, at T

MaxNeeds current

Py 10 5
P, 4 2
P, 9 243

o < Pyp,Pg,Py >
e if at Ty, Py request and is allocated one more tape drive, ?

.cn http://staff0117401: Operatin: tem FHENFEHESE



Avoidance algorithms

@ Single instance of a resource type.

e Use a resource-allocation graph

@ Multiple instances of a resource type.

e Use the banker's algorithm RITZHEE)

1%
5a

du.cn http: aff 0117401:



Outline

e Deadlock Avoidance (FEEEESR)

@ Resource—-Allocation Graph Scheme

.edu.cn http://staff 0117401: Op



1. Resource-Allocation Graph Scheme

@ Resource-Allocation Graph
o Claim edge (FEXih) P;—R;

@ indicated that process P; may request resource Rj;
@ represented by a dashed line.

e Claim edge converts to request edge when a process
requests a resource.

e Request edge converted to an assignment edge when the
resource is allocated to the process.

e When a resource is released by a process, assignment edge
reconverts to a claim edge.

@ Resources must be claimed a priori in the system.

u.cn http: aff 0117401:



1. Resource-Allocation Graph Scheme

@ Example: Safe State

safe sequence: < Py Py >

du.cn http: aff 0117401:



1. Resource-Allocation Graph Scheme

@ Example: Unsafe State In Resource-Allocation Graph

Figure :

du.cn http: aff 0117401:



1. Resource-Allocation Graph Scheme

@ Resource-Allocation Graph Algorithm

@ Suppose that process P; requests a resource RJ

e The request can be granted only if converting the
request edge to an assignment edge does not result
in the formation of a cycle in the resource
allocation graph

du.cn http: aff 0117401: t 115 5%



e Deadlock Avoidance (FEEEESR)

@ Banker's Algorithm (%Eﬁ‘%ﬁ/f)

edu.cn http://staff 0117401: Operati stem THEAFHE 5%



2. Banker's Algorithm ((RITZ%HEE)

e Banker's Algorithm ((R1TZRE&%)

Multiple instances.

Each process must a priori claim maximum use.

When a process requests a resource it may have to wait.

When a process gets all its resources it must return them in
a finite amount of time.

Data stuctures
safety algorithm
resource-request algorithm

u.cn http: aff 0117401:



2. Banker's Algorithm (Y17 EJE): Data

Structures

Let

82 5

number of processes
number of resources types.

Available: Vector of length m. If available[j] =k, there
are k instances of resource type Rj available.

Max: nxm matrix. If Max[i, j] =k, then process P; may
request at most k instances of resource type Rj.

Allocation: nxm matrix. If Allocationl[i,j]=Xk then P;
is currently allocated k instances of Rj.

Need: n xm matrix. If Need[i,,j] =k, then P; may need k
more instances of R; to complete its task.

Need([i, j] = Max[i, j] — Allocation[i, J].

edu.cn http://staff 0117401: Operati stem THEAFHE 5%



2. Banker's Algorithm ((R17ZEJE): Safety

Algorithm

@ Let Work and Finish be vectors of length m and n,
respectively. Initialize:
Work = Available

Finish[i]| = false for i =0,1,...,n— 1.

@ Find an i such that both:
@ Finish[i] = false
@ Need; < Work
If no such i exists, go to step 4.
@ Vork = Work + Allocation;, Finish[i] = true, go to step 2.
Q If Finish[i] —=— true for all i, then the system is in a
safe state.

7= xlanchena edu.cn http://staff0117401: Operat vstem THEARHE S April 20, 2016 34 / 47



2. Banker's Algorithm: Resource-Request

Algorithm for Process P;

Request = request vector for process P;.

If Request;[j] =k then process P; wants k instances of resource

type Rj.

@ If Request; < Need; go to step 2. Otherwise, raise error
condition, since process has exceeded its maximum claim.

@ If Request; < Available, go to step 3. Otherwise P; must
wait, since resources are not available.

@ Pretend to allocate requested resources to P; by modifying
the state as follows:

Available = Available — Request;

Allocation; = Allocation; 4 Request;;
Need; = Need; — Request;;
o If safe = the resources are allocated to P;.

e If unsafe = P; must wait, and the old resource-allocation
state is restored

u.cn http: aff 0117401:



2. Banker's Algorithm: Example

@ 5 processes: Py 7 Py
@ 3 resource types:

A (10 instances), B (5 instances), and C (7 instances).
@ Snapshot at time TO:

Need = Max — Allocation
Allocation Max Available

ABC ABC ABC Need
Py 010 753 332 ABC
P, 200 322 Po 743
Py 302 902 P, 122
Py 211 222 P, 600
P4 002 433 P; 011

P, 431

@ The system is in a safe state since the sequence
<Py, P3, Py, Py, Pp>

satisfies safety criteria.

.edu.cn http://staff 0117401: Op



2. Banker's Algorithm: Example: P; Request

(1,0,2)

@ Check that Request(1,0,2) < Available(3,3,2)= true.

Allocation Need Available
ABC ABC ABC
P 010 743 3325230
@ P, 2005302 12255020
P, 301 6 00
Py 211 011
P, 002 431

© Executing safety algorithm shows that sequence
<P17 P37 P4) PO, P2>
satisfies safety requirement.

@ Can request for (3,3,0) by P, be granted?
@ Can request for (0,2,0) by P, be granted?

du.cn http: aff 0117401: 115 5%



e Deadlock Detection (FEHIFEIM) and Recovery

.cn http://staff0117401:



Deadlock Detection (FEEIFLM]) and Recovery

@ Allow system to enter deadlock state
@ Detection algorithm

0 single instance
@ several instances

@ Recovery scheme

@ Process termination
e Resource preemption

cn http://staff 0117401: Opere



1. Single Instance of Each Resource Type

@ Maintain wait-for graph:

@ Nodes are processes.
e Pi—P;, if P; is waiting
for Pj;.

@‘:'@

(a) Resource-Allocation Graph (b) Corresponding wait-for Grap

Ry Rs

@ Periodically invoke an algorithm that searches for a
cycle in the graph. If there is a cycle, there

exists a deadlock.
@ COST: An algorithm to detect a cycle in a graph requires

an order of n? operations, where n is the number of
vertices in the graph.

40 / 47

u.cn http: aff 0117401:



2. Several Instances of a Resource Type

@ Data structures:

e Available:
A vector of length m indicates the number of available
resources of each type.

e Allocation:
An n x m matrix defines the number of resources of each type
currently allocated to each process.

e Request:
An n x m matrix indicates the current request of each
process. If Request[i][j] =k, then process P; is requesting k
more instances of resource type Rj.

u.cn http: aff 0117401:



2. Several Instances of a Resource Type

© Detection Algorithm

@ Let Work and Finish be vectors of length m and n,
respectively. Initialize:
@ Work = Available
@ For i =1,2,...,n, if Allocation;%(0, then Finish[i] = false;
otherwise, Finish[i] = true.

@ Find an i such that both:

@ Finish[i] == false
@ Request; < Work
If no such i exists, go to step 4.
@ Work = Work 4 Allocation;, Finish[i] = true, go to step 2.
Q If Finish[i] == false, for some i, 1< i <n, then the system
is in deadlock state. Moreover, if Finish[i] —— false, then
P; is deadlocked.

Algorithm requires an order of O(mx n?) operations
to detect whether the system is in deadlocked
state.

.cn http://staff 0117401: Operatin TR RS & April 20, 2016 41 / a7



2. Several Instances of a Resource Type

@ Example of Detection Algorithm

e Five processes: Py 7 Py;
e three resource types:

@ A (7 instances), B (2 instances), and C (6 instances).

e Snapshot at time Tj:

Allocation Request Available

ABC ABC ABC
Py 010 000 000
P, 200 202
Py 302 000
Py 211 100
P, 002 002

e Sequence <Py, Py, P3, Py, Py> will result in Finish[ﬂ — true
for all 1.

u.cn http: aff 0117401:



2. Several Instances of a Resource Type

@ Example of Detection Algorithm
e If Py requests an additional instance of type C.

Request
ABC
Po 000
Py 202
Py 000 —0 01
P3 100
Py 002

o State of system?

@ Can reclaim resources held by process Py, but insufficient
resources to fulfill other processes requests.
@ Deadlock exists, consisting of processes Py, Py, P3, and P4.

u.cn http: aff 0117401:



2. Several Instances of a Resource Type

@ Detection-Algorithm Usage
@ When, and how often, to invoke depends on:

@ How often a deadlock is likely to occur?
@ How many processes will need to be rolled back? one for each
disjoint cycle

o If detection algorithm is invoked arbitrarily, there may be
many cycles in the resource graph and so we would not be
able to tell which of the many deadlocked processes

“caused” the deadlock.

u.cn http: aff 0117401:



Recovery from Deadlock: 1. Process Termination

@ Abort all deadlocked processes.

@ Abort one process at a time until the deadlock cycle
is eliminated.

@ To minimize cost: in which order should we choose to
abort?

Priority of the process.

How long process has computed, and how much longer to
completion.

Resources the process has used.

Resources process needs to complete.

How many processes will need to be terminated.

Is process interactive or batch?

%
5a

du.cn http: aff 0117401:



Recovery from Deadlock: 2. Resource Preemption

@ Three issues need to be addressed:

@ Selecting a victim — minimize cost.

e Rollback — return to some safe state, restart process for
that state.

© Starvation — same process may always be picked as victim,
include number of rollback in cost factor.

.cn http://staff0117401: Operatin: tem FHENFEHESE



Outline

Q I\ EAEL




o Background and System Model

e Deadlock Characterization
@ Necessary Conditions
@ Resource-Allocation Graph
@ Methods for Handling Deadlocks

e Deadlock Prevention (BFLENTIFH)

e Deadlock Avoidance (FEE{ESR)
@ Safe State (ﬁé\llj(,j&)

@ Resource-Allocation Graph Scheme
@ Banker's Algorithm CGRITHEE)

e Deadlock Detection (FEHE{&IM) and Recovery
Q | \EFEL

cn http://staff 0117401: Operatir tem THEN R 5% April 20, 2016

45 / 47



o ZILIRFEETT




gt |




	Background and System Model
	Deadlock Characterization
	Necessary Conditions 
	Resource-Allocation Graph
	Methods for Handling Deadlocks

	Deadlock Prevention (死锁预防)
	Deadlock Avoidance (死锁避免)
	Safe State (安全状态)
	Resource-Allocation Graph Scheme
	Banker's Algorithm (银行家算法)

	Deadlock Detection (死锁检测) and Recovery
	小结和作业

