0117401: Operating System

THEALRE 51T

Chapter 11: File system implementation (U R ZESEHN)

PR =
xlanchen@ustc.edu.cn
http://staff.ustc.edu.cn/~xlanchen

Computer Application Laboratory, CS, USTC @ Hefei
Embedded System Laboratory, CS, USTC @ Suzhou

May 17, 2017

du.cn http: aff 0117401: it & RS May 17, 2017

=i
TR
P2
Al

AT ERME A TIEES],
EEIRE FRYEFRE,

ANEERE FEITHIE,

http://staff 0117401: Operating System TTHEAJRH S

&M

° File-System Structure

e FS Implementation

e Directory Implementation

e Allocation Methods (4EC %)

e Free-Space Management

e Efficiency (%3[d]) and Performance (H[d])
e Recovery

e Log Structured File Systems

Q 1SR

fi7& = xlanchena edu.cn http://staff0117401: Operat em THENEH 5% May 17, 2017

Outline

° File-System Structure

taff 0117401: i s i35 515

File-System Structure

@ File structure

o Logical storage unit

@ Collection of related
. . application programs
information @

File name

@ FS resides on secondary storage iogical file system

(disks) @

Logical block address

Y FS or‘ganization file-organization module
o How FS should look to the user j% . Physical block address
. asic 1le system
o How to map the logical FS onto @ Issue commands to I/0
the physical secondary-storage to retrieve physical block
. 1/0 control
devices @ Hardware-specific
instructions
@ FS organized into layers devices

Figure: Layered File System

taff 0117401 : i stem J1HA

Outline

e FS Implementation

taff 0117401: i S it 515

FS Implementation

@ Structures and operations used to implement file system
operation, 0S- & FS-dependment

@ On-disk structures
@ In-memory structures

u.cn http: aff 0117401:

FS Implementation

@ On-disk structures
©@ Boot control block

@ To boot an 0S from the partition (volume)
@ If empty, no OS is contained on the partition

@ Volume control block
@ Directory structure
@ Per-file FCB

file permissions

file dates (create, access, write)

file owner, group, ACL

file size

file data blocks or pointers to file data blocks

Figure: A typical file control block

u.cn http: aff 0117401:

FS Implementation

@ In-memory information: For both FS management and
performence improvement via caching
@ Data are loaded at mount time and discarded at dismount
e Structures include:
in—-memory mount table;

in—-memory directory-structure cache
system-wide open-file table;

per-process open-file table

cn http://staff 0117401: Operat tem FHENFEHESE

FS Implementation

@ In-memory information: For both FS management and
performence improvement via caching

@ Data are loaded at mount time and discarded at dismount
e Structures include:

in—-memaryv_maunt tahle-

[]
syste r—“
pen (file name D D

per—p directory structure

{1

file-control block

o
@ in—me
°
o

directory structure

user space kernel memory secondary storage

(a)

index

LILIL]

read (index)_,_r ”D D D

directory blocks

et R

open file table open file tafl| file-control block

user space kernel memory secondary storage

(b)

/staff 0117401 :

A

=

Partitions and mounting

@ Partition (4[X)

o Raw (E.g. UNIX swap space & some database) VS. cooked
@ Boot information, with its own format

@ Boot image
@ Boot loader unstanding multiple FSes & OSes
Dual-boot

@ Root partition is mounted at boot time

@ Others can be automatically mounted at boot or manually
mounted later

du.cn http: aff 0117401: it & RS May 17, 2017

Virtual File Systems (B IHZRS

e Virtual File Systems (VFS, E¥IXHZRL) provide an

object-oriented way of implementing file systems.

@ VFS allows the same system call interface (the API) to be
used for different types of file systems.

@ The API is to the VFS interface, rather than any specific
type of file system.

file-system interface|

VES interface

remote file system|
type 1

local file system
type 2

local file system
type 1

| | |
> >
network

Schematic View of Virtual File System

edu.cn http://staff 0117401: Operati stem THENEH 5% May 17, 2017

Outline

e Directory Implementation

taff 0117401: i s i35 515

Directory Implementation

@ Linear list of file names with pointer to the data
blocks.

e Simple to program
o Time-consuming to execute

@ Hash Table — linear list with hash data structure.

@ Decreases directory search time

o Collisions — situations where two file names hash to the
same location

e Fixed & variable size or chained-overflow hash table

du.cn http: aff 0117401: 115 5%

e Allocation Methods (4HECTVE)

.cn http://staff0117401:

Allocation Methods (4ECJT1E)

@ An allocation method refers to
how disk blocks are allocated for files
so that disk space is utilized effectively
& files can be accessed quickly
@ Contiguous allocation GEZESHD)
@ Linked allocation (BEEEHD)

@ Indexed allocation (EF|4HED)
@ Combined (HA)

f5# £ xlanchene edu.cn http://staff0117401: Operat ystem HENEH 5%

Contiguous Allocation (GEZESED) 1

@ Each file occupies a set of contiguous blocks on the
disk

@ Simple — directory entry only need

o starting location (block #)
e & length (number of blocks)

@ Mapping from logical to physical
LogicalAddress/512 =Q... ... R
Block to be accessed = Q + starting address
Displacement into block =

du.cn http://staff 0117401: Operat System T EHRHE 5%

Contiguous Allocation (GEZE4ED) 11

N
N

count
o1 11 2] 3[]
f
=0 o0 70 directory
s[] o[][] 11[] file start 1length
tr count 0 2
12[J13[]14[]15[] tr 14 3
mail 19 6
6] 17[] 18] 19[] List o8 .
mail
20[] 21[] 22[] 23[] f 6 P
24[] 25[]26[]27[]
list
28] 20[] s0[] 81[]

~

du.cn http://staff 0117401: Operating System &[RRI 5% May 17, 2017

1. Contiguous Allocation (GEZEZ4ED) 111

@ Advantages:

e Support both random & sequential access

@ Start block: b;
Logical block number: i
—=physical block number: b + 1
@ Fast access speed, because of short head movement

@ Disadvantages:
e External fragmentation
o Wasteful of space (dynamic storage-allocation problem).

e Files cannot grow,
or File size must be known in advance.

=Internal fragmentation

u.cn http: aff 0117401: O

Extent-Based Systems

@ Many newer file systems (I.e. Veritas File System) use a
modified contiguous allocation scheme

@ Extent-based file systems allocate disk blocks in extents
@ An extent is a contiguous block of disks

o Extents are allocated for file allocation
o A file consists of one or more extents.

edu.cn http://staff 0117401: Operati stem THEAFHE 5%

2. Linked Allocation (% E@ \@B)

@ Each file is a linked list of disk blocks: blocks may be
scattered anywhere on the disk.

@ Two types

@ Implicit (FaxXBEE)
@ Explicit (EzXN5EE)

du.cn http://staff 0117401: Operat System T EHRHE 5%

2. Linked Allocation (% E@ \@B)

Q Implicit (FRmVHEE)

e Directory contains a pointer to the first
block & last block of the file.

R
o Each block contains a pointer to to the N directory
next block. o[d 13 200 20 e
40 00 70
a block = | pointer o0 pfols

1213] 14{] 15[]
X 6117187 1000
e Allocate as needed, link together ?
20[] 21[J22[] 23]
@ Simple — need only starting address 242526 277
@ Free-space management system — no waste 28] 20 30[] 31[]
of space ~_

.cn http://staff 0117401: Operating tem TTHEANRHE 5%

2. Linked Allocation (% E@ \@B)

Q@ Implicit (PazUHEE)

od 1 20 30 ;:, o Cznsd
e No random access 40 s0\O O
o Link pointers need disk sapce el

E.g.: 512 per block, 4 per pointer =0.78%

e Disadvantage:

. 213 14 15[
Solution: clusters .
= disk throughput 1 e[7ss0 o0
But internal fragmentationf 20] 21[22[] 23]
24253 26[] 27[]
28] 29[] s0[] 81
~

u.cn http: aff 0117401: O

=1 AN

2. Linked Allocation (%ﬁﬁﬁ)j @B)

Q Implicit (FRmVHEE)

e Mapping:
Suppose

@ block size=512B,
@ block pointer size=1B, using the first byte

of a block
@ Logical addr in the file to be accessed= A
we have
@ Data size for each block =512 —1 =511
Q@ A/511=Q...... R

then
@ Block to be accessed is the Q™ block in the
linked chain of blocks representing the

file.
@ Displacement into block = R + 1

directory

file start end
jeep 9 25

20[] 21j2z|:| 23]
24252 26[] 27[]

28] 29[] 0[] 31[]

u.cn http: aff 0117401:

2. Linked Allocation (BEEESHEC)

@ Explicit linked allocation:
File Allocation table, FAT
Disk-space allocation used by MS-DOS and 0S/2

directory entry

[[test T -] 217
name start block

e A section of disk at the beginning of
each partition is set aside to
contain the FAT

@ Each disk block one entry

@ The entry contains
(1) the index of the next block in the
file
(2) end-of-file., for the last block entry
(3) 0, for unused block

e Directory entry contains the fimnstof disk blocks
block number

edu.cn http://staff 0117401: Operati stem THEAFHE 5%

0
217 618
339
618 339
-1

FAT

May 17, 2017

2. Linked Allocation (BEEESHEC)

@ Explicit linked allocation:
File Allocation table, FAT
Disk-space allocation used by MS-DOS and 0S/2

directory entry

[[test T -] 217
name start block

e Now support random access.
but still not very efficient

e May result in a significant disk head
seeks.
Solution: Cached FAT

no. of disk blocks

edu.cn http://staff 0117401: Operati stem THEAFHE 5%

0
217 618
339
618 339
-1

FAT

May 17, 2017

2. Linked Allocation (BEEESHEC)

@ Explicit linked allocation:
File Allocation table, FAT
Disk-space allocation used by MS-DOS and 0S/2

directory entry
[[test T -] 217
: tart block
e How to compute FAT size? ™™ et pes

Suppose

@ Disk space = 80 GB
@ Block size = 4 KB

Then

@ Total block number = 80 x 230/212 =5x 222
@ 4x27 =22 <5x2% <8x2”=2%

o Length of each FAT entry?
(25bits? 28bits? 32bits?)

° Length of FAT? no. of disk blocks
(5 x 222 x 4B = 80MB = 80GB/2'°)

edu.cn http://staff 0117401: Operati stem THEAFHE 5%

217

339

-1

618

339

FAT

3. Indexed Allocation (ZRI|4HD)

@ Indexed Allocation (Z35|9HE3):

Brings all pointers together into one location — the
index block.

o Each file has its own index directory
block file index block
. . Jeep 1|9
e Directory entry contains the
index block address T
e Each index block: An array of i’
pointers (an index table) L
19 o5
Logical block number i B
— the i'™ pointer -1
28[] 29[20 311 \/

~

edu.cn http://staff 0117401: Operati stem THEAFHE 5%

3. Indexed Allocation (%l \@B)

@ Indexed Allocation (Z35|9HE3):

Brings all pointers together into one location — the
index block.

e Advantage:

directory

file index block
Jeep 19

@ Random access
@ Dynamic access without
external fragmentation

e Disadvantage:

16

@ have overhead of index block. g
e File size limitation, since

one index block can contains

-1
-1

limited pointers

du.cn http: aff 0117401: O

3. Indexed Allocation (ZRI|4HD)

e Indexed Allocation (ZE3|HE):
Brings all pointers together into one location — the
index block.

e Mapping from logical to

physical

Suppose directory

(1) Block size = 1KB P

(2) Index size = 4B

Then for logical address LA, we /////;‘\\\\

have e
LA/512 =Q..R . I

(3)Q = the index of the pointer 1

(4)R = displacement into block s

We also have Max file size \\\\‘—'///

= 210/4 x 1KB = 256KB

0117401:

3. Indexed Allocation (ZRI|4HD)

@ Indexed Allocation (Z35|9HE3):
Brings all pointers together into one location — the

index block.

directory

file index block

e How to support a file of —
unbounded length? N

16

@ linked scheme

@ multi-level index scheme B

25

-1
-1

28] 29[] 301 31
~

edu.cn http://staff 0117401: Operati stem THENEH 5% May 17, 2017

3. Indexed Allocation (ZRI|4HD)

@ Linked scheme

e Link blocks of index table (no limit on size).
e Mapping
Suppose
(1) Block size=1KB
(2) Index or link pointer size = 4B
Then
LA/ (1KB x (1K/4 —1)) =Q;...Ry
(3) Q; = block of index table
(4) R; is used as follows:
R1/1K2Q2 Ro
(5) Qy = index into block of index table
(6) Ry = displacement into block of file:

edu.cn http://staff 0117401: Operati stem THEAFHE 5%

3. Indexed Allocation (ZRI|4HD)

@ multi-level index scheme
Example: Two-level index (maximum file size is ?)

P L
| —]
o We have
LA/ (1K x 1K/4) =Q; ... Ry
(1) Q; = index into outer—index
(2) R, is used as follows:
Ri/1KB =Qy...Rg
(3) Qg = displacement into block |
of index table outer-index |
(4) Ry = displacement into block - -
index table file

of file

.cn http://staff0117401: Operatin: em TTEARHE S

4. Combined Scheme (ZH& 5T : UNIX (4K bytes

per block)

mode

owners (2)

timestamps (3)

size block count

direct blocks,

single indirec#

double indirect

triple indirect

4. Combined Scheme (ZH& 5T : UNIX (4K bytes

per block) II

@ if 4KB per block, and 4B per entry

Direct blocks = 10 x 4KB = 40KB
AKB/4B = 1K

1K x 4KB = 4MB
1K x 4MB = 4GB
Triple indirect = 1K x 4GB = 4TB

Number of entries per block

Single indirect

Double indirect

Maximnm file size = ?

du.cn http://staff 0117401: Operat System ITEHRHE 5%

Outline

e Free-Space Management

taff 0117401: i S it 515

Free-Space Management

@ Disk Space: limited

e Free space management: To keep track of free disk
space

e How? Free-space 1ist?

e Algorithms

@ Bit vector

© Linked list

@ Grouping (RE4E%EREE)
© Counting

du.cn http: aff 0117401: 115 5%

Free-Space Management

Q@ Bit vector

e Free-space list is implemented as a bit map or bit
vector

e 1 bit for each block
1=free;
O=allocated

@ Example:
a disk where blocks 2,3,4,5,8,9,10,11,12,13,17,18,25,26,27 are
free and the rest blocks are allocated. The bitmap would be

0011 1100 1111 1100 0110 0000 0111 0000 O...

e Bit map length.
For n blocks, if the base unit is word, and the size of word
is 16 bits, then

bit map length = (n+15)/16

U16 bitMap|[bitMaptLength]:

cn http://staff 0117401: Operat tem FHENFEHESE

Free-Space Management

Q@ Bit vector
e How to find the first free block or n consecutive
free blocks on the disk?

@ Many computers supply bit-manipulation instructions
@ To find the first free block:

Suppose: base unit = word (16 bits) or other

(1) find the first non-0 word

(2) find the first 1 bit in the first non-0 word
@ If first K words is 0, & (K-|—1)th word > 0,

the first (KJrl)th word’ s first 1 bit has offset L,

then

first free block number N=Kx 16 +L

%
5a

u.cn http: aff 0117401:

Free-Space Management

Q@ Bit vector
e Simple
@ Must be kept on disk
Bit map requires extra space,
Example:
block size = 212 bytes
disk size = 230 bytes (1 gigabyte)
n = 230/212 — 218 bits (or 32K bytes)
o Solution: Clustering

%
5a

du.cn http: aff 0117401:

Free-Space Management

@ Bit vector
o Efficient to get the first free block or n consecutive
free blocks, if we can always store the vector in
memory.

@ But copy in memory and disk may differ.
E.g. bit[i] = 1 in memory & bit[i] = 0 on disk
e Solution:
Set bit[i] = 1 in memory.
Allocate block[i]
Set bit[i] = 1 in disk

@ Need to protect:

@ Pointer to free list
@ Bit map

u.cn http: aff 0117401:

Free-Space Management

@ Linked Free Space List on Disk

free-space list head —

e Link together all the free
disk blocks

@ First free block
@ Next pointer
o Not efficient

e Cannot get contiguous space
easily
e No waste of space 24[] 25|:|/2(:|:|/2;E|1

28[] 29[] 30[]31[]

du.cn http:// 0117401: Operatir

Free-Space Management

@ Grouping(pRk#B¥EHEiLE): To store the addresses of n free
blocks (a group) in the first free block. E.g.: UNIX

@ First n-1 group members are actually free
e Last one contain the next group

@ And so on

. 100 100 99
2R E 700 5
5
399 - 7999
S.free| 100 301 7901
o 3004
1| 299 300 400 7900
23 R B
R RS
299 399 7899 7999
98| 202 . . : :
99| 201
201 301 7801 7901

u.cn http: aff 0117401:

Free-Space Management

Q@ Counting

@ Assume:
Several contiguous blocks may be allocated or freed
simultaneously

e Each = first free block number & a counter (number of free
blocks)

@ Shorter than linked list at most time, generally counter > 1

.cn http://staff0117401: Operatin: tem FHENFEHESE

e Efficiency (23[8]) and Performance (FJ[d])

.cn http://staff0117401:

1 Efficiency (Z3[d])

Efficiency in usage of disk space dependent on:

@ Disk allocation and directory algorithms
@ Various approaches

Inodes distribution

Variable cluster size

Types of data kept in file’ s directory entry

Large pointers provides larger file length, but cost more
disk space

1%
5a

du.cn http: aff 0117401:

2 Performance (H5[H])

@ Performance: other ways

e disk cache - on disk controllers, large enough to store
entire tracks at a time.

e buffer cache — separate section of main memory for
frequently used blocks

e page cache - uses virtual memory techniques to cache
file data as pages rather than as file-system-oriented
blocks

e Synchronous writes VS. Asynchronous writes

e free-behind and read-ahead — techniques to optimize
sequential access

e improve PC performance by dedicating section of memory as
virtual disk, or RAM disk

: ram disk :
_
1 i
1 i

| tack |
} L
Lol
CPU open-file table controller disk
1 1
[block buffer g

A7 % xlanchene du.cn http://staff 0117401: Operat tem FHENFEHESE May 17, 2017

Unified Buffer Cache

@ I/0 Without a Unified Buffer
Cache

1/0 using
read() and write()

memory-mapped 1/0 |

buffer cache

o Memory-mapped I/0 uses a page
cache

@ Routine I1/0 through the file
system uses the buffer (disk)

prob I
file system
e Problem: double caching

1/0 using
read() and write()

memory-mapped 1/0 |

@ I/0 Using a Unified Buffer
Cache

PN buffer cache
@ A unified buffer cache uses the

same page cache to cache both
memory-mapped pages and ordinary
file system I/0

file system

iy ¢

du.cn http:// 0117401: Operatir

Outline

e Recovery

Recovery

e Consistency checking (—EMi#E)

e compares data in directory structure with data blocks on
disk, and tries to fix inconsistencies

e UNIX: fsck

e MS-DOS: chkdsk

e Backup & restore

o Use system programs to back up data from disk to another
storage device (floppy disk., magnetic tape., other magnetic
disk, optical)

@ Recover lost file or disk by restoring data from backup

@ A typical backup schedule may be:

Dayl: full backup:
Day2: incremental backup:

DayN: incremental backup. Then go back to Dayl.

1%
5a

du.cn http: aff 0117401:

Outline

e Log Structured File Systems

taff 0117401: i s i35 515

Log Structured File Systems

@ Log-based transaction-oriented (or journaling, Hi&)
file systems record each update to the file system as a
transaction

@ All transactions are written to a log

@ A transaction is considered committed once it is written to
the log
o However, the file system may not yet be updated

@ The transactions in the log are asynchronously written
to the file system

@ When the file system is modified, the transaction is removed
from the log

@ If the file system crashes, all remaining transactions in
the log must still be performed

du.cn http: aff 0117401: 115 5%

Outline

Q@ /AR

° File-System Structure

e FS Implementation

e Directory Implementation

e Allocation Methods (4EC %)

e Free-Space Management

e Efficiency (%3[d]) and Performance (H[d])
e Recovery

e Log Structured File Systems

Q &AL

f5# £ xlanchene edu.cn http://staff 0117401: Operat em THENEH 5%

(14

12.6 WA —PMEME BRI R GIHDE BIRAN Y B R R/ NR S 127
o BB EEEEEENFEF N =FoBc 7% GBS
B ECMZRS L) |, oAl [EE R A A

(1) P Y B I R RS2 B TI? (RS
DS, BRCUHEERANTS128K)

(2) BOIAEAEZ IR0 (BRJalipsREL0) | BAERDIHZH
R4 AR AN b B2 /DA ERER?

gt |

	File-System Structure
	FS Implementation
	Directory Implementation
	Allocation Methods (分配方法)
	Free-Space Management
	Efficiency (空间) and Performance (时间)
	Recovery
	Log Structured File Systems
	小结和作业

