0117401: Operating System
it FAUR B 5 it

Chapter 1-2: CS Structure

&2
xlanchen@ustc.edu.cn
http://staff.ustc.edu.cn/ xlanchen

Computer Application Laboratory, CS, USTC @ Hefei
Embedded System Laboratory, CS, USTC @ Suzhou

February 22, 2017

anchenau .cn http://staff 0117401: Op: 7 3 i 2 1/ 66

AT BARAGTAEES] >
HEREERIRFET o

RE g LAEIT 875 o

o Computer System Operation
@ A modern computer system
@ Start a computer system
@ Interrupt
e I1/0 Structure
@ I/0 Structure
@ I/0 operation
@ DMA
e Storage Structure and Storage Hierarchy
@ Storage Structure
@ Storage hierarchy
e Hardware Protection
@ Hardware Protection
e General System Architecture
@ General System Architecture
@ system call
e Computing Environments
Q

A AR AL

heneustc.edu.cn http:// f0117401: Operatin: tem THHEAURE 5% February

CS & Von Neumann architecture

o T
Q ThAEM: i
o WIS AME s BE®A /IS FET]

I—% TE ﬁ} x'ﬁt % /a

oﬁk%MﬁF:L’”"" CREHE S BHE1/0%E
o AIEEHCPUARY & ;s 1A BMERIBAHATHMS

2+ 5B Ay b 2%
= [maizs | 7 P M
4%
o i 1?
w5 7

W RAE 5 HRIEF

February 22, 2017

Operating System 1

xlanchen@ustc.edu.cn http://staff0117401:

Outline

o Computer System Operation

@ A modern computer system

m AR 5

A modern computer system I

disk disk printer tape drives

- i i IO [S

= ||

disk
controller

printer tape-drive

CPU controller controller

system bus

memory controller

memory

u.cn http://staff0117401: Operating S 7 i% 7 6 / 66

A modern computer system II

mouse keyboard printer monitor
disks (5
CPU GIE USB controller
controller

graphics
| I | |

adapter

u.cn http://staff 0117401: Op

%5 . Z#core i5 CPUYG R Jh A, i

ey
Iy Bxidlso Nebelem
e B i
-

EERE
B Samdy Bridg

From : VBB & | Intel =X Core i53f 5378

xlanchen@ustc.edu.cn http://staff 0117401: Operating System T+ HU/R 2 5% February 22, 2017 8 / 66

http://tech.hexun.com.tw/2012-02-16/138320016.html

%

| jua%
i

AGP

CPUMEBE | | o

.

L

PSD &

Dvo

DVOA

a#)

Jebris

& ;
: B
AHFFIE SRS

—ANEEEIRGBERERAFZ

RE: 1) EEAE. fH8CPU,
M, dbiRRORE; 2) &4Ril.
#4810, Interface iy .

HAUR I 5% Februar

9/ 66

http://www.chinesechip.com/news_4/ec3c0dbbed7f458cb7d06c012c86cc44.html

10 / 66

http://detail.zol.com.cn/motherboard/index202417.shtml

From : f£FF8H £ 7| £ 42 A% M

2 xlanchen@ustc.edu.cn http://staff 0117401: Operating 2 3 15 , 11 / 66

http://www.zeinb.net/html/meitizixun/zhuanyepingce/20080201/684_6.html

Outline

o Computer System Operation

@ Start a computer system

m AR 5 e g 12 / 66

Start a computer system

@ Bootstrap program(B #7] $425), a initial program

o Loaded at power-up or reboot

o Typically stored in ROM or EPROM, generally known as
firmware (B %)

e initializes hardware

@ CPU registers, device controllers, memory content

@ Load at least a part of the OS into main memory & start
executing it

@ Platform dependent(F&48 %/1K A4 H4a %)

hen@ustc.edu.cn http:// f0117401: Operatin; tem THHEAURE 5% Februar: 13 / 66

Example: Linux system startup

typical operating sytems startup course

Power-on—Bootstrap: BIOS—BootLoader: GRUB—O0S: Linux

Linux (Intel i386)

Refer to appendix A of {Understanding Linux Kernel)
@ —RESET pin of the CPU
@ cs:ip= OxFFFF FFFO
@ ROM BIOS (AARImAMmE A4L)

lancheneustc.edu.cn http://staff 0117401: Operating System T+ AU/R 2 5% February 22, 2017 14 / 66

Example: Linux system startup (cont.)

BIOS (A A At A%)

Basic I/0 System (BIOS) : A set of programs stored in ROM,
including

@ Several interrupt-driven low-level procedures
@ A bootstrap procedure, who

@ POST (Power On Self-Test)
Initializes hardware device
@ Searches for an 0S to boot

@ Master Boot Record(MBR) on Hard drive, Boot Sector on floppy
disk, network

o Copies the first sector of the OS into RAM 0x0000 7C00, and
Jumps & executes

.edu.cn http://staff 0117401: Operating System 1

15 / 66

Example: Linux system startup (cont.)

@ the first sector on a hard drive, a special type of boot

sector
@ MBR = MBR code (also called boot loader) + partition table

@ MBR code: code necessary to startup the 0S
e typical boot loader: GRUB

xlanchen@ustc.edu.cn http://staff 0117401: Operating System 1 54 February 16 / 66

Example: Linux system startup (cont.)

Structure of a classical generic MBR

Address Description
Size in bytes
Hex Dec
+000h +0 Bootstrap code area 446
+1BEh +446 Partition entry #1 16
+1CEh +462 Partition entry #2 Partition table 16
+1DEh | +478 | Partition entry #3 | (for primary partitions) 16
+1EEh | +494 | Partition entry #4 16
+1FEh | +510 55h
Boot signature 2
+1FFh | +511 AAh
Total size: 446 + 4%6 + 2 512

Februa

16 / 66

tc.edu.cn http:/,

??? After starts up

@ Executes prearranged process, or J

@ Waits for interrupt ‘

Modern 0Ss are interrupt-driven (PBiIRFhE)) .

anchen@u .cn http://st 0117401: Op: m AR 54 ebr 2017 17 / 66

Outline

o Computer System Operation

@ Interrupt

m AR 5 e 2017 18 / 66

Interrupt I

Interrupt represents an event to be handled

For hardware: Device interrupt

@ The completion of an I/0 operation
@ a key stroke or a mouse move
@ timer

For error (also hardware): exception

@ Trap for debug
@ Fault

e example: page fault, division by zero, invalid memory access

© Abort, a serious error

19 / 66

0117401 : ing System 4

For software: System call

@ To request for some operating-system service

@ Linux: INT 0x80
e MS/D0OS, windows: INT 0x21

Modern 0Ss are interrupt-driven (P B7IR3h 49)

anchen@ustc.edu.cn http://staff 0117401: Operating System 7+ 545 February 22, 2017 20 / 66

Interrupt handling I

When the CPU is interrupted
@ Stops what it is doing

© Incoming interrupts are disabled to prevent a lost
interrupt

@ Transfers control to the ISR (Interrupt Service Routine,
BT IR %15 #2)

@ ISR: A generic routine in fixed location and then call the
interrupt-specific handler

e interrupt vector table (PBiE = &)

xlanchen@ustc.edu.cn http://staff0117401:

Operating System 1

February 22,

Interrupt handling II

When the ISR completed,
Back to interrupted program
@ HOW ?

—— OS preserves the state of the CPU by storing registers
and the program counter.
also called context (LT, A4 LT)

@ 01d: Fixed location, or a location indexed by the device
number
o Recent: system stack (Linux : AAZ A)

xlanchen@ustc.edu.cn http://staff 0117401: Operating System 1 54 February 22, 22 / 66

Interrupt time line for a single process doing

output

User process
executing - - --- ---
CPU
1/0 interrupt
processing ~--q""-ctTtooooooooos ik Sl T
idle -—f—gmremmm e o
1/0
device
transfering ---q{--*4————------------- oo e
1/0 request transfer done 1/0 request transfer done

lanchen@ustc.edu.cn http://staff 0117401: 0 ing System T 30 5% e 22, 23 / 66

Example: interrupts in 1386

@ protect mode (RN)
o IDT (Interrupt Descriptor Table, P Bif5ii 45 &)
o OSEBIDTAR » BLFEHENPH A EH|Zg A O F 12 4
o TWFK A8gATiE o CPUARIEINF BT42 4] B RGO F BT @ € 5 £ IDT A

‘:F

%3] B 2t p 6 P BT AL I A2 (ISR) A 0 duhk » F Phik it k1547
o BBELETX
o X iy

o WA LT

xlanchen@ustc.edu.cn http://staff 0117401: Operating System T+ HU/R 2 5% February 22, 2017 24 / 66

Outline

e I1/0 Structure
@ I/0 Structure

1/0 structure

disk tape drives
R/
==
(1)
disk printer tape-drive
CPU controller controller controller

T T T

e

1/0 Interface

1/0 Device

170 Controller

memory

6 / 66

I/0 structure

@ Each device controller is in charge of a particular device
type
@ Each device controller has

@ a local buffer & a set of special-purpose registers

@ Data transfer, two phrase

o Main memory < (CPU)— local buffer of controller
o device «(device controller)—s local buffer

@ I/0 devices & CPU can execute concurrently (% H)

o Share/compete memory cycle
@ Memory controller

heneustc.edu.cn http:// f0117401: Operatin: tem THHEAURE 5% Februar

CPU

lanchen@ustc

Control register

Status register

Input register

Output register

.)
Device s

1/0 Interface

Februa

28 / 66

Outline

e I1/0 Structure

@ I/0 operation

1/0 operation

@ CPU start an I/0 operation by

o Loading the appropriate registers within the device
controller
@ When complete, device controller informs CPU by

@ Triggering an interrupt, or
@ Simply set a flag in one of their registers

@ Two I/0 methods

@ synchronous VS. asynchronous

lanchen@ustc.edu.cn http:/,

I/0 method —— analysis

1. Synchronous(F])

Requesting process
User ..
— waiting —

device driver

. Interrupt handler
Kernel M

Hardware

Data transfer

time ——

o MR E e G, G 5 F 01: 0 i em T EAUR I 5 1%

I/0 method —— analysis

1. Synchronous(F])

Requesting process
L. User o
@ Waiting — waiting —
@ Wait instruction device driver
Dead loop like .
° p . Interrupt handler
L . L Kernel M
oop:
b+ Jmp LOOp Hardware
Data transfer

time ——

anchenau .cn http://staff 0117401:

I/0 method —— analysis

1. Synchronous(F])

Requesting process
L. User o
@ Waiting — waiting —
@ Wait instruction device driver
o Dead loop like . Interrupt handler
L . L Kernel M
oop: Jmp LOOD Hardware
Data transfer

time ——
@ At most one I/0 request is outstanding at a time

o Advantage: always knows exactly which device is interrupting
o Disadvantage: excludes concurrent 1/0 operations & the
possibility of overlapping useful computation with I/0

2 xlanchen@ustc.edu.cn http://staff 0117401: Operating System 7+3 z February 22, 2017 31 / 66

1/0 method —— analysis (cont.)

2. Asynchronous(J/F')

Requesting process
User
@ Start & cont.
@ with a wait system call device driver
Kernel
os execute other .
° . . Interrupt handler
programs, or, if no .
other program, idle Hardware
Data transfer

time ——

anchenou .cn http://staff 0117401: Opera

1/0 method —— analysis (cont.)

2. Asynchronous(J/F')

Requesting process
User
@ Start & cont.
@ with a wait system call device driver
Kernel
os execute other .
° . . Interrupt handler
programs, or, if no .
other program, idle Hardware
Data transfer

time ——

@ Need to keep track of many I/0 request

2 xlanchen@ustc.edu.cn http://staff 0117401: Operating System 7+3 z February 22, 2017

1/0 method —— analysis (cont.)

2. Asynchronous(J/F')

Requesting process
User
@ Start & cont.
@ with a wait system call device driver
Kernel
os execute other .
° . . Interrupt handler
programs, or, if no .
other program, idle Hardware
Data transfer

time ——

@ Need to keep track of many I/0 request, HOW?

2 xlanchen@ustc.edu.cn http://staff 0117401: Operating System 7+3 z February 22, 2017

1/0 method —— analysis (cont.)

2. Asynchronous(#)

@ Need to keep track of many I/0 request, HOW?
@ Device-status table, & KRA &

@ Each device: an device entry;
@ Each entry: Device type, address, state(not work, idle/valid,
or busy)

@ A wait queue for each device

2 xlanchen@ustc.edu.cn http://staff 0117401: Operating tem THHEAURE 5%

1/0 method —— analysis (cont.)

2. Asynchronous(‘5‘)

@ Need to keep track of many I/0 request, HOW?
@ Device-status table, H&KRE

device: card reader 1

status: idle

device: line printer 3 _ r_eques_! for ﬁ—‘

status: busy ™| line printer

- - - address: 38546

device: disk unit 1 length; 1372

status: idle

device: disk unit 2

status: idle

device: disk unit 3 I

o — bl:S » request for request for _-l-

- ousy disk unit 3 disk unit 3

file: xxx file: yyy
operation: read operation: write
address: 43048 address: 03458
length: 20000 length: 500

lancheneustc.edu.cn http:/, f£0117401: O i § e R 5% Februa

1/0 method —— analysis (cont.)

2. Asynchronous(‘5‘)

@ Need to keep track of many I/0 request, HOW?
@ Device-status table, & KRA &

@ A wait queue for each device

© Vhen an interrupt occurs, 0S indexes into 1/0 device table
to determine device status and to modify table entry to
reflect the occurrence of interrupt

heneustc.edu.cn http:// f0117401: Operatin: tem THHEAURE 5% Februar

1/0 method —— analysis (cont.)

2. Asynchronous(‘5‘)

@ Need to keep track of many I/0 request, HOW?
@ Device-status table, & KRA &

@ A wait queue for each device

© Vhen an interrupt occurs, 0S indexes into 1/0 device table
to determine device status and to modify table entry to
reflect the occurrence of interrupt

@ Main advantage: system efficiencyt

heneustc.edu.cn http:// f0117401: Operatin: tem THHEAURE 5% Februar

Outline

e I1/0 Structure

o DMA

anchen@ustc ://staff 0117401: Operating S 1 1% February ¢

Direct Memory Access (DMA)

Examplel: 9600-baud terminal
@ 2us(ISR) per 1000us
@ It s ok!

Example2: hard disk

@ 2us(ISR) per 4us
@ The overhead (per byte) is relatively costly!

DMA (Direct Memory Access, iﬁ%%wﬁ??iﬁﬁﬂ)
@ Used for high-speed I/0 devices able to transmit

information at close to memory speeds.

lancheneustc.edu.cn http://staff 0117401: Operating System T+ AU/R 2 5% February 22, 2 34 / 66

DMA structure

One interrupt / block of data

A DMA controller
Disk Address
Memory
Memory Address
CPU:
fetch instruction
Count decode «——
fetch operand
Command operate «——
CPU
Status

Device controller

@ transfers between buffer and main memory directly, without

CPU intervention.

@ Memory cycle stealing

lanchen@ustc.edu.cn http://staff 0117401: O ating System T Februa: P 2 35 / 66

Outline

e Storage Structure and Storage Hierarchy
@ Storage Structure

m AR 5 e g 36 / 66

Storage structure

@ Von Neumann architecture VS. Harvard architecture

@ Separated data & code in different memory???

@ Main memory (RAM) is the only large storage media that the
CPU can access directly

e Small, Volatile

@ Secondary storage is an extension of main memory that
provides large nonvolatile storage capacity

o Magnetic disk, ##& l H. @

o Optical disk, H#& ey [e

o Magnetic tape, #4r

hen@ustc.edu.cn http:// f0117401: Operatin; tem THHEAURE 5% Februar: 37 / 66

Memory vs. registers

Memory VS. registers

@ Same: Access directly for CPU

@ Register name
@ Memory address

@ Different: access speed

@ Register, one cycle of the CPU clock
@ Memory, Many cycles (2 or more)

@ Disadvantage:

o CPU needs to stall frequently & this is intolerable

@ Remedy : cache, 9% &

anchenoustc.edu.cn http:// f0117401: Operating System T+JL 2, 38 / 66

Magnetic disks

@ Magnetic disks — rigid metal or glass platters covered
with magnetic recording material

o Disk surface is logically divided into tracks(#%i&), which
are subdivided into sectors(AR).

@ The disk controller determines the logical interaction
between the device and the computer.

tmck spindle

@ Position(®4L) time T,

h arm assembly

@ Transfer({54y) time Tp . -

B
|
1
|

eylinder ¢ —t read-write
|

head

patter

rotation

2 xlanchen@ustc.edu.cn http://staff 0117401: Operating tem THHEAURE 5% ebrua 39 / 66

Magnetic disks

@ Magnetic disks — rigid metal or glass platters covered
with magnetic recording material
o Disk surface is logically divided into tracks(#%i&), which
are subdivided into sectors(BR).
@ The disk controller determines the logical interaction
between the device and the computer.

track 1 spindle

@ Position(E4x) time T,

fector s '

o T, ~Ts+Tg ~mms -

o Seek time Ty -
e Rotational latency Ty "'* [e
o Transfer({&%4y) time Tp e b -

2 xlanchen@ustc.edu.cn http://staff 0117401: Operating tem THHEAURE 5% ebrua 39 / 66

Magnetic disks

@ Magnetic disks — rigid metal or glass platters covered
with magnetic recording material
o Disk surface is logically divided into tracks(#%i&), which
are subdivided into sectors(BR).
@ The disk controller determines the logical interaction
between the device and the computer.

@ Position(E4x) time T,

@ Transfer(/£3y) time T;

=
=

°

~ datasize x Transfer rate
o Transferrate =~ (nM/s)71 L
(n Byte/ us)f1
1/n us/Byte

~
~
~
~

hen@ustc.edu.cn http:// f0117401: Operatin; tem THHEAURE 5% Februar: 39 / 66

Magnetic disks

@ Magnetic disks — rigid metal or glass platters covered
with magnetic recording material

o Disk surface is logically divided into tracks(#%i&), which
are subdivided into sectors(AR).

@ The disk controller determines the logical interaction
between the device and the computer.

tmck spindle

@ Position(®4L) time T,

h arm assembly

@ Transfer({54y) time Tp . -

o TT VS. Tp eplers =4 i

o Please Store data closely e

rotation

2 xlanchen@ustc.edu.cn http://staff 0117401: Operating tem THHEAURE 5% ebrua 39 / 66

Outline

e Storage Structure and Storage Hierarchy

@ Storage hierarchy

m AR 5 e 2017 140 / 66

Storage hierarchy, &892 R

@ Storage systems in a CS can be
organized in a hierarchy.

@ The contradiction(F J§) between
COST, SPEED, and CAPACITY.

@ COST per bit.

Q Volatility () %%) Vs, Flectronie G

persistence (¥ A M). . r &

Magnetic disk

@ MM is a scarce resource (M F et
;},"?\) . Optical tapes
S r &

Magnetic tapes

.edu.cn http://staff 0117401: Operating System 1 3 % ebrua 0 41 / 66

@ Caching (%ﬁ%ﬁii*)

o Copying information into faster storage system
@ When accessing, first check in the cache,

@ if In: use it directly
@ Not in: get from upper storage system, and leave a copy in
the cache

@ Using of caching

Registers provide a high-speed cache for main memory
Instruction cache & data cache

@ Main memory can be viewed as a fast cache for secondary
storage

lancheneustc.edu.cn http:/, £ 0 0 0 i 5 t+E ebrua 42 / 66

Cache management

@ Design problem

o Hardware or software?
@ Cache size & Replacement policy is important
o Hit rate = 80%799% is OK!

lanchen@ustc.edu.cn http://staff 0117401: 0 ing System T 30 5% e 22, 43 / 66

Memory Wall

Memory Wall, R &3%

@ the growing disparity of speed between CPU and memory
outside the CPU chip?.

@ From 1986 to 2000, CPU speed improved at an annual rate of
55% while memory speed only improved at 10%.

@ Trend: memory latency would become an overwhelming
bottleneck in computer performance

From Wikipedia: Random-access memory

anchen@ustc.edu.cn http:// £0117401: Operating System T+ i3 February 22, 144 / 66

http://en.wikipedia.org/wiki/Random-access_memory#Memory_wall

Coherency and consistency

@ Multitasking environments must be careful to use most
recent value, no matter where it is stored in the storage
hierarchy

@ Migration of Integer A from Disk to Register

magnetic main hardware
K A A cache A .
disk memory register
@ The same data may appear in different level of the storage
system

@ When

Simple batch system, no problem

Multitasking, always obtain the most recently updated value
Multiprocessor, cache coherency (always implicit to 0S)
Distributed system?

hen@ustc.edu.cn http:// f0117401: Operating System T+JL Ly 4% , 45 / 66

@ Movement between levels of storage

explicit or implicit

Performance of Various Levels of Storage

hierarchy can be

Level 1 2 3 4
Name registers cache main memory disk storage
Typical size <1KB >16MB >16GB >100GB
Implementation custom memory with on-chip or off-chip CMOS DRAM magnetic disk
technology multiple ports, CMOS CMOS SRAM
Access time (ns) 0.25—0.5 0.5—25 80—250 5,000.000
Bandwidth (MB/sec) 20,000—100,000 5000—10,000 1000—5000 20—150
Managed by compiler hardware 0S 0S
Backed by cache main memory disk CD or tape

anchen@ustc

0117401: Operating S

February

46 / 66

Outline

e Hardware Protection
@ Hardware Protection

m AR 5 e g 47 / 66

Hardware protection

@ A properly designed 0S must ensure that an incorrect (or
malicious) program cannot cause other programs to execute
incorrectly.

@ Vhen in dead loop

© Vhen sharing recourses

© Vhen one erroneous program might modify the program or data
of another program, or even the 0S

@ Hardware must provide protection

@ Dual-Mode Operation
@ 1/0 protection

© Memory protection
@ CPU protection

2 xlanchen@ustc.edu.cn http://staff 0117401: Operating tem THHEAURE 5% ebrua 48 / 66

Hardware protection 1:

@ Using mode bit to provide different modes of execution

e mode bit=1=User mode (A PR) :
execution done on behalf of user
e mode bit=0=privileged mode (4FAIERN) ,
also called monitor mode (¥ H42F M X,) /supervisor
mode (B FAKX,) /system mode (AZLAER) :
execution done on behalf of 0S

@ Privileged instructions

userprocess user mode

(mode bit=1)

user process executing }—){ calls system call ‘ return from system call

\ A

\ A

AY /

y 7
kernel trap return
-) kernel mode
mode bit=0 mode bit=1)

/ (mode bit=0)

execute system call ‘

u.cn http://staff0117401: Operating em 1 i 22, 19 / 66

Hardware protection 1:

@ User program VS. 0S (or Kernel)

o Switch between user mode (1) and privileged mode(0)

@ Boot: from privileged mode.
@ User program: user mode.
@ Interrupt (include system call): switch to privileged mode.
@ 0S: privileged mode
userprocess

user mode
(mode bit=1)

user process executing %——)* calls system call ‘ return from system call

\ A
\ A
AY 7
y 7
kernel trap return
-) kernel mode
mode bit=0 mode bit=1)
/ (mode bit=0)

execute system call ‘

49 / 66

@ Example : 1386

o 4 modes (2 mode bits)
o Linux uses 2 mode (00b & 11b)

User User
Program Program
User mode
System call & interrupt switch

Systen mode

Figure: Linux uses two modes

lanchen@ustc.edu.cn http://staff0117401: Op. System i e 0 50 / 66

Hardware protection 2:

@ Preventing the users from issuing illegal I/0 instructions
@ All I/0 instructions are privileged instructions

o instead of performing I/0 operation directly, user program

must make a system call
o 0S, executing in monitor mode, checks validity of request

and does the I1/0
@ input is returned to the program by the 0S

@ Smart hacker may---
@ Stores in the interrupt vector a new address, which points

to a malicious routine
e The I/0 protection is compromised
@ We need some more protection---

2 xlanchen@ustc.edu.cn http://staff 0117401: Operating tem THHEAURE 5% ebrua 51 / 66

Use of a system all to perform I/0

@

trap to
monitor

case n

read

ystem call n«

resident
monitor

perform 1/0

®

retrun
to user

user

program

Hardware protection 3:

@ At least for interrupt vector and the

Base register

300040

ISR 05
@ Base register protection scheme 256000
Jobl
@ Base register+Limit register 300040
. . Job2
o Memory outside is protected 1420940
@ OS has unrestricted access to both Job3
. s 880000
monitor and user s memory Jobd
o Load instructions for the base/limit 1024000
registers are privileged
‘ base ‘ base+tlimit
- address S yes - yes ey
no no
Trap to Operating System
monitor — addressing error
Figure: Hardware address protection with base and limit registers

120900

Limit register

February 22

Hardware protection 4:

@ OS should be always take control of everything

@ What if a user program is in dead loop?

@ Timer

o Interrupts computer after specified period
@ Periodically or one-shot
o Load-timer is also a privileged instruction

@ Usage

@ Time sharing
o Compute current time
e Alarm or timer

2 xlanchen@ustc.edu.cn http://staff 0117401: Operating tem THHEAURE 5% ebrua 54 / 66

Timer to prevent infinite loop / process hogging resources

@ Set interrupt after specific period
@ Operating system decrements counter
@ When counter zero generate an interrupt

@ Set up before scheduling process to regain control or
terminate program that exceeds allotted time

lanchenoustc.edu.cn http:/, 3 0 ing System TtA AR ebruary 55 / 66

Outline

e General System Architecture
@ General System Architecture

m AR 5 e g 56 / 66

General system architecture

@ multiprogramming
@ time sharing
@ 0S: in kernel (privileged) mode

e control hardware & software resource
@ execute privileged instruction

@ system call

57 / 66

Op m TR E 5

anchen@u .cn http://st 0117401:

Outline

e General System Architecture

@ system call

m AR 5 e g 58 / 66

system call

—1ike a common function call, but totally

different!

@ Trap to a specific location in interrupt vector

o int (i386)
e trap (SUN SPARC)
e syscall (MIPS R2000)

@ Control passes to a service routine in the 0S, and the mode
bit is set to monitor mode
@ The kernel

@ Verifies that the parameters are correct and legal
o Executes the request
@ Returns control to the instruction following the system call

anchenoustc.edu.cn http:// f0117401: Operating System T+JL 2, 59 / 66

Use of a system all to perform I/0

resident

* monitor
case n

®
®

trap to
monitor

®

retrun
to user

user

ystem call n« program

60 / 66

Computing Environments

@ Traditional computer

o M MLEy X KM T AL
o Office environment
@ PCs connected to a network, terminals attached to mainframe
or minicomputers providing batch and timesharing

@ Now portals allowing networked and remote systems access to
same resources

o Home networks

@ Used to be single system, then modems
@ Now firewalled, networked

o MR e G, G 5 FO117401: O . AR 3 5

61 / 66

Computing Environments

@ Client-Server Computing

@ Dumb terminals supplanted by smart PCs
@ Many systems now servers, responding to requests generated
by clients

@ Compute-server provides an interface to client to request
services (i.e. database)

@ File-server provides interface for clients to store and
retrieve files

client client client oo client

network

lanchenoustc.edu.cn http://staff 0117401: O i S em T I 5%

Computing Environments

o H At

Peer-to-Peer Computing
Web-Based Computing
Grid Computing

Cloud Computing

2

° %%iﬁff}?Pervasive/Ubiquitous Computing

2 xlanchen@ustc.edu.cn http://staff 0117401: Operating tem THHEAURE 5% ebrua 63 / 66

o Computer System Operation
@ A modern computer system
@ Start a computer system
@ Interrupt
e I1/0 Structure
@ I/0 Structure
@ I/0 operation
@ DMA
e Storage Structure and Storage Hierarchy
@ Storage Structure
@ Storage hierarchy
e Hardware Protection
@ Hardware Protection
e General System Architecture
@ General System Architecture
@ system call
e Computing Environments
Q

A AR AL

hen@ustc.edu.cn http:// f0117401: Operatin; tem THHEAURE 5% Februar 64 / 66

£ b

B R R A BN AL > — B 845 AT B8
WATHA -

WA — A RARRRE (%4) BR > AREXP N2 EXZR
A ZRA 2

1.10 What is the purpose of interrupts? What are the

differences between a trap and an interrupt? Can traps be
generated intentionally by a user program? If so, for what
purpose?

1.13 Give two reasons why caches are useful. What problems

do the solve? What problems do they cause? If a cache can
be made as large as the device for which it is caching (
for instance, a cache as large as a disk), why not make it
that large and eliminate the device?

e 1.8
Which of the following instructions should be privileged?

a. Set value of timer.
b. Read the clock.

c. Clear memory.

d. Issue a trap instruction.

e. Turn off interrupts.

f£. Modify entries in device-status table.
g. Switch from user to kernel mode.

h. Access 1/0 device.

@ 1.11 Direct memory access is used for high-speed I1/0
devices in order to avoid increasing the CPU’ s execution
load.

e a. How does the CPU interface with the device to coordinate

the transfer?
@ b. How does the CPU know when the memory operations are
complete?
c. The CPU is allowed to execute other programs while the
DMA controller is transfering data. Does this process
interfere with the execution of the user programs? If so,
describe what forms of interference are caused.

ik J

anchen@ustc n http://

	Computer System Operation
	A modern computer system
	Start a computer system
	Interrupt

	I/O Structure
	I/O Structure
	I/O operation
	DMA

	Storage Structure and Storage Hierarchy
	Storage Structure
	Storage hierarchy

	Hardware Protection
	Hardware Protection

	General System Architecture
	General System Architecture
	system call

	Computing Environments
	小结和作业

