0117401: Operating System

TEALRE ST

Chapter 3: Process

PR =
xlanchen@ustc.edu.cn
http://staff.ustc.edu.cn/~xlanchen

Computer Application Laboratory, CS, USTC @ Hefei
Embedded System Laboratory, CS, USTC @ Suzhou

March 15, 2017

u.cn http: aff 0117401: TR RS &) 1/ 90

AT ERMANTIEES),
EEigE FRVEERS.

ANEERE FEITHIE,

http://staff 0117401: Operating System TTHEAJRH S

Overview

Q = EBRFHARBEF H L HUTHISRIE

e Process Concept

e Process Scheduling

e Operation on processes

e Interprocess Communication GHFE[RE{Z. IPC)
e Example of IPC Systems

e Communication in C/S Systems

Q AR

p://staff 0117401: Operatir tem THEN R S5& March 15, 2017

Q = EREFHAMBRE I L BUTHS T
o ZIEREFHIARRIME A
@ Seriel execution of programs (F&FHINAFHIT)
@ Concurrent execution of programs (FRFHIFE&HIT)

.edu.cn http://staff 0117401: Operating System TEALFIHE 5%

Some easily confused terms

@ In our course:

) Program(@f?): passive entity, usually a file containing a
list of instructions stored on disk (often called an
executable file).

o Tasks ({£%%5): a general reference

o Jobs(#EAk): in batch system, user programs (and data)
waiting to be loaded and executed

o PFOCGSSES(J?ﬂEi): a program in execution

@ Usually, the term job and process are used
interchangeably.

.cn http://staff 0117401: Operatin tem THEN R 5% March 15, 2017

Q S EREFHAMEFTHZHITHIS
o ZIHEMEF BRI

du.cn http://staff0117401: Operat System T EARHSE March 15, 2017 6 / 90

Multiprogramming (%ZiEFE/%) techniques

@ From Simple Batch system —Multiprogramming system

@ Memory must be shared by multiple programs
o CPU must be multiplexing(EFﬁ) by multiple programs
@ 4 basic components:

0 Process management
e Memory management

e 1/0 system management
@ file management

u.cn http: aff 0117401:

of multiprogramming techniques

o SHUHAML, HEZEALT, HREZFIRZITHEE FER AL
HAETFE, B4

e How to ensure correct concurrent?

@ Related theory:

e Conditions of the concurrent execution of program
Theoretical model: Precedence graph (HiItED

@ Analysis on the serial execution of programs based on
precedence graph

@ Analysis on the concurrent execution of programs based on
precedence graph

edu.cn http://staff 0117401: Operati stem THENEH 5% March 15, 2017

Precedence Graph (Eﬁf&%)

@ Goal:

HERRLIE /) ~ TR B~ R Z MRYHIT T

Precedence graph (Ri#2E]) is a Directed Acyclic Graph
(BEZEIAE, DAG).
o NOde(éﬁﬁﬁn):
—MHUTHRIT (W—&iE46) ~ —MEFEREHE)
e Edge (541, directed edge CH A7)
The precedence relation (Ei#x%) “—=” ,
—={(Ps,P;) | Py AEP FFIRHATHIBAT 52 }

.edu.cn http://staff 0117401: Operating System TEALFIHE 5%

Precedence Graph (&)

@ If (P;,P;) €—, then P; — P;
Here,
P; is called the predecessor (Fi#) of P;. and
P; the subsequent(fg4k) of P;

o XHBEIEMILE S AYIIALER (initial node)
o XA GURINEE SR N IELE S (final node)

o FHA LEM—E (veight) FR
A ST S IR B A R A TR [A]

du.cn http://staff 0117401: Operat System T EHRHE 5% March 15, 2017 9/ 90

Precedence Graph (&)

@ Example:

du.cn http: aff 0117401:

Q S EBEFHAMBEFHZHITHIS

@ Seriel execution of programs (F&FHINAFEIIT)

du.cn http://staff0117401: Operat System T EARHSE March 15, 2017

Seriel execution of programs (F&JF A FEHAIT)

o —MERIEFER E&E T MEFE - BFAENITH, LA R
HEMSTRIFZE M IT, N —MEFEITE, - TMREFR

A RERAT o
filan
Hr

o UREMFREFMEIRRIHIA
o CRRFEITH,
o PIUERHIHLER

heneustc.edu.cn http://staff 0117401: Operating System i1EH|FEH 5%

Seriel execution of programs (F&JF A FEHAIT)

o E—MEFET, ZHREAWAEEIITINFAIFI -
TE T EBIEIF 5, SIFIS2IAESSHUTRIHUTSE
R, SAMTAESSIITFEA BETAT °
Q Sl: a=x+3
Q S2: b=y+4
@ S3: c=atb
Q S4: d=a+tc

ge@

AR ML AT
1% BRIE A O R A

.edu.cn http://staff 0117401: Operating System TEALFIHE 5%

R M- P07 B A RFALE

o JUEIR AR MU I F AT

2 BT
° %%F?zz?‘iiﬂiEﬁinEWTi:??Eﬁ MEEVBIR - —BIFihiatT,
ERANZINFIRZRIFN

3 n] I
o HERFHUTHAEMEMANIaZRAHR, #IREHERIILER -

http://staff 0117401: Operating System TEAHFEIH 5%

Q S EBEFHAMBEFHZHITHIS

@ Concurrent execution of programs (FRFHIFE&HIT)

du.cn http://staff0117401: Operat System T EARHSE March 15, 2017

Concurrent execution of programs (FEFHIFF & HIT

)

o P51 | ZIEMNFENENRIER AR

edu.cn http://staff 0117401: Operating System 1EAH|FEH 5%

FEFFF 2 AT ROHRFALE

o FRTEFF “HUT — — BT — —HUIT"

| A\

o HITHFMAT, TEFFZ (AT BEH A ELRAHI IS

| \

o JRIAIF L -
o 2fl. WENWHE, RHENZIN=n, MEHITIHFH:

1. N:=N+1; print(N); N:=0; NPYEMKIRK An+1; n+t1; 0
2. print(N); N:=0; N:=N+1; NEYEMKIK In; 0; 1
3. print(N); N:=N+1; N:=0; NAYEMKIK An; n+1; 0

cn http://staff 0117401: Operating System EALRIES% March 15, 2017 16 / 90

BT H A HITHISE (Bernstein’ s conditions)

o TE L3 MR, WiBHIE AR IS o
o N IFAMBFHIBITIRE: “FIHIME" | FIAFFLHITRIZRM: -
o BBE: SIMEFIEANNRMAGEENBHELR, FETEIMEXME
@ Definitions, notation and terminology:
o IEER (pi), FRIEFnEHITHNFESEN AL ENES
o SV (p:), BREFoEHITHHEELZHTIELENES

e 1966, Bernstein: if programs p; and p,; meet the following

conditions, they can be executed concurrently, and have
reproducibility (=JEBILE)
0 If process p; writes to a memory cell M;, then no process p;
can read the cell M;.

e If process p; read from a memory cell M;, then no process p;
can write to the cell M;.

e If process p; writes to a memory cell M;, then no process p;
can write to the cell M;.

R(p1) (AW (P2) UR (p2) (VW (P1) UW (P1) W (P2) = &

PEE 2% xlanchene edu.cn http://staff 0117401 :

Operat ystem HENEH 5%

March 15,

Outline

e Process Concept
@ the Processes
@ Process State
@ Process Control Block (PCB)

taff 0117401 : i stem J1HA

Outline

e Process Concept
@ the Processes

taff 0117401 : i stem &% 2017 19 / 90

the processes

o RETE B ML A I LU, R

Q HREIZTHREITYE, FRAEMRE FZiTRHEFZEF RIS,
DUE N IRBEE RIS AT

Q FENHE, ZREEW LTI BRA I

Q NRIERER “IER” WU RPIT, DAREIRE BIERRTR,
K ELEAT F e 0 DA)

edu.cn http://staff 0117401: Operating System 1EAH|FEH 5%

Process Concept 1

@ An OS executes a variety of programs:

@ Batch system - jobs

e Time-shared systems - user programs or tasks
e PC - several programs: a word processor, a web browser,
etc.

@ we call all of them process

@ a program in execution;

@ process execution must progress in sequential fashion

u.cn http: aff 0117401: it & 5% March 15,

Process Concept 11

max

A process includes: stack

@ text section<«program code ‘l‘
@ program counter + other
registers<«current activity 'T‘
@ stack<«temporary data Less
@ data section<«=global variables data
@ heap text
y 0

COMPARE: Program vs. Process?

@ Program: a passive entity (&MY
@ Process: a active entity (JEBHAY)

du.cn http:// 0117401 : erati stem THENEH 5% March 15,

AR L RARFAE

st REARREHT

F&RM
JRIT
RO

LERISE

cn http://staff 0117401: Operatir tem THEN R 5% March 15

AR L RARFAE

OﬁWﬁ EREARFRT

“EHEET A, HREHET, BEAR RIS
AT, DU AT

o BA%WH
FRM
L RYA LS

© 6 0 ©
Rl
N
T3

http://staff 0117401: Operating System iTEA|JFEEE 5%

AR L RARFAE

Q MM ZEARMFH

Q HxEM
o ZiH

o B2 AR ROSHYE BRFIE
Q JRITHE
Q Frit

Q LFMFHIE

fA7 % xlanchen@ustc.edu.cn http://staff0117401: Operating System i1EAHJEH 5% March 15, 2017

AR L RARFAE

}JIL;\ ti Haigzliﬂ"lﬁ'ri

Q Hxitt
Q JhITtE

o MRER—MEEMILIBITHIEARN, WERG P MR BRI
SR AT o

Q Frit
Q LFMFHIE

fA7 % xlanchen@ustc.edu.cn http://staff0117401: Operating System i1EAHJEH 5% March 15, 2017

AR L RARFAE

0 }JIL;\ HE H%EZKE"J*%'HE

g
LAVLL:
S5

o VEREFEA HMILEY ~ AN AT FIUANAYE L 1A B Eatt
o SEL NI EINML”
o OSILIIURHUEMIHIEARIEEIZF Z MBEHHIZTT -

Q HEMINHTE

edu.cn http://staff 0117401: Operating System i1EAH|FEH 5%

AR L RARFAE

st RERNEHT

Q Hxitt
Q JRITHE
RoM
Q@ HEMIFE
o NG LF, HIELMZHEFE - BdEB AR R =50 A

519
PERERMR = REF B+ BB 4 R R

edu.cn http://staff 0117401: Operating System i1EAH|FEH 5%

Outline

e Process Concept

@ Process State

taff 0117401 : i stem J1HA

Process State

@ As a process executes, it changes its state.

State Models CIRAREZAY)

Q SEAM “=RA” A

Q SIA “HF” A EIE” B “HIRE” A
Q FIA “HE” KB “BIRE” HR

du.cn http://staff0117401: Operat stem THENEH 5% March 15, 2017

1R R

o —FhEEARAVIRE
Q ready (Bi%%): “HEHRE, HRXcpv”

@ running (BT
@ waiting (55%f. also blocked (FHZE) . sleeping (RHEAR))

interrupt

scheduler dispatch

1/0 or event
wait

1/0 or event
completion

4 types of state transferring

.cn http://staff 0117401: Operatin tem THEN R S5& March

CRET R

o —MEEARAVIRE
Q@ ready (B4 : “HEHE#HE, RRKCpUT
@ DataStructure: ready queue

@ running ({47
©Q waiting (%1¥#. also blocked (fHZE), sleeping (FEAR))

interrupt

scheduler dispatch

1/0 or event
wait

1/0 or event
completion

4 types of state transferring

.cn http://staff 0117401: Operatin tem THEN R 5% March

CRET R

o —MEREARIIRE
Q ready (Fi%): “HER&E, HARXCpU”
@ running (BT
@ waiting (%5%F. also blocked (FHZE). sleeping (BEEAR))
The process is waiting for some event to occur:
@ 1/0 completion, reception of a signal, resource allocation,

etc.
@ DataStructure: waiting queue

interrupt

scheduler dispatch

1/0 or event

1/0 or event
wait

completion
4 types of state transferring

March 15, 2017 26 / 90

u.cn http: aff 0117401: O

2 "HWRE A

@ Two more states is added to the “three state” model.
Q new GHIRE) : The process is beig created
@ initialization, resource preallocation, etc.
@ terminated (RIEMRFE): The process has finished
execution, normally or abnormally.

@ removed from ready queue, but still not destroyed.
@ other process may gather some information from the terminated

processes

admit interrupt

scheduler dispatch

1/0 or event
wait

1/0 or event
completion

6 types of state transferring

1% March

.edu.cn http://staff 011740

3 “Seven state”’ model

o HREREH B NH R —LLRE, TIERELEITE, BN %
FEORE, UEEMERRNERE, # LLREIFERS,
{HER & RFHRRINT R — L7 K, 15 HE S ANGRRELEIT o
HNERIR R A

Q KA MFE

Q HFERFE R

Q BRIERFMFE

Q Xt (swapping) 2

Q@ M #H (work load) ATTHIFE

.edu.cn http://staff 0117401: Operating System TEALFIHE 5%

3 “Seven state”’ model

o HREREH B NH R —LLRE, TIERELEITE, BN %
FEORE, UEEMERRNERE, # LLREIFERS,
{HER & RFHRRINT R — L7 K, 15 HE S ANGRRELEIT o
HNERIR R A

Q KA MFE

Q HFERFE R

Q BRIERFMFE

Q Xt (swapping) 2

Q@ M #H (work load) ATTHIFE

SIACHEENRS

.edu.cn http://staff 0117401: Operating System TEALFIHE 5%

3 “Seven state”’ model

o HREREH B NHE R —LLRE, TIERELEITE, BN %
FEORE, UEEMERRNERE, # LLREIFERE,
{HAER & RHRRINP R — L7 K, 15 HE S ANGRRELZIT o
HNERIR R A

Q KA MHFRER

Q HFERTE R

Q BIERBMFE

Q Xt (swapping) HUFFE

Q f#E (work load) AT HIFFE

SACEESRE

o HIE” MEAR—FIRE, ME—ERE
o IEALJGALTHELILIRE.: BRIERILE, FRILPEZE
o (HHEEAETIRGS. ETIMLE, JEHMEE, TEBERITES

heneustc.edu.cn http://staff 0117401: Operating System i1EH| 5%

3 “Seven state”’ model

o TERAE A, W T IESPIRASSEF LIRS Z A ~ B EIRESNERZ
(] AR e

oIk R H

.edu.cn http://staff 0117401: Operating System TEAHFEIH 5% March 15, 2017

3 “Seven state”’ model

o & MHE” WREM "TIRE” HA

Suspend

Dispatch Release

Activate

Suspend timeout

Event
Occurs

Event
Occurs

Wait

Activate
Blocked

Suspend

i March 15

/staff 011740

u.cn http:

Outline

e Process Concept

@ Process Control Block (PCB)

taff 0117401 : i stem J1HA

Process Control Block (HFEFSH|EL, PCB)

@ Each process is represented in the 0OS by a PCB,
also called Task Control Block, TCB
FERRERGI P — PP SRR S

o HIR(E ARG EHE L
o HIENTE

o HRVEARGURIEPCBAZE HIFIE BLH Z HATHIE AR

PCB/E IR A AE HME— R

fA7 % xlanchen@ustc.edu.cn http://staff0117401: Operating System i1EAHJEH 5% March 15, 2017

Process Control Block (HFEFSH|EL, PCB)

@ Information associated with each

process

Process state (...)

Program counter

CPU registers

CPU-scheduling information
Memory-management information
Accounting information: time used,
time 1limit,

1/0 status information

u.cn http://

process state

process number

program counter

registers

memory limits

list of open files

March 15,

CPU Switch From Process to Process

process Py operating system process Pj

interrupt or system call

executing
wrﬁ

‘ save state into PCBy ‘

* idle

‘reload state from PCBl‘

idle interrupt or system call executing

l ~ X

‘ save state into PCB; ‘

: idle

‘reload state from PCBO‘

executing \—I

o M. HARASMFIIRE
@ struct task struct in Linux0.11 & Linux 2.6.26
@ struct OS_TCB in ,uC/OS—ll

typedef struct os_tcb {
0S_STK *0STCBStkPtr; /* Pointer to current top of stack */
#ir 0S_TASK_CREATE_EXT EN > 0O
void *OSTCBExtPtr; /* Pointer to user definable data for TCB extension */
0S_STK *0STCBStkBottom; /* Pointer to bottom of stack */
INT32U OSTCBStkSize; /* Size of task stack (in number of stack elements) */
INT16U OSTCBOpt; /* Task options as passed by OSTaskCreateExt() */
INT16U OSTCBId; /* Task ID (0..65535) */
Fendif
struct os_tcb *OSTCBNext; /* Pointer to next TCB in the TCB list */
struct os_tcb *OSTCBPrev; /* Pointer to previous TCB in the TCB list */
#if ((0S_Q EN > 0) && (0S MAX QS > 0)) || (0S_MBOX_EN > 0) || (0S_SEM EN > 0) ||
(0S_MUTEX_EN > 0)
OS_EVENT *0STCBEventPtr; /* Pointer to event control block */
Fendif
#if ((0S_Q_EN > 0) && (0S MAX QS > 0)) || (0S_MBOX_EN > 0)

u.cn http: aff 0117401: it & 5% March 15,

Examples 11

void *OSTCBMsg; /* Message received from OSMboxPost() or OSQPost() */
#endif
#if (OS_VERSION >= 251) && (OS_FLAG_EN > 0) && (0S_MAX_FLAGS > 0)
£if 0S_TASK_DEL_EN > 0
OS_FLAG_NODE *0STCBFlagNode; /* Pointer to event flag node */
Fendif
OS_FLAGS OSTCBFlagsRdy; /* Event flags that made task ready to run */
Fendif
INT16U OSTCBDly; /* Nbr ticks to delay task or, timeout waiting for event */
INT8U OSTCBStat; /* Task status */
INT8U OSTCBPrio; /* Task priority (0 == highest, 63 == lowest) */
INT8U OSTCBX; /* Bit position in group corresponding to task priority (0..7) */
INT8U OSTCBY; /* Index into ready table corresponding to task priority */
INT8U OSTCBBitX; /* Bit mask to access bit position in ready table */
INT8U OSTCBBitY; /* Bit mask to access bit position in ready group */
#if 0S_TASK_DEL _EN > 0
BOOLEAN OSTCBDelReq; /* Indicates whether a task needs to delete itself */
#endif

} OS_TCB;

.cn http://staff 0117401: it & H 5% March 15

Outline

e Process Scheduling
@ Process Scheduling Queues
@ Schedulers

@ Context Switch(| F3r4J#r)

.cn http://staff 0117401: Op

March 15

Process Scheduling

The objective of

to have some process running at all times, to maximize CPU
utilization.

The objective of

to switch the CPU among processes so frequently that users can

interact with each program whilt it is running.

| N,

What the system need?

du.cn http:// 0117401 : erati stem THENEH 5% March 15,

Process Scheduling

The objective of

to have some process running at all times, to maximize CPU
utilization.

The objective of

to switch the CPU among processes so frequently that users can
interact with each program whilt it is running.

What the system need?

the process scheduler selects an available process to execute
on the CPU.

du.cn http:// 0117401 : erati stem THENEH 5% March 15,

Outline

e Process Scheduling
@ Process Scheduling Queues

taff 0117401 : i stem J1HA

Process Scheduling Queues

Processes migrate among the various queues

e Job queue — set of all processes in the system

() Ready queue — set of all processes residing in main
memory, ready and waiting to execute

@ Device queues — set of processes waiting for an I/0

device

March 15,

du.cn http:// 0117401: Operatir

Ready Queue And Various I/0 Device Queues

queue header PCB, PCBy
ready head > > -
queue tail registers registers

mag

head —+—
tape tail 4 =
unit O at [+
mag head ~
tape i
unit 1 al PCBg PCBy4 PCBg

AR
v
v
J

disk head

unit O tail A
PCBj
terminal head > —
unit O tail 7

£.0117401: em 7 5% March

Representation of Process Scheduling

L

1/0 queue }(—{ 1/0 request }(—

time slice

ready queue ‘{ CPU)

expired
child fork
esecutes child

wait for an
interrupt

interrupt
occurs

Queueing-diagram representation of process scheduling

Outline

e Process Scheduling

@ Schedulers

taff 0117401 : i stem J1HA

Schedulers [

Long-term ({Hf) scheduler (or job scheduler)

@ selects which processes should be brought into the ready

queue

Short-term (45HH) scheduler (or CPU scheduler)

@ selects which process should be executed next and
allocates CPU

edu.cn http://staff 0117401: Operati stem THENEH 5% March 15, 2017 42 / 90

The primary between long-term &

short-term schedulers [

@ The prilmary distinction between long-term & short-term
schedulers lies in frequency of execution
e Short-term scheduler is invoked very frequently (UNIT: ms)
= must be fast

e Long-term scheduler is invoked very infrequently (UNIT:
seconds, minutes) = may be slow
o WHY?

e The long-term scheduler controls the degree of
multiprogramming (ZERERFE)

e the number of processes in memory.
e stable?

edu.cn http://staff 0117401: Oper: S AR March 15,

The primary between long-term &

short-term schedulers I1I

@ Processes can be described as either:

[/0-bound (I/0%£ER) process

@ spends more time doing I/0 than computations, many short CPU
bursts

CPU-bound (CPUZXEERY) process

@ spends more time doing computations; few very long CPU bursts

@ IMPORTANT for long-term scheduler:

o A good process mix of I/0O-bound and CPU-bound processes.

edu.cn http://staff 0117401: Operati stem THENEH 5% March 15, 2017 44 / 90

@ The long-term scheduler may be absent or minimal

e UNIX, MS Windows,
@ The stability depends on

@ physical limitation
@ self-adjusting nature of human users

du.cn http://! 0117401: Operatir % 1 53% March 15,

Addition of Medium Term (H7HH) Scheduling

@ Medium-Term (HH) Scheduler

e can reduce the degree of multiprogramming
o the scheme is called swapping (3X#&): swap in VS. swap out

swap out partially executed swap in

swapped-out processes

ready queue end

1/0 waitin
@— "
queues

Addition of medium-term scheduling to the queueing diagram

cn http://staff0117401: Operat tem FHENFEHESE March 46 / 90

e Process Scheduling

@ Context Switch(| F3r4J#r)

cn http://staff 0117401: Operat tem THEN R 5% March

Context Switch (N HJ#r)

e CONTEXT (LETFX)

e when an interrupt occurs; When scheduling occurs

the context is represented in the of the process

e CPU registers

@ process state
e memory-management info

e operation: state save VS. state restore

du.cn http:// 0117401: Operatir H 5% March 15,

Context Switch (N HJ#r)

@ Context switch

@ When CPU switches to another process, the system must save
the state of the old process and load the saved
state for the new process

o Context-switch time is overhead; the system does no useful
work while switching

o Time dependent on hardware support (typical: n ys)
@ CPU & memory speed

@ N of registers
@ the existence special instructions

u.cn http: aff 0117401: it & RS March 15,

o Wz
o PAFIHIAHLA
o LRI FAL
o LTI

@ linux-0.11

@ linux-2.6.26

@ uC/0S-11

du.cn http://staff 0117401: Operat System T EAJRHSE March 15, 2017 49 / 90

Outline

e Operation on processes
@ Process Creation
@ Process Termination

taff 0117401: i stem &% 2017 50 / 90

Operation on processes

@ The processes in most systems can execute concurrently,
and they may be created and deleted dynamically.

@ The OS must provide a mechanism for

e process creation
e process termination

du.cn http: aff 0117401: it & RS March 15,

Outline

e Operation on processes
@ Process Creation

taff 0117401 : i stem J1HA

Process Creation [

@ Parent process (Ri#F2) create children processes
(F#F2), which, in turn create other processes, forming a

tree of processes

@ Most OSes identify processes according to a unique
process identifier (pid).

o typically an integer number

@ UNIX & Linux

ps —el
pstree

edu.cn http://staff 0117401: Operati stem THENEH 5% March 15,

Process Creation II

Parent and children

@ Resource sharing

o In general, a process will need certain resources (CPU time,
memory, files, 1/0 devices) to accomplish its task.
@ When a process creates a subprocesses

@ Parent and children may share all resources, or
@ Children may share subset of parent’ s resources, or
@ Parent and child may share no resources

@ Execution
@ Parent and children execute concurrently
@ Parent waits until children terminate
@ Address space

@ Child duplicate of parent
@ Child has a program loaded into it

u.cn http: aff 0117401: it & 5% March 15,

UNIX examples: fork + exec

@ fork system call creates new process
@ exec system call used after a fork to replace the
process’ memory space with a new program

parent

resumes

#include <unistd.h>
pid_t fork(void);

#include <unistd.h>
-

extern char environ;
int execl(const char *path, const char *arg, ...):
int execlp(const char *file, const char *arg, ...);

int execle(const char *path, const char *arg,
int execv(const char *path, char *const argv[]):
int execvp(const char *file, char *const argv[]);

., char * const envp[]);

C Program Forking Separate Process

int main(void) {

pid__t pid;

/* fork another process */

pid = fork();

if (pid < 0) { /* error occurred */
fprintf(stderr, “Fork Failed”);
exit(-1);

} else if (pid == 0) { /* child process */
execlp(“/bin/ls”, “Is”, NULL);

}else { /* parent process */
/* parent will wait for the child to complete */
wait (NULL);
printf (“Child Complete”);
exit(0);

.cn http://staff 0117401: Op: 115 5% March 15

Outline

e Operation on processes

@ Process Termination

taff 0117401 : i stem J1HA

Process Termination

@ [Self]Process executes last statement and asks the 0S to
delete it by using the exit() system call.

e Output data (a status value. typically an integer) from
child to parent (via wait())
e Process’ resources are deallocated by the 0S
@ [Other|Termination can be caused by another process
o Example: TerminateProcess() in Win32

@ [User]Users could kill some jobs.

o See command “kill1” and “pkill”

du.cn http: aff 0117401:

5% March 15,

Process Termination

Q [Parent|Parent may terminate execution of children
processes (abort)

@ Child has exceeded allocated resources
@ Task assigned to child is no longer required
o If parent is exiting

Some operating system do not allow child to continue if

its parent terminates

@ All children terminated - cascading termination

u.cn http:// 0117401 er em % 5% March 15, 2017 59 / 90

Process Termination

@ UNIX Example:

e If the parent terminates, all its children have assigned as
their new parent the init process.

#include <stdlib.h>
void exit(int status):

Zinclude <sys/types.h>
#Zinclude <sys/wait.h>
pid t wait(int *status);

u.cn http: aff 0117401: 1T % 1 51% March 15, 2017 59 / 90

#include <stdio.h>
int main(void){
char string[80];
nt i;
printf(“HELLO! NICE TO MEET YOU!\n");
for (i=0;i<10;i++){
printf(“Input %d: 7,3);
scanf(“%s”,string);
printf(“You say: %s\n”,string);
}
printf(“GOODBYE!\n");

e the whole life of a process execu

.cn http://staff 0117401: Op: 115 5% March 15

Outline

AN

e Interprocess Communication GHFRE[FEE[Z. IPC)
@ Shared-Memory systems
@ Message-Passing Systems

.edu.cn http://staff 0117401: Op < i1 017 61 / 90

Interprocess Communication (GHAZE[E]E(E, I1PC)

@ Processes executing concurrently in the OS may be either
independent processes or cooperating processes

e Independent process cannot affect or be affected by the
execution of other processes

e Cooperating process can affect or be affected by the
execution of other processes

) Advantages of allowing process cooperation

e Information sharing: a shared file VS. several users

o Computation speed-up: 1 task VS. several subtasks in
parallel with multiple processing elements (such as CPUs or
1/0 channels)

e Modularity
e Convenience: 1 user VS. several tasks

@ Cooperating processes require an IPC mechanism that will
allow them to exchange data and information.

edu.cn http://staff 0117401: Oper: S it RS March 15,

Interprocess Communication (GHAZE[E]E(E, I1PC)

Two fundamental models of IPC:
@ \Message-passing (JH EfZ3#) model

e useful for exchange smaller amount of data. because no
conflicts need be avoided.

e easier to implement

e exchange information via system calls such as
send (), receive()

@ Shared-memory (FHEEHXFE) model

edu.cn http://staff 0117401: Oper: st 115 R 5% March 15,

Interprocess Communication (GHAZE[E]E(E, I1PC)

Two fundamental models of IPC:
@ \)essage-passing (JHB{&E#) model

@ Shared-memory (FEENIE) model

o faster at memory speed via memory accesses.
@ system calls only used to establish shared memory regions

Process A[}E 1 Process A

1
Shared memory ;:]
Process B[@E 5

Process B

kernel |M kernel

du.cn http: aff 0117401: O

5% March 15,

Outline

AN

e Interprocess Communication GHFRE[FEE[Z. IPC)
@ Shared-Memory systems

.edu.cn http://staff 0117401: Op S 1T % 1 March 15

Shared-Memory systems

@ Normally, the OS tries to prevent one process from
accessing another process’s memory.

@ Shared memory requires that two or more processes agree
to remove this restriction.

e cxchange information by R/W data in the shared areas.

e The form of data and the location are determined by
these processes and not under the 0S’ s control.

@ The processes are responsible for ensuring that they are
not writing to the same location simultaneously.

edu.cn http://staff 0117401: Oper:

March 15,

Example: Producer—Consumer Problem (=& -JHFE

X

& [m]E)

@ Producer-Consumer Problem (4/f=&-;B#&&E I, PClo

@): Paradigm for cooperating processes

e producer (47=%&) process produces information that is
consumed by a consumer (;E%#) process.

edu.cn http://staff 0117401: Oper: S AR March 15,

Example: Producer—Consumer Problem (=& -JHFE

X

& [m]E)

@ Producer-Consumer Problem (4%=#&-;H%&&0)M, PCo)
ﬂ): Paradigm for cooperating processes
° producer (SEFI%E) process produces information that is
consumed by a consumer (;E%%%&) process. Example:

. assembly code object models
complier assembler loader

du.cn http: aff 0117401:

5% March 15,

Example: Producer—Consumer Problem (=& -JHFE

X

& [m]E)

@ Producer-Consumer Problem (4/=&-;B#&Z& 0|8, PClo

ﬂ): Paradigm for cooperating processes

o producer (47%&) process produces information that is
consumed by a consumer (;E%#) process.

e Shared-Memory solution

@ a buffer of items shared by producer and consumer

producer consumer

edu.cn http://staff 0117401: Oper: S 115 March 15,

Example: Producer—Consumer Problem (=& -JHFE

& [m]E)

@ Producer-Consumer Problem (4/=&-;B#&Z& 0|8, PClo

ﬂ): Paradigm for cooperating processes
o producer (47%&) process produces information that is
consumed by a consumer (;E%#) process.
e Shared-Memory solution

@ a buffer of items shared by producer and consumer

producer consumer

e Two types of buffers:

@ unbounded-buffer places no practical 1limit on the size
of the buffer
@ bounded-buffer assumes that there is a fixed buffer size

edu.cn http://staff 0117401: Oper: S 115 March 15,

#define BUFFER_SIZE 10
typedef struct {

} item;

item buffer [BUFFER_SIZE];
int in = 0; // index of the next empty buffer
int out = 0; // index of the next full buffer

Bounded-Buffer — Shared-Memory Solution

while (true) {
/* Produce an item */
while (((in + 1) % BUFFER_SIZE) == out)
; /* do nothing — no free buffers */
buffer[in] = item;
in = (in + 1) % BUFFER SIZE;

¥ y
while (true) {

while (in == out)
; // do nothing — nothing to consume

// remove an item from the buffer
item = buffer[out];

out = (out + 1) % BUFFER SIZE;
return item;

@ all empty? all full? =Solution is “correct” , but
can only use BUFFER SIZE-1 elements

JURE 5%

Outline

AN

e Interprocess Communication GHFRE[FEE[Z. IPC)

@ Message-Passing Systems

taff 0117401: i S it 515

Message-Passing Systems

e Message passing (GEEfG#)

@ provides a mechanism for processes to communicate and to
synchronize their actions without sharing the same
address space.

e processes communicate with each other without resorting
to shared variables

@ particularly useful in a distributed environmet.

@ IPC facility provides at least two operations:

Q send(message) — message size fixed or variable
@ receive(message)

@ If process P and Q wish to communicate, they need to:

@ establish a communication link between them
@ exchange messages via send/receive

@ Implementation of communication link

0 physical (e.g.., shared memory, hardware bus)
@ logical (e.g., logical properties)

.cn http://staff 0117401: Operatin tem THEN R S5& March

Implementation Questions

@ How are links established?
@ Can a link be associated with more than two processes?

@ How many links can there be between every pair of
communicating processes?

@ What is the capacity of a 1ink?

@ Is the size of a message that the link can accommodate
fixed or variable?

@ Is a link unidirectional or bi-directional?

du.cn http: aff 0117401: it & RS March 15,

Communication

@ Processes must name each other explicitly:

o send (P, message) - send a message to process P
o receive(Q, message) - receive a message from process Q

@ Properties of communication link in this scheme

o Links are established automatically

@ A link is associated with exactly one pair of communicating
processes

@ Between each pair there exists exactly one link

@ The link may be unidirectional, but is usually
bi-directional

e Symmetry VS asymmetry

o send (P, message)

e receive(id, message) - receive a message from any process

.cn http://staff 0117401: Operatin tem THEN R S5& March

Communication

@ Messages are directed and received from mailboxes (also
referred to as ports)

e Each mailbox has a unique id (such as POSIX message
queues)

@ Processes can communicate only if they share a mailbox

e Primitives are defined as:

@ send (A, message) — send a message to mailbox A
@ receive (A, message) — receive a message from mailbox A

[Properties of communication 1link in this scheme

@ Link established only if processes share a common mailbox
A link may be associated with more than two

processes
Each pair of processes may share several communication links

@ Link may be unidirectional or bi-directional

u.cn http: aff 0117401: it & 5% March 15,

Communication

@ Mailbox sharing problem

e P1, P2, and P3 share mailbox A
e P1, sends; P2 and P3 receive
@ Who gets the message?

@ Solutions to choose

e Allow a link to be associated with at most two processes

e Allow only one process at a time to execute a
receive operation

e Allow the system to select arbitrarily the receiver.
Sender is notified who the receiver was.

du.cn http: aff 0117401: it & RS March 15,

Communication

@ Who is the owner of a mailbox?

@ a process

e only owner can receive messages through its mailbox,
others can only send messages to the mailbox.
@ when the process terminates, its mailbox disappears.

e the 0S

@ the mailbox is independent and is not attached to any
particular process.

e Operations

@ create a new mailbox
@ send/receive messages through mailbox
@ destroy a mailbox

cn http://staff 0117401: Operat tem THEN R 5% March

Synchronization

@ Message passing may be either blocking or non-blocking
@ Blocking is considered synchronous

e Blocking send has the sender block until the message is
received

e Blocking receive has the receiver block until a message
is available

@ Non-blocking is considered asynchronous

e Non-blocking send has the sender send the message and
continue

e Non-blocking receive has the receiver receive a valid
message or null

@ Difference combinations are possible.

e If both are blocking =rendezvous(EE=)

e The solution to PC problem via message passing is
trivial when we use blocking send()/receive().

du.cn http: aff 0117401: O

5% March 15,

@ Queue of messages attached to the link; implemented in
one of three ways

@ Zero capacity — 0 messages
Sender must wait for receiver (rendezvous)

@ Bounded capacity — finite length of n messages
Sender must wait if link full

@ Unbounded capacity — infinite length
Sender never waits

du.cn http: aff 0117401: it & RS March 15,

@ Example of IPC Systems
@ POSIX Shared Memory
@ Mach (by yourself)
@ Windows XP

.cn http://staff 0117401: Operatin tem THEN R 5% March

Outline

@ Example of IPC Systems
@ POSIX Shared Memory

taff 0117401 : i stem J1HA

POSIX API for shared memory

#include<sys/ipc.h>

#include<sys/shm.h>

int shmget(key_t key, size_t size, int shmflg);

int shmctl(int shmid, int cmd, struct shmid_ ds *buf);

#include<sys/types.h>

#include<sys/shm.h>

void* shmat(int shmid, const void* shmaddr, int shmflg);
int shimdt(const void* shmaddr);

.edu.cn http://staff 0117401: Operating System EALRIE 5% March 15, 20

C program illustrating POSIX shared-memory API

#include <stdio.h>
#include <sys/shm.h>
#include <sys/stat.h>

int main() {
int segment id;
char® shared memory;
const int size = 4096;

segment_id = shmget (IPC_PRIVATE, size, S_IRUSR|S_TWUSR)
shared memory = (char*) shmat (segment id, NULL, 0);

sprintf (shared memory, ” Hi there!”);
printf (” %s\n” ,shared memory) ;

shmdt (shared_memory) ;
shmctl (segment id, IPC_RMID, NULL);
return O;

du.cn http://staff 0117401: Operating System &[RRI 5% March 15,

Two program using POSIX shared-memory:

y: programl
#include <stdio.h>
#include <sys/shm.h>

#Zinclude <sys/stat.h>

int main(void) {
key_t key:
int shm_id;
char * shm_addr;

key=ftok (” .” ,” m’);
shm_id=shmget (key, 4096, IPC_CREAT | IPC_EXCL|S_IRUSR|
S_TWUSR) ;

shm_addr=(char*) shmat (shm_id,0,0) ;

sprintf (shm addr,” hello, this is 11111111\n”);
printf (" 111111: %s” ,shm_addr);

sleep(10) ;

printf (" 111111: %s” ,shm_addr);

shmdt (shm_addr) ;

shmctl (shm_id, IPC_RMID,0) ;

return 0;

tem THEN R S5& March 15

Two program using POSIX shared-memory: program?2

#include <stdio.h>
#include <sys/shm.h>
#include <sys/stat.h>

int main(void) {
key t key:
int shm id;
char * shm_addr;

key=ftok (" .” " m’);
shn_id=shmget (key,4096,S_IRUSR|S_IWUSR) ;

shm_addr=(char*) shmat (shm_id,0,0) ;

printf (" 22222222:” ,shm_addr) ;
sprintf(shmfaddr,” this is 22222222\n");
shmdt (shm_addr) ;

return O;

du.cn http://staff 0117401: Operating System &[RRI 5% March 15,

Outline

@ Example of IPC Systems

@ Mach (by yourself)

taff 0117401 : i stem J1HA

Outline

@ Example of IPC Systems

@ Windows XP

taff 0117401 : i stem J1HA

LPC in Windows XP

@ Subsystems

e application programs can be considered clients of the
Windows XP subsystems server.

@ application programs communicate via a message—-passing
mechanism: local procedure-call (LPC) facility.

@ Port object: two types

@ connection ports: named objects, to set up communication
channels
@ communication ports

@ for small message, use the port’ S message queue

@ for a larger message, use a section object, which sets up a
region of shared memory.
this can avoids data copying

u.cn http: aff 0117401: 1T % 1 51% March 15, 2017 79 / 90

LPC in Windows XP

@ Local procedure calls in Windows XP.

Client Server
Connection
request | Connection Handle
Port -
P Handle Client
N Communication Port
A
Y
Server Handle
Communication Port -
Shared
< » Section Object [« >
(<=256 bytes)

Figure 3.17 Local procedure calls in Windows XP.

cn http://staff 011740 i stem 115 154 March 15

Outline

a Communication in C/S Systems

taff 0117401: i S it 515

Client-Server Communication

@ Sockets (EEEF)
@ Remote Procedure Calls (Grigid#Ei1HA, RPC)
@ Remote Method Invocation GEFENVEREA, RMI) (Java)

7= xlanchena edu.cn http://staff0117401: Operat vstem THEARHE S March 15,

Sockets (BEFES)

@ A socket is defined as an endpoint for communication

o Concatenation of IP address and port
@ The socket 161.25.19.8:1625 refers to port 1625 on host
161.25.19.8

@ Communication consists between a pair of sockets

host X
(146.86.5.20)

socket
(146.86.5.20:1625)

web server
(161.25.19.8)

socket
(161.25.19.8:80)

cn http://staff 0117401: Operat tem THEANEHE 5%

Remote Procedure CallsGEuFRid 2YHH . RPC)

@ Remote procedure call (RPC) abstracts procedure calls
between processes on networked systems.

@ Stubs — client-side proxy for the actual procedure on the
server.

@ The client-side stub locates the server and marshalls the
parameters.

@ The server-side stub receives this message, unpacks the
marshalled parameters, and peforms the procedure on the
server.

du.cn http: aff 0117401:

5% March 15,

Remote Procedure CallsGEuFRid 2YHH . RPC)

@ Execution of a remote precedure call (RPC)

client messages server

user calls kernel
to send RPC
mossage to
procedure X

From: client
kernel sends Sl matchmaker
message to bt receives
maichmaker to message, looks

Re: address
or

find port number| up answer

|

1

From: server
kernel places To: client matchmaker
port P in user Port: kermel replies fo client

RPGC message : with port P
Port: P

o z
H X

From: client «daemon
kernel sends listening to
RPC Port: port P port P receives
<contents> message
From: RPG daemon
kernel receives Port: P processes
reply, passes To: client request and
it 1o user Port: kernel processes send
<oufput> output

Remote Method Invocation GEFE F¥EVEH ., RMI)

@ Remote Method Invocation (RMI) is a Java mechanism similar
to RPCs.

@ RMI allows a Java program on one machine to invoke a method
on a remote object.

JVM

e

Java
program

0117401 em TEAFEIE 5% March 15,

Remote Method Invocation GEFE F¥EVEH ., RMI)

@ Marshalling Parameters

client remote object
val=server.someMethod (A,B) boolean someMethod(Ojbect x, Object y)
{
impleentation of someMethod
}
stub skeleton

A,B, someMethod
boolean return value

n http:/, f i tem HEAFEIE 5% . 5, 2017 84 / 90

Outline

Q /AR

[£.0117401: rati i 5%

NG

Q ZEREFEATEF L HITHSE
o ZIEMEFHAMM S
@ Seriel execution of programs (F&FRUNAFHAT)
@ Concurrent execution of programs (FE/FHYFH & HIT)
e Process Concept
@ the Processes
@ Process State
@ Process Control Block (PCB)
e Process Scheduling
@ Process Scheduling Queues
@ Schedulers
@ Context Switch(_EFHJ#)
e Operation on processes
@ Process Creation
@ Process Termination
Interprocess Communication (HFE[A]IE fA_. IPC)
@ Shared-Memory systems
@ Message-Passing Systems
e Example of IPC Systems
@ POSIX Shared Memory
@ Mach (by yourself)
@ Windows XP
e Communication in C/S Systems

Q /1Al

.edu.cn http://staff 0117401: Op S 1T % H 5% March 15

@ Read related code in Linux or uC/0S-11

@ Subsubsection ” An Example: Mach” of subsection
” Examples of IPC Systems”

@ Subsubsection ” An Example: Windows XP” of subsection
” Examples of IPC Systems”

@ Subsection ” Communication in Client-Server Systems”

.cn http://staff 0117401: Operatin tem THEN R S5& March

o FEFHINRFFHATANH A HATHE 4 [Z 407
o /4 ZBRernsteingeftf:?
o X[T NHHAIER]:

S

a=>5—x;
: b=a-x;
: C:4‘X;
: d:b—|—C;
. e=d+3

Q mEiHiATEA
Q TEWIS IS 2 AT LIFFAHATHY, TSsFIS, @ AREH L HATHY o
o IR/ DoAIERGIMRPEE, 4B HIXEHFRTHRENE L,
Y| HH AL
o [AiElinux-0. IIHINZANHS, BN HIRRBIRE I LLIAT
YA 1inux-0. 11 FFHRRAPIR S e HAR R R -

hen@ustc.edu.cn http://staff 0117401: Operating System ITELHJFH 5%

o HIAMERE:

KA
LR
LOZFARMY / CPUBS R
iR A

o WR—"PmainEHELH =R fork O, IBAZERECBITINER
G fr LA T 2N NP AY EEHATRARAE -

edu.cn http://staff 0117401: Operating System i1ELAFEIH51% March 15, 2017

gt |

	多道程序技术和程序并发执行的条件
	多道程序技术的难点
	Seriel execution of programs (程序的顺序执行)
	Concurrent execution of programs (程序的并发执行)

	Process Concept
	the Processes
	Process State
	Process Control Block (PCB)

	Process Scheduling
	Process Scheduling Queues
	Schedulers
	Context Switch(上下文切换)

	Operation on processes
	Process Creation
	Process Termination

	Interprocess Communication (进程间通信, IPC)
	Shared-Memory systems
	Message-Passing Systems

	Example of IPC Systems
	POSIX Shared Memory
	Mach (by yourself)
	Windows XP

	Communication in C/S Systems
	小结和作业

