0117401: Operating System

TEALRE ST

Chapter 4: Threads

PR =
xlanchen@ustc.edu.cn
http://staff.ustc.edu.cn/~xlanchen

Computer Application Laboratory, CS, USTC @ Hefei
Embedded System Laboratory, CS, USTC @ Suzhou

March 29, 2017

.cn http://staff0117401: Operatin: T ENURE 5%



B
TR
i
Al

AT ERME A TIEES],
EEIRE FRYEFRE,

ANEERE FEITHIE,

http://staff 0117401: Operating System TEAHFEIH 5%



&M

0 Overview

e Multithreading Models
e Thread Libraries
e Threading Issues
e 0OS Examples for Thread

e Thread Scheduling
@ 0OS Examples for Thread Scheduling

@ /AL

f5# £ xlanchene edu.cn http://staff 0117401: Operat ystem HENEH 5%



Chapter Objectives

Chapter Objectives

@ To introduce the notion of a thread — a fundamental
unit of CPU utiliazation that forms the basis of
multithreaded computer system.

@ To discuss the APIs for Pthreads, Win32, and JAVA
thread libraries.

edu.cn http://staff 0117401: Operat vstem THEARHE S



Outline

a Overview




Thread concept overview

@ A thread is a basic unit of CPU utilization;

e it comprises a thread ID, a program counter, a
register set, and a stack.

@ It shares with other threads belonging to the same process
the code section., the data section. and other 0S
resources, such as open files, signals, etc

@ A traditional process has a single thread of control:
heavyweight process.

| code || data || files | ‘ code H data || files |

| registers | stack registers ||| registers ||| registers

stack stack stack

thread ——> ; ; ; ;4—— thread

single-threaded process multithreaded process

du.cn http: aff 0117401: 115 5%



Motivation

@ On modern desktop PC, many APPs are multithreaded.

e a seperate process with several threads
o Example 1: A web browser

@ one for displaying images or text;
@ another for retrieving data from network

o Example 2: A word processor

@ one for displaying graphics;
@ another for responding to keystrokes from the user;
@ and a third for performing spelling & grammer checking in the

background

u.cn http: aff 0117401:



Motivation

@ Motivation
@ In certain situations, a single application may be required
to perform several similar tasks. Example: a web server
@ Allow a server to service several concurrent requests.
Example: an RPC server and Java s RMI systems
@ The OS itself needs to perform some specific tasks in
kernel, such as manging devices or interrupt handling.

o PARTICULAR, many OS systems are now multithreaded.

@ Example: Solaris, Linux

%

cn http://staff 0117401: Opere



@ Responsiveness (MRNES )
o Example: an interactive application such as web browser,
while one thread loading an image, another thread allowing
user interaction

@ Resource Sharing

@ address space, memory, and other resources

@ Economy

e Solaris:

creating a process is about 30 times slower then creating a
thread;

context switching is about 5 times slower

Q@ Utilization of MP Architectures

e parallelism and concurrency 7

.cn http://staff0117401: Operatin: tem FHENFEHESE



Outline

e Multithreading Models

taff 0117401: i S it 515



Two Methods

Two methods to threads

@ User threads VS. Kernel threads

Q@ User threads

o Thread management done by user-level threads library
without kernel support

@ Kernel may be multithreaded or not.

e Three primary thread libraries:

@ POSIX Pthreads
@ Win32 threads
© Java threads

%
5a

du.cn http: aff 0117401: Operatir March 29,



Two Methods

Two methods to threads

@ User threads VS. Kernel threads

Q@ Kernel Threads

@ Supported by the Kernel, usually may be slower then user
thread
@ Examples

Windows XP/2000
Solaris

Tru64 UNIX (formerly Digital UNIX)

o
°
@ Linux
o
@ Mac OS X

0117401 em TEAFEIE 5% March 29,



Multithreading Models

@ The relationship between user threads and kernel
threads

@ Many-to-One [n:1]
@ One-to-0One [1:1]
@ Many-to-Many [n:m]

@ Many-to-One [n:1] é é
@ Many user-level threads mapped % é - LEZ;
to single kernel thread

e Examples:
@ Solaris Green Threads

@ GNU Portable Threads

kernel
thread

%
5a

du.cn http: aff 0117401: Operatir March 29,



Multithreading Models

user

@ One-to-0One [1:1]
thread

@ Each user-level thread maps to é 5 g 5
a kernel thread
e Examples _
o Windows NT/XP/2000 " thread

@ Linux
@ Solaris 9 and later

.cn http://staff 0117401: Operatin: tem TTHEANRHE 5% March 29, 20



Multithreading Models

@ Many-to-Many [n:m] é é
@ Allows many user level threads é é -— txi;
to be mapped to many kernel
threads

@ Allows the operating system to
create a sufficient number of
kernel threads

e Examples kernel
thread
@ Solaris prior to version 9

@ Windows NT/2000 with the
ThreadFiber package

u.cn http: aff 0117401: 115 5% March



Multithreading Models

@ Two-level Model. a popular
variation on many-to-many model é é
e Similar to n:m, except that it % é é -— tﬁz;
allows a user thread to be
bound to a kernel thread

o Examples

@ IRIX
@ HP-UX
@ Tru64 UNIX < kernel
@ Solaris 8 and earlier thread

u.cn http: aff 0117401: 115 5% March 2



Outline

e Thread Libraries




Thread Libraries

@ A thread library provides an API for creating and
managing threads.
Two primary ways
@ to provide a library entirely in user space with no

kernel support
@ to implement a kernel-level library supported directly

by the OS
’ library ‘ code & data ‘ API ‘inwmi@xmtmmfnmdoAm
user-level entirely in user space | user space a local function call
kernel-level kernel space user space system call

@ Three main thead libraries

@ POSIX Pthreads
@ Win32 threads
© Java threads

.cn http://staff0117401: Operatin: tem THEANEHE 5% March 29, 20



1 Pthreads

e Pthreads
e A POSIX standard (IEEE 1003.1c) API for thread

creation and synchronization

@ API specifies behavior of the thread library, implementation
is up to development of the library

o Common in UNIX OSes (Solaris, Linux, Mac 0S X)

du.cn http: aff 0117401: i EN RS & March 29,



Multithreaded C program using the Pthreads API 1

#include <pthread.h>
#Finclude <stdio.h>

int sum; /* this data is shared by the thread(s) */

/* The thread will begin control in this function */
void *runner (void *param) {

int i, upper = atoi(param);

sum = 03

if (upper > 0) {
for (i = 1; i <= upper; i++)
sum += i;
}
pthread_exit(0);
}

int main(int argc, char *argv[]) {
pthread_t tid; /* the thread identifier */

u.cn http: aff 0117401: 115 5% March 2



Multithreaded C program using the Pthreads API 11

pthread_attr_t attr; /* set of attributes for the thread */

if (arge '= 2) {
fprintf (stderr, “usage: a.out <integer value>\n" );

return -1;

if (atoi(argv[1l]) < 0) {
fprintf (stderr, “Argument %d must be non-negative\n” ,atoi(argv[1]));

return -1;

pthread_attr_init (&attr); /* get the default attributes */
pthread_create(&Lid,&aLLr,runner,argv[l]); /* create the thread */
pthread_join(tid,NULL); /* now wait for the thread to exit */

printf( “sum = %d\n” ,sum);

u.cn http: aff 0117401: 115 5% March 2



pthread attr_init

NAME
pthread_attr_init, pthread_attr_destroy - initialise and destroy threads
attribute obgject

SYNOPSIS

Zinclude <pthread.h>

int pthread_attr_init(pthread_attr_t *attr);:
int pthread_attr_destroy(pthread attr_t *attr);

DESCRIPTION

The function pthread attr_init() initialises a thread attributes object attr
with the default value for all of the individual attributes used by a given
implementation.

The pthread attr_destroy() function is used to destroy a thread attributes
object.

RETURN VALUE
Upon successful completion, both return a value of O.
Otherwise, an error number is returned to indicate the error.

cn http://staff 0117401: Operat tem THEN R S5& March 29,



pthread create()

NAME

pthread_create - thread creation

SYNOPSIS

#include <pthread.h>

int pthread_create(pthread_t *thread, const pthread_attr_t *attr,
void *(*start_routine) (void*), void *arg);

DESCRIPTION

The pthread_create() function is used to create a new thread, with
attributes specified by attr, within a process. ...Upon successful
completion, pthread create() stores the ID of the created thread in the
location referenced by thread.

The thread is created executing start routine with arg as its sole argument.

If pthread create() fails, no new thread is created and the contents of the
location referenced by thread are undefined.

RETURN VALUE
If successful, the pthread create() function returns zero.
2 x1 n http://staff 0117401: Op tem THEN R S5&




pthread join

NAME

pthread_join - wait for thread termination

SYNOPSIS
#include <pthread.h>
int pthread_join(pthread_ t thread, void **value_ptr):

DESCRIPTION

The pthread join() function suspends execution of the calling thread until
the target thread terminates, unless the target thread has already
terminated. ... The results of multiple simultaneous calls to pthread join()
specifying the same target thread are undefined.

RETURN VALUE
If successful, the pthread join() function returns zero.
Otherwise, an error number is returned to indicate the error.

.cn http://staff 0117401: Op



pthread exit

NAME

pthread_exit - thread termination

SYNOPSIS
#include <pthread.h>
void pthread_exit (void *value ptr);

DESCRIPTION
The pthread exit() function terminates the calling thread and makes the value
value_ptr available to any successful join with the terminating thread.

RETURN VALUE

The pthread exit() function cannot return to its caller.

cn http://staff 0117401: Operat tem THEN R S5& March 29,



2 Win32 Threads Example I

@ Similar to the Pthreads technique.
@ Multithreaded C program using the Win32 API

#include <stdio.h>
#include <windows.h>
DWORD Sum; /* data is shared by the thread(s) */

/* the thread runs in this separate function */
DWORD WINAPT Summation (PVOID Param) {
DWORD Upper = *(DWORD *)Param;
for (DWORD i = 0; i <= Upper; i++)
Sum += 1i;
return O;

}

int main(int argc, char *argv[]){
DWORD Threadld;
HANDLE ThreadHandle;
int Param;

u.cn http: aff 0117401:

March 2



2 Win32 Threads Example 11

// do some basic error checking

if (argc '= 2){
fprintf (stderr,” An integer parameter is required\n” ):
return -1;

Param = atoi(argv[1]);

if (Param < 0){
fprintf (stderr, “an integer >= 0 is required \n” ):
return -1;

// create the thread

ThreadHandle = CreateThread (NULL, //default security attribute
0, //default stack size
Summation, //thread function
&Param, //parameter to thread function
0, //default creation flags
&Threadld) ;

cn http://staff 0117401: Operat tem THEN R S5& March 29,



2 Win32 Threads Example 111

if (ThreadHandle !'= NULL) {
WaitForSingleObject (ThreadHandle, INFINITE):
CloseHandle (ThreadHandle) ;

printf( “sum = %d\n” ,Sum);

u.cn http: aff 0117401:

1%
5a

March 2



3 Java Threads

@ Java Threads
e Threads are the fundamental model for program
execution.

e Java threads may be created by:

o Extending Thread class
to create a new class that is derived from the Thread class

and override its run() method.
o Implementing the Runnable interface

5% March 2

u.cn http: aff 0117401:



Java Thread Example I

class Summation implements Runnable {
private int upper;
private Sum sumValue;
Slln S o public Summation(int upper, Sum sumValue) {
if (upper < 0) throw new
T1legalArgumentException() ;
this.upper = upper;
this.sumValue = sumValue;

private int sum;

public int get() {
return sum;

public void set(int sum) {

K public void run() {
this.sum = sum;

int sum = 0;
for (int i = 0; i <= upper; i++)

. sum += 1;

sumValue.set (sum) ;

u.cn http://staff 011740 THEALFEE 5%



Java Thread Example 11

public class Driver {
public static void main(String[] args) {
if (args.length != 1) {
System.err.println( “Usage Driver <integer>" VE
System.exit (0) ;

}

Sum sumObject = new Sum() ;
int upper = Integer.parselnt(args[0]);
Thread worker = new Thread(new Summation (upper, sumObject)):
worker.startQ;
try {
worker.joinQ;
} catch (InterruptedException ie) { }

System.out.println( “The sum of” + upper + “ is “ + sumObject.get());

n http://staff 0117401: Op



Outline

e Threading Issues




Threading Issues

@ Semantics of fork() and exec() system calls

@ Does fork() duplicate only the calling thread or all
threads?

o Some UNIX system have chosen to have two versions
@ Which one version to use? Depend on the APP.

@ Thread cancellation

@ Terminating a thread before it has finished
o Two general approaches:

e Asynchronous cancellation terminates the target thread
immediately

@ Deferred cancellation allows the target thread to
periodically check if it should be cancelled

du.cn http: aff 0117401: 115 5%

March 29,



Threading Issues

@ Signal Handling

@ Signals are used in UNIX systems to notify a process that a
particular event has occurred

) Synchronous: illegal memory access, division by 0
e Asynchronous: Ctrl+C

@ All signals follow the same pattern:

0 Signal is generated by particular event
e Signal is delivered to a process
e Signal is handled

e Signal handler may be handled by

o a default signal handler, or
e a user-defined signal handler

e When multithread, where should a signal be delivered?

Deliver the signal to the thread to which the signal applies
Deliver the signal to every thread in the process

Deliver the signal to certain threads in the process

Assign a specific thread to receive all signals for the
process

.edu.cn http://staff 0117401: Op



Threading Issues

@ Thread Pools

@ Create a number of threads in a pool where they await work
e Advantages:

@ Usually slightly faster to service a request with an
existing thread than create a new thread

@ Allows the number of threads in the application(s) to be
bound to the size of the pool

@ Thread Specific Data

@ Allows each thread to have its own copy of data
@ Useful when you do not have control over the thread creation
process (i.e., when using a thread pool)

@ Scheduler Activations

@ Both n:m and Two-level models require communication to
maintain the appropriate number of kernel threads allocated
to the application

@ Scheduler activations provide upcalls - a communication
mechanism from the kernel to the thread library

@ This communication allows an application to maintain the
correct number kernel threads

.edu.cn http://staff 0117401: Op



Outline

e 0OS Examples for Thread

taff 0117401: i S it 515



Windows XP Threads

@ An Windows XP application runs as a seperate process, and
each process may contain one or more threads.
@ Implements the one-to-one mapping
@ cach user-level thread maps to an assotiated kernel thread

@ any thread belonging to a process can access the address
space of the process

@ Each thread contains

e A thread id

e Register set

e Separate user and kernel stacks
e Private data storage area

@ The register set, stacks, and private storage area are
known as the context of the threads

du.cn http: aff 0117401: i EN RS & March 29,



Windows XP Threads

@ The primary data structures of a thread include:
o ETHREAD (executive thread block)
o KTHREAD (kernel thread block)
o TEB (thread environment block)
ETHREAD
thread start
address
Pointer to
parent processes KTHREAD
scheduling
and
synchronization
: information
kernel
stack

TEB

thread identifier

user
stack

thread-local
storage

.

kernel space

user space




Linux Threads

@ Linux refers to them as tasks rather than threads
@ Thread creation is done through clone() system call

@ clone() allows a child task to share the address
space of the parent task (process)

@ clone() VS. fork()

| flag \ meaning
CLONE_FS File-system information is shared
CLONE_VM The same memory space is shared
CLONE_SIGHAND Signal handlers are shared
CLONE_FILES The set of open files is shared

ustc.edu.cn http://staff 0117401: Operatir tem THEN R S5& March 29, 2017



Java Threads

o JavafEiBE PRI MR QB E B FFThee
e Java threads are managed by the JVM, not user-level library
or kernel
@ Java threads may be created by:

o Extending Thread class
@ Implementing the Runnable interface Java

Q¥ft
ry N
<‘Q ;0
xR d

sleep()
1/0

available

blocked

thead States

du.cn http: aff 0117401:

% March 29,



Outline

@ Thread Scheduling
@ OS Examples for Thread Scheduling

.edu.cn http://staff 0117401: Op



Thread Scheduling

@ user-level thread VS. kernel-level thread (or LWP)

@ Local Scheduling — How the threads library decides
which thread to put onto an available LWP

e many-to—one, many-to—many models
e process-contention scope. PCS
@ Global Scheduling — How the kernel decides which
kernel thread to run next

@ many-to-one, many-to-many & one—-to—one models
e system-contention scope. SCS

edu.cn http://staff 0117401: Operati stem THEAFHE 5%



Pthread Scheduling API I

@ POSIX Pthread APT allows specifying either PCS or
SCS during thread creation

e PTHREAD_SCOPE_PROCESS, many-to—many
o PTHREAD_SCOPE_SYSTEM, one-to-one

@ create and bind an LWP for each user-level thread

@ example
#Zinclude <pthread.h>
#include <stdio.h>
#define NUM THREADS 5

int main(int argc, char *argv[]) {
int 1i;
pthread_t tid[NUM THREADS];
pthread_attr_t attr;
pthread_attr_init(&attr): /* get the default attributes */

edu.cn http://staff 0117401: Operati stem THEAFHE 5%



Pthread Scheduling API II

/* set the scheduling algorithm to PROCESS or SYSTEM */
pthread_attr_setscope(&attr, PTHREAD_SCOPE_SYSTEM):

/* set the scheduling policy - FIFO, RT, or OTHER */
pthread_attr_setschedpolicy(4attr, SCHED_OTHER);

for (i = 0; i < NUM_THREADS; {i++) /* create the threads */
pthread_create(&tid[i],&attr,runner,NULL);

for (i = 0; i < NUM THREADS; i++) /* now join on each thread */
pthread_join(tid[i]. NULL):
}

/* Each thread will begin control in this function */
void *runner (void *param) {

printf( “I am a thread\n” ):

pthread_exit(0):

u.cn http: aff 0117401: 1T % 1 51% March 2



Outline

@ Thread Scheduling
@ OS Examples for Thread Scheduling

.edu.cn http://staff 0117401: Op



Solaris scheduling 1

@ Solaris: priority-based thread

scheduling
@ 4 classes of scheduling. in order [mm —wmw f  apow o
of priority.Within each class there [ronest 3 B P I
are different priorities and o
different scheduling N L
algorithms. y o~ &=
e Real time Qo
e System (do not change the priority) R, e,
e Time sharing (default, with a e
multilevel feedback queue) O

e Interactive, the same as time
sharing, but higher priority

du.cn http: aff 0117401: March 29,

%
5a



Solaris scheduling 11

L. time time quantum return from
priority quantum expired sleep

0 200 0 50

5 200 0 50
10 160 0 51
15 160 5 51
20 120 10 52
25 120 15 52
30 80 20 53
35 80 25 54
40 40 30 55
45 40 35 56
50 40 40 58
55 40 45 58
59 20 49 59

Solaris Dispatch Table




Windows XP scheduling

@ Dispatcher: priority-based. preemptive scheduling
algorithm uses a 32-level priority scheme to determine
the order of thread execution

e 0: idle thread
@ 1715: variable classes priorities
e 16731: real-time class
@ a queue for each priority
real — . above below idle
time high normal normal normal priority
time-cribical 31 15 15 15 15 15
highest 26 15 12 10 8 6
above normal 25 14 11 9 7 5
normal 24 13 10 8 6 4
below normal 23 12 9 7 5 3
lowest 22 11 8 6 4 2
idle 16 1 1 1 1 1

Windows XP Priorities (policy classes. relativelpriority)
stem HEAFEIE 5%




Outline

@ AR




0 Overview

Multithreading Models
Thread Libraries
Threading Issues
0OS Examples for Thread

Thread Scheduling
@ 0OS Examples for Thread Scheduling

/INEEREL

du.cn http: aff 0117401:

%
5a

March 29,



TEMEAT_EATL

o ZWIRIEETT

it )

du.cn http://staff0117401: Operat System T EARHSE March 29, 2017 43 / 43



	Overview
	Multithreading Models
	Thread Libraries
	Threading Issues
	OS Examples for Thread
	Thread Scheduling 
	OS Examples for Thread Scheduling

	小结和作业

