0117401: Operating System

TEALURE S 0T

Chapter 6: Process synchronization

PR =

xlanchen@ustc.edu.cn
http://staff.ustc.edu.cn/“xlanchen

Computer Application Laboratory, CS, USTC @ Hefei
Embedded System Laboratory, CS, USTC @ Suzhou

April 5, 2017

1%

cn http://staff 0117401: Opere

AT ERME A TIEES],
EEIRE FRYEFRE,

ANEERE FEITHIE,

http://staff 0117401: Operating System TTHEAJRH S

e Background
e The Critical-Section Problem (llf5t[X [A]&H)
e Peterson’ s Solution

Synchronization Hardware
@ TestAndSet Instruction
@ Swap Instruction

Semaphores
Classical Problems of Synchronization
Monitors

Synchronization Examples

NGERIAEML.

du.cn http: aff 0117401:

%
5a

April 5, 2017

Outline

e Background

[£.0117401:

@ The processes are cooperating with each other directly
or indirectly.
e Independent process cannot affect or be affected by the

execution of another process

e Cooperating process can affect or be affected by the
execution of another process

e Concurrent access (3J£%&1/jlA]) to shared data may result
in data inconsistency (h—%0)
o for example: printer, shared variables/tables/lists

@ Maintaining data consistency requires mechanisms to
ensure the orderly execution of cooperating processes

du.cn http: aff 0117401: it & RS April 5, 2017

Background: Producer-Consumer Problem

@ Producer-Consumer Problem (4/f=&-;B#&Z&E &, PClo

ﬂ): Paradigm for cooperating processes
° producer (&£F7&) process produces information that is
consumed by a consumer (;E%:3) process.
@ Shared-Memory solution

@ a buffer of items shared by producer and consumer

producer consumer

e Two types of buffers

@ unbounded-buffer places no practical limit on the size of
the buffer
o bounded-buffer,/ assumes that there is a fixed buffer size

du.cn http: aff 0117401:

1%
5a

April 5, 2017 6 / 56

Bounded-Buffer — Shared-Memory Solution

\ while (true) {
/* Produce an item */

while (((in + 1) % BUFFER_SIZE) == out)
5 /* do nothing —— no free
buffers */
buffer[in] = item;
in = (in + 1) % BUFFER SIZE;

}
y

while (true) {

Ha o while (in == out)
zdeizjzi EE:SEF}?IZE Lo : // do nothing — — nothing to
o) consume
} item; . . e

// remove an item from the buffer

it = buff w3
item buffer [BUFFER SIZE]; ;uim: (otllt frl[su%]BUFFER —
int in = 0; // index of the next empty buffer S . ’
int out = 0; // index of the next full buffer } ’

D
@ Solution is correct, but can only use BUFFER_SIZE-1

elements
e all empty? VS. all full?

edu.cn http://staff0117401: Op

solution using value

@ A solution to the PC problem that fills gll the buffers

(not BUFFER_SIZE-1).

@ An integer count: keeps track of the number of full

buffers.

e Initially, count = O.

@ Incremented by the producer after it produces a new buffer,

and decremented by the consumer after it consumes a buffer.

while (true) {
/* produce an item and put in
nextProduced */
while (count == BUFFER_SIZE)
; // do nothing
buffer [in]| = nextProduced;
in = (in + 1) % BUFFER_SIZE;
count++;

while (true) {
while (count == 0)
; // do nothing
nextConsumed = buffer[out];
out = (out + 1) % BUFFER_SIZE;

count- —;
/* consume the item in
nextConsumed

u.cn http://

April 5, 2017

Background: Race Condition(ZH$4E)

could be implemented as

registerl = count register2 = count
registerl = registerl + 1 register2 = register2 - 1
count = registerl count = register2

Code Example

0000000000400544 <main>:
#include <stdio.h>
#include <unistd.h>

int count = 1234;

void main(void) {

400544: 55 push %rbp

400545: 48 89 e5 mov %rsp,%rbp
400548: 48 83 ec 10 sub $0x10,%rsp

count ++;
40054c: 8b 05 d6 0a 20 00 mov 0x200ad6 (%rip) ,%eax # 601028 <count>
400552: 83 c0 01 add $0x1,%eax
400555: 89 05 cd 0a 20 00 mov %eax,0x200acd (%rip) # 601028 <count>

.cn http://staff 0117 i em THENEH 5% April 5, 2017 9 / 56

Background: Race Condition(ZH$4E)

could be implemented as

registerl = count register2 = count
registerl = registerl + 1 register2 = register2 - 1
count = registerl count = register2

@ Consider this execution interleaving with “count = 5”

initially:
@ SO: producer execute registerl = count {registerl = 5}
@ Sl: producer execute registerl = registerl + 1 {registerl = 6}
@ S2: consumer execute register? = count {register2 = 5}
@ S3: consumer execute register? = register? 1 {register2 = 4}
@ S4: producer execute count = registerl {count = 6 }
@ S5: consumer execute count = register? {count = 4}

Race Condition=A situation:

where several processes access and manipulate the same
data concurrently and the outcome of the execution
depends on the particular order in which the access take
place

£.0117401:

Outline

e The Critical-Section Problem (IJf5[X [A]/&0)

.edu.cn http://staff 0117401: Op

Critical-Section (IFFE[X)

e Critical Resources (IRFEIR) :
TE— B[R] A A SRV F— AR Ui 1R B BT R
e Critical Section (CS. IFHIX):
a segment of code, access and may change shared data (critical
resources)
o Make sure, that any two processes will not execute
in its own CSes at the same time
@ the CS problem is to design a protocol_that the processes
can use to cooperate.
do {

’entry section
critical section
lexit section]

remainder section

}while (TRUE)

(each process must request permission to enter its CS)

edu.cn http://staff 0117401: Operati stem THEAFHE 5%

Solution to Critical-Section Problem

@ A solution to the Critical-Section problem must satisfy:

Mutual Exclusion (EJF):

If process P; is executing in its CS, no other processes can
be executing in their CSes.

Progress (ZHiki) :

If no process is executing in its CS and there exist some
processes that wish to enter their CSes, the selection of
the processes that will enter the CS next cannot be
postponed indefinitely

Bounded Waiting (AR :

A bound must exist on the number of times that other
processes are allowed to enter their CSes after a process
has made a request to enter its CS and before that request
is granted

@ Assume that each process executes at a nonzero speed
@ No assumption concerning relative speed of the N processes

u.cn http: aff 0117401:

Outline

e Peterson’ s Solution

Overview

@ Peterson’'s Solution:
A classic software-based solution, only two processes
are concerned

@ Assume that the LOAD and STORE instructions are
atomic: that is, cannot be interrupted.

@ Algorithms 173 are not satisfied

’ . .
@ Perterson s Solution is correct

edu.cn http://staff 0117401: Operati stem THEAFHE 5%

Algorithm 1

@ Let the two threads share a common integer value turn

volatile int turn=0; // initially turn = 0

e turn = 1 = T; can enter its CS

ety

Do { @ ? Mutual execution: /

while (turn!=i) @ ? Progress: x
; // do nothing
CRITICAL SECTION
turn = j;
REMAINDER SECTION
} while(1);

du.cn http: aff 0117401:

Algorithm 2

@ Replace the shared variable turn with a shared array:

volatile boolean flag[2];

o Initially flag[0] = flag[1] = false;
o flag[i] = true = T; want to enter its CS, and enter its CS

e

do { @ ? Progress: /

While (flag[jl) @ ? Mutual execution: x
i 1/ do nothing When flag[0] and flag[1] changes from
f]_ag[l] = true; false to true almost at the same time,

CRITICAL SECTION they enter the CS at the same time
Flag[i]=flase;
REMAINDER SECTION
} while(1);

du.cn http: aff 0117401:

Algorithm 3

o flag[i] = true = T; is hoping to enter its CS

do {
flag[i] = true;
while (flag[jl) ; // do nothing
CRITICAL SECTION
Flag[i]=flase;
REMAINDER SECTION
} while(1);

Analysis:

@ Progress (x) and Bounded waiting (x)
When flag[O] and flag[1] changes from false to true almost at the same time,
both processes cannot enter the CS (forever)

du.cn http:// 0117401: Operatir 5% April

Peterson’ s Solution

@ Combining the key ideas of algorithm 1 & 2.

Algorithm for Process P;

while (true) {

flag[i] = TRUE;

turn = J;

while (flag[j]| && turn == j)
; // do nothing

Boolean flag[2] CRITICAL SECTION

‘ flag[i] = FALSE;
REMAINDER SECTION

The two processes share two
variables:

int turn;

This solution is correct.

u.cn http:// 0 D12 er em % 5% April 5,

Outline

e Synchronization Hardware
@ TestAndSet Instruction
@ Swap Instruction

taff 0117401 : i stem J1HA

Synchronization Hardware

@ Generally, any solution to the CS problem requires a
LOCK

@ a process

@ acquires a lock before entering a CS
@ releases the lock when it exits the CS

do {
acquire lock
critical section
release lock
remainder section
}while (TRUE):

@ CSes are protected by locks
@ Race conditions are prevented

u.cn http: aff 0117401:

Synchronization Hardware

@ Many systems provide hardware support for CS code
e Uniprocessors — could disable interrupts

@ Current code would execute without preemption

do {
disable interrupt
critical section
enable interrupt
remainder section
}while (TRUE);

@ Generally too inefficient on multiprocessor systems, OSes
using this not broadly scalable

e Modern machines therefore provide special atomic
hardware instructions
Atomic = non-interruptable

@ TestAndSet ()
@ Swap()

u.cn http: aff 0117401:

Outline

e Synchronization Hardware
@ TestAndSet Instruction

taff 0117401 : i stem J1HA

TestAndSet Instruction

Definition: Truth table (/EJE%%)

boolean TestAndSet (boolean *target) { target return value
boolean rv = “target; betore | akter
*target = TRUE;

return rv; F T F
1 T T

u.cn http:// 0117401 er em % 5% April 5,

solution using TestAndSet

@ Shared boolean variable lock, initialized to false.

while (true) {
while (TestAndSet (&lock))
; // do nothing
// critical section
lock = FALSE;

// remainder section

e bounded-waiting?x

starvation

edu.cn http://staff 0117401: Operati stem THENEH 5% April 5,

Outline

e Synchronization Hardware

@ Swap Instruction

taff 0117401 : i stem J1HA

Swap Instruction

Truth Table

Definition: (a,b)
void Swap (boolean *a, boolean *b) { before | after
boolean temp = *a; (T,7) (T.7T)
*a = *b;
e an | &0
} (F.T) (T.F)
(F.F) (F.F)

u.cn http:// 0117401 er em % 5% April 5,

solution using Swap

@ Shared Boolean variable lock initialized to FALSE;
@ Each process has a local Boolean variable key.

e (truséy{z TRUE; (lock,key)
while (key == TRUE) before | after
Swap (&lock, (T, | (1,1
skey) TP | @D
// critical section
lock = FALSE; (F,T) | (T,F)
// remainder section (F.F) (F.F)
}

@ bounded-waiting?x

du.cn http://staff 0117401: Operatir tem FHENFEHESE

Bounded-waiting mutual exclusion with

TestAndSet ()

waiting[i]=TRUE;

key=TRUE;

boolean waiting[n];: // initialized to

false while (waiting[i] && key)
boolean lock; // initialized to false

key=TestAndSet (&lock) ;

waiting[i] = FALSE;
// critical section
j=(i+1)%n:// consider other processes

<::> <::) <::> while ((j!=1)&&!'waiting[Jj]

J=(4+1) %n;

(::) (::) if (j==i) // nobody waiting!
lock=FALSE;//release lock
<::> (::) <::> else

waiting[j]=FALSE:// let it run!

// remainder section

while (TRUE) ;
u.cn http: £ i tem THEN R 5%

Outline

e Semaphores

[£.0117401: rati i 5%

@ The various hardware-based solutions to the
critical-section problem are complicated for application
programmers to use

@ Semaphore S — integer variable (BEAE{ZEF)

e Initialization + Two standard operations modify S:

@ wait() and signal()
@ Originally called P() and V()

@ Can only be accessed via two indivisible (atomic)
operations

wait (S) {
while (S <= 0) ; // no-op
S——1

signal (S) {

S++;

edu.cn http://staff 0117401: Operati stem THENEH 5% April 5,

using semaphore

@ Using as

@ counting semaphore

@ control access to a given resource consisting of a finite
number of instances

@ binary semaphore

@ provide mutual execlusion, can deal with the critical-section
problem for multiple processes

@ synchronization tools

@ solve various synchronization problems

u.cn http: £ i A= i 7 30 / 56

using semaphore

@ Counting semaphore
also named as Resource semaphore
e Initialized to N, the number of resources available
e resource requesting: wait()
@ if the count of resource goes to (,

waiting until it becomes > (Q

e resource releasing: signal()
e usage

semaphore resources; /* initially resources = n */
do {
wait (resources);
Critical section;
signal(resources);
Remainder section;
} while(1);

u.cn http: aff 0117401: 115 5% 017 30 / 56

using semaphore

@ Binary semaphores
also known as mutex locks (BJ%ji). provides mutual
exclusion

@ integer value: 0 or 1;
@ can be simpler to implement;

Can implement a counting semaphore S as a binary semaphore
@ usage:

Semaphore mutex; // initialized to 1
do {
wait (mutex);
Critical Section
signal (mutex);
Remainder section

} while (TRUE);

u.cn http: aff 0117401: 115 5% 017 30 / 56

using semaphore

© using semaphore to slove various synchronization problems
Al DA I ET S R 2R
e if p; :S; = py: Sy, then
Semaphore Synch, initialized to 0, and

pl p2
S1
signal (synch) wait (synch)

S2

u.cn http: aff 0117401: 115 5% 017 30 / 56

using semaphore

© using semaphore to slove various synchronization problems

e Example

Al i [2 451
semaphore a,b,c,d,e,f,g = 0,0,0,0,0,0,0
begin
parbegin
begin S1;signal(a);signal(b);end;
begin wait(a);S2;signal(c);signal(d);end;
begin wait(b);S3;signal(g);end;
begin wait(c);S4;signal(e);end;
begin wait(d);S5;signal(f);end;
begin wait(e);wait(f);wait(g);S6;end;
parend
end

0117401 em i HH 5% April 30 / 56

Semaphore Implementation

e Disadvantage:
the previous semaphore may cause busy waiting(ICsF

e this type of semaphore is also called a spinlock (BhEs) .
suitable situation

@ busy waiting (for 1/0) time < context switching time, or
e multiprocessor systems & busy waiting time is very short

@ Semaphore implementation with no busy waiting

==}

Record semaphoreGEEA(E5 &
e depend on block() & wakeup() operations

%
5a

du.cn http: aff 0117401:

Semaphore Implementation

@ Record semaphore G®#(EFEE)

typedef struct {
int value:

struct process *list; // a waiting queue

} semaphore;

e wait() @ signal()
wait (Semaphore *S){ signal (semaphore *S){
S—>value——; S—>value++;
if (S—>value<0) { if (S—>value <= 0){
add this process to S->1ist; remove a process P from S->1ist;
block(); wakeup (P) ;
} }
} }

.cn http://staff 0117401: Op

Semaphore Implementation

o T HrS—->value

o XfTwaitfE:
o MYvalue>1HT, UHEAHBTRF A, FEHIEATERI
o Yvalue<1Wf, VIEIVZAE BRI A&; WA, WEL, HEE

o X Tsignal#ffE,
o Hvalue >0, UV ESEHFE, NOMEE, HIFINUREAEIR
o Fvalue<0, WHEAHEREE, INMEESEATKE, FHMEE1HE

R ERLAX AR

o TEvalue
o value >0, UBHRAZSHE, HA, valuelBREREKZIEMNIEE
o value<O, UiFHHEZRE, WHLEESFEFEE;, WA, valuely

IHMERRSFHIE N

du.cn http://staff 0117401: Operat System T EHRHE 5%

the synchronization problem about semaphores

@ the synchronization problem about semaphores

e No two processes can execute P/V operation on the
same semaphore at the same time
e HOW to be executed atomically?

e uniprocessors: inhibiting interrupt while wait()
and signal()
e multiprocessors:

@ inhibiting interrupt globally
@ or spin lock

du.cn http: aff 0117401: 115 5%

Misuse of semaphore: Deadlock and Starvation

@ Deadlock — two or more processes are waiting
indefinitely for an event that can be caused by only one of
the waiting processes

o Let S and Q be two semaphores initialized to 1

Po Py
wait(S) wait(Q)
wait(Q) wait(S)

signal (S) signal (Q)
signal (Q) signal(S)

@ Starvation — indefinite blocking. A process may never be
removed from the semaphore queue in which it is suspended.

du.cn http: aff 0117401:

1%
5a

ANDEIES & T

@ Basic idea

o FHARAERMEMIRTHFENIARIE, —RKIEEHH oS
IR, AR A S e R -
o MIBIENECHRAR T, Eaenht; BA—MHASE

@ Swait() and Ssignal()

if(S1>1 and S221 and -+ and Sn>1) then
for i:=1 to n do

Si:=Si—1; for i:=1 to n do
endfor Si:=Si+1;
else HSIFEHER, TIMEE

REHRRINNEE — DS R HISTRSERIASY | endfor
F, HEBAEFIEE Eswai tiERIFFIRES 5
endif

fA# 2% xlancher .edu.cn http://staff 0117401: Operating System EAFI 5% April 5, 2017

o

T
il

=

o EEEENH: E—t
o N, —IRKHITEZ N BAI B,
o XN, HABFEURTH—TRER, BATHHE

if(S1>tl1 and S2>t2 and -+ and Sn>tn)then
for i:=1 to n do

e i for i:=1 to n do
Si:=8Si—di; Si:=Si—+di;
endfor HSIH SRR, TG

else
RIS — SN R ST RIS |
FHEBAEFFHEE Bl Swai t B ERIFFI6ER 5

endif

endfor

ustc.edu.cn http://staff0117401: Operatir tem FHENFEHESE

i
Jjn
il
i

o (55 BN JLFEFIRIG I
o Swait(S,d.d): ZEAAIAMED
o Swait(S,1,1): —RHIEREEER
o Swait(S.1,0): s>1Kf, AL MFHEARAX; s=0/5, FHiE—1)

edu.cn http://staff 0117401: Operati stem THEAFHE 5%

Outline

e Classical Problems of Synchronization

taff 0117401: i S it 515

Classical Problems of Synchronization

@ Use semaphores to solve

@ Bounded-Buffer Problem, H=FH-JHTHE A (PC Problem)
@ Readers and Writers Problem, 13 -5%& 0]
@ Dining-Philosophers Problem , EF2AFKFHE A

1%
JBC

du.cn http: aff 0117401:

Classical Problems of Synchronization

@ Solution to Bounded-Buffer Problem (PC problem, &f=&-;8
ZHHE)
@ N buffers, each can hold one item
e Semaphore mutex initialized to the value 1
@ Semaphore full initialized to the value O
e Semaphore empty initialized to the value N.

The structure of the producer process

The structure of the consumer pr

while (true) { while (true) {
// produce an item wait (full);
wait (empty); wait (mutex);
wait (mutex); // remove an item from buffer
// add the item to the buffer signal (mutex);
signal (mutex); signal (empty);
signal (full); // consume the removed item

du.cn http:// 0117401:

Classical Problems of Synchronization

@ Sulotion to Readers-Writers Problem(iE&E —5&o)f)
@ A data set is shared among a number of concurrent processes

@ Readers — only read the data set:; they do not perform any
updates
@ Writers — can both read and write.

e Problem:
Allow multiple readers to read at the same time.
Only one single writer can access the shared data at the
same time.

e Shared Data

Data set
Semaphore mutex initialized to 1.
Semaphore wrt initialized to 1.

°
°
°
@ Integer readcount initialized to O.

aff 0117401:

Classical Problems of Synchronization

@ Sulotion to Readers-Writers Problem(iE&E —5&o)f)

The structure of a writer process

while (true) {
wait(wrt);

// writing is performed

signal(wrt);

while (true) {

du.cn http:// 0117401:

The structure of a reader process

wait(mutex);

readcount ++;

if (readcount == 1)
wait(wrt);

signal(mutex)

// reading is performed
wait(mutex);
readcount - -;
if (readcount == 0)

signal(wrt);
signal (mutex);

April

Classical Problems of Synchronization

@ Dining-Philosophers Problem (3 j”é o))

%
S8 .

,’f

”o\/

i

(¥

e

e

edu.cn http://staff 0117401: Operati stem THENEH 5% April 5,

Classical Problems of Synchronization

@ Dining-Philosophers Problem (35ZZKFLE (o))

@ Shared data

@ Bowl of rice (data set)
@ Semaphore chopstick [5]
initialized to 1

@ This solution may cause a

deadlock.

o WHEN?

/staff 0117401 :

The structure of Philosopher 1i:

While (true) {
wait (chopstick[i]);
wait (chopStick[(i + 1) % 5]
)5
// eat
signal (chopstick[i]);
signal (chopstick[(i + 1) %
51)i
// think
}

edu.cn http:

Operati

stem THENEH 5% April 5,

Classical Problems of Synchronization

@ Dining-Philosophers Problem (35ZZKFLE (o))

e Several possible remedies

@ Allow at most 4 philosophers to be sitting simultaneously
at the table.

@ Allow a philosopher to pick up her chopsticks only if both
chopsticks are available

@ 0dd philosophers pick up first her left chopstick and then
her right chopstick, while even philosophers pick up first
her right chopstick and then her left chopstick.

o JE: deadlock-free & starvation-free

u.cn http: aff 0117401:

Problems with Semaphores

@ Incorrect use of semaphore operations:
signal (mutex) ... wait (mutex)

@ the mutual-exclusion requirement is violated, processes may in
their CS simultaneously

wait (mutex) .. wait (mutex)

@ a deadlock will occur.

Omitting of wait (mutex) or signal (mutex) (or both)

@ either mutual-exclusion requirement is violated, or a deadlock
will occur

du.cn http://! 0117401: Operatir % 1 53% April

Outline

0 Monitors

Monitors I

@ Monitor type:
A high-level abstraction that provides a convenient
and effective mechanism for process synchronization
@ encapsulates private data with public methods to operate on
that data.
e Mutual exclusion: Only one process may be active
within the monitor at a time

of a monitor @ Within a monitor

monitor monitor-name { @ a procedure can access

// shared variable declarations only local variables
procedure P1 () {--:} and formal parameters
aco @ the local variables
procedure Pn () {:-:} can be accessed by only
Initialization code (---.) the local precedures
foeo))

0117401: em 7 A5 April

Monitors II

entry queue

shared data

1]

operations

initialization
code

Figure: Schematic view of a Monitor

Condition Variables

@ the monitor construct is not sufficiently powerful
for modeling some synchronization scheme.

@ Additional synchronization mechanisms are needed.

@ Condition variables:
condition x, y;

o Two operations on a condition variable:

x.wait() x.signal()

e resumes one of processes
(if any) that invoked
x.wait ()

@ a process that invokes the
operation is suspended.

0117401: Operatir

%
5a

April

Condition Variables

@ Monitor with Condition Variables

entry queue

shared data

queues associated with
x, y conditions

operations

initialization
code

.edu.cn http://staff 0117401: Op

Condition Variables

@ Problem with x.signal()

@ process P invokes x.signal, and a suspended process Q is
allowed to resume its execution, then ?

e signal and wait
e signal and continue

e in the language Concurrent Pascal, a compromise was
adopted

@ when P executes the signal operation, it immediately leaves
the monitor, hence, Q is immediately resumed.

cn http://staff 0117401: Operat tem FHENFEHESE

A deadlock-free solution to Dining Philosophers

(FFEFRGERF-) 1

@ the monitor
monitor DP {
enum { THINKING; HUNGRY, EATING} statel|5] :
condition self [5];

void pickup (int i) {
state[i] = HUNGRY;
test(i);
if (state[i] !'= EATING)
self[i].wait;

void putdown (int i) {
state[i] = THINKING;
test((i + 4) % 5);
test((i + 1) % 5);

1%
5a

du.cn http: aff 0117401:

A deadlock—free solution to Dining Philosophers

KBUERI-D) 11

void test (int i) {
if ((state[(i + 4) % 5] != EATING) &&
(state[i] == HUNGRY) &&
(state[(i + 1) % 5] != EATING)) {
state[i] = EATING ;
self[i].signal () ;

}
initialization_code() {

for (int i = 0; i < 5; i++)
state[i] = THINKING;

edu.cn http://staff 0117401: Oper:

A deadlock—free solution to Dining Philosophers

KBUERIRD) 111

@ Each philosopher i invokes the operations pickup() and
putdown() in the following sequence:

dp.pickup(i)
EAT

dp.putdown (i)

@ not starvation-free

edu.cn http://staff 0117401: Oper:

Using Semaphores 1

@ Monitor implementation

e Variables
semaphore mutex; // (initially = 1) , for enter and exit monitor
semaphore next; // (initially = 0)
int next-count = 0;

e Each external procedure F will be replaced by

wait (mutex) ;

body of F;

if (next-count > 0)
signal (next)
else

signal (mutex) ;

@ Mutual exclusion within a monitor is ensured.

@ Condition variable implementation:

u.cn http: ? i A=

Using Semaphores 11

@ For each condition variable x, we have:
semaphore x-sem; // (initially = 0)
int x-count = 0;

X.wait can be implemented

x.signal can be
as:

implemented as:

X-count++;
if (next—count > 0)
signal (next) ;
else
signal (mutex) ;
wait (x-sem) ;
x-count——;

if (x-count > 0) {
next-count++;
signal (x-sem) ;
wait (next) ;
next-count——;

£0117401: Op

Outline

e Synchronization Examples

taff 0117401: i s i35 515

Synchronization Examples

@ Solaris
@ Windows XP
@ Linux

@ Pthreads

u.cn http: aff 0117401: Oper

Solaris Synchronization

@ Implements a variety of locks to support multitasking,

multithreading (including real-time threads), and

multiprocessing

semaphores

condition variables

adaptive mutexes (for short CS less than a few hundred
instructions)

readers-writers locks

turnstiles (+5F%5[7]) to order the list of threads waiting
to acquire either an adaptive mutex or reader-writer lock

@ a type of blocked threads queue
@ organized according to a priority-inheritance protocol to
prevent priority inversion (only for kernel locking)

u.cn http: aff 0117401:

Windows XP Synchronization

o Windows XP is a multithreaded kernel, supporting
real-time applications and multiple processors.
@ To protect access to global resources in kernel:
o Uses interw*upt masks on uniprocessor systems
o Uses spiJWlOCkS on multiprocessor systems
@ A thread holding a spinlock will never be preempted.
@ For threads outside the kernel, provides dispatcher
objects which may act as
@ nmutexes

owner thread release mutex lock

semaphores thread acquires mutex lock

Figure: Mutex dispatcher lock

(2
@ cvents (much like a condition variable)
o

timers

du.cn http: aff 0117401:

Linux Synchronization

@ The Linux kernel

e before 2.6, nonpreemptive kernel
But now, fully preemptive kernel
o MEANING: a process running in kernel mode could not be

preempted, or could.

@ For kernel, Linux provides:

e semaphores. spinlocks. and reader-writer versions
of these two locks

@ The fundamental locking mechanism for short CS durations

in kernel.
single processor ‘ multiple processors
Disable kernel preemption: preempt_disable() acquire spinlock
Enable kernel preemption: preempt_enable() Release spinlock

@ NOTE: spinlocks are along with enabling and disabling
kernel preemption.

.cn http://staff 0117401: Operatin

Pthreads Synchronization

@ Pthreads API is 0S-independent
@ For thread synchronization, it provides:

e mutex locks
condition variables
o read-write locks

@ Non-portable extensions include:

e semaphores (belong to the POSIX SEM extension)
e spin locks

edu.cn http://staff 0117401: Operati stem THEAFHE 5%

Outline

Q@ /AR

e Background
e The Critical-Section Problem (llf5t[X [A]&H)
e Peterson’ s Solution

Synchronization Hardware
@ TestAndSet Instruction
@ Swap Instruction

Semaphores
Classical Problems of Synchronization
Monitors

Synchronization Examples

NGERIAEML.

du.cn http: aff 0117401:

%
5a

o ZWIRIEETT

iR J

taff 0117401 : i stem J1HA

	Background
	The Critical-Section Problem (临界区问题)
	Peterson's Solution
	Synchronization Hardware
	TestAndSet Instruction
	Swap Instruction

	Semaphores
	Classical Problems of Synchronization
	Monitors
	Synchronization Examples
	小结和作业

