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e background

e Contiguous Memory Allocation (GEZENEDHED)
e Swapping

Q rasing (57D

e Structure of the Page Table

e Segmentation (43E%)

e Segmentation with paging (EXTIiz)
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a background
@ Storage hierarchy
@ Memory protection
@ Program execution, loading & linking
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Storage hierarchy I

o frfEaE I BALASRYE AR

o AE ~ MIEFIESL Z [RIFY T &
o NTF ~IMFs ZRUERIK AN
o NTF, EMERHIH

o I REMNALH, FHlEH R 2 RLETIARAN

Storage hierarchy

@ Storage systems in a
computer system can be

organized in a hierarchy

@ Speed, access time Electronic disk
@ Cost per bit t 4

o Volatility Magnetic disk

Optical tapes
’ 2

Magnetic tapes
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Memory VS. register

e Same: Access directly for CPU

@ Register name
@ Memory address

e Different: access speed

@ Register, one cycle of the CPU clock
@ Memory, Many cycles (2 or more)

e Disadvantage:
@ CPU needs to stall frequently & this is intolerable

@ Remedy
e cache
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e Caching (FH#EZRHEFHA)
o Copying information into faster storage system

o When accessing, first check in the cache,

@ if In: use it directly
@ Not in: get from upper storage system, and leave a copy in
the cache

@ Using of caching

Registers provide a high-speed cache for main memory
Instruction cache & data cache

@ Main memory can be viewed as a fast cache for secondary
storage
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Outline

a background

@ Memory protection
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Memory protection

@ Base register protection

scheme 0
0S
@ Base register+Limit register 256000 o Base register
(o]
@ Memory outside is protected 300040 300040
. Job2
@ OS has unrestricted access to 420940 ——
. s Job3
both monitor and user s memory 580000 Limit register
o Load instructions for the base/ 1024000 Jobd
1limit registers are privileged
‘ base ‘ baset+tlimit
CPU address S ves Z ves TR
no no
Trap to OS monitor — addressing err

Figure: Hardware address protection with base and limit_registe
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Outline

a background

@ Program execution, loading & linking

taff 0117401 : i stem J1HA



Program execution, loading & linking

@ Von Neumann architecture (V4 -ifiKSRALE )

@ Program must be brought into memory
@ Main memory is usually too small
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Program execution, loading &

source

program

compiler or
assembler

object
module

compile
time

other
object
modules

@ Program must be placed within a

process for it to be executed

Iliﬁﬁll
editor
@ User programs: Where to place
the program? systen load 1oad
library module vime
loaded
system in-memory
library binary execution
memory time (run
image time
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Address Types

Logical address Logical address

Virtual address Virtual address

CPU

MM

e Absolute address (#EXfifilit): Address seen by the
memory unit

ALSO: Physical address (4pIEiuil)
@ Relative address (#¥iudit)
ALSO: Linear address (ki)

@ Logical address (iZ%Eithdlt): Generated by the CPU
ALSO: Virtual address (EElithit)
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Logical vs. Physical Address Space

@ Logical address space:
the set of all logical addrs generated by a program

@ Physical address space:
the set of all physical addrs

. Logical address Physical addre_.
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Logical vs. Physical Address Space

@ Logical address space:
the set of all logical addrs generated by a program

@ Physical address space:
the set of all physical addrs

. Logical address Physical addre_.

@ WHEN can the absolute address can be decided?
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Example

if program was loaded at 0x5000, the

real codes processor execute are:

0x0000  ...... 0x5000  ......

mov ax, SymbolA 0x0100 ba010580 0x5100 ba015580
mov bx, SymbolB = 0x0110 ba020590 = 0x5110  ba025590

Jmp Labell 0x0140 ea000200 0x5140 ea005200
Labell: exit 0x0200 eb 0x5200 eb
relative address LA = PA
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Address Binding

@ The concept of a logical address space that is bound
to a separate physical address space is central to
proper memory management

e Address binding of instructions and data to memory
addresses can happen at three different stages

@ Compile time:
If memory location known a priori, absolute code (Z&¥J{{
F3) can be generated;
Must recompile code if starting location changes:
Example: MS-DOS .COM-format programs

@ Load time:
Must generate relocatable code (RIEEI{CHE) if memory
location is not known at compile time

© Execution time:
Binding delayed until run time if the process can be moved
during its execution from one memory segment to another.
Need hardware support for address maps (e.g., base and limit
registers)

%
5a
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Address Binding

@ In compile-time and load-time address-binding schemes:

@ Logical addr = physical addr

” Logical address Physical addr‘e.l

LAS PAS

%
5a
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Address Binding

@ In execution-time address-binding scheme:

@ Logical addr # physical addr;
e need MMU

” Logical addres MMU Physical addre_.l

LAS PAS

%
5a
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Memory-Management Unit (MMU)

@ MMU: Hardware device that maps virtual to physical address
@ Example: dynamic relocation using a relocation

register

e the value in the relocation register (EEZF1FEE

= 2) is
added to every address generated by a user process at the
time it is sent to memory

logical
address
CPU

relocatign
register

physical

346

//:\\ address
N

memory
14346

MMU

@ The user program deals
MAX) ;

with logical addresses [O,

it never sees the real physical addresses [R+0, R

0117401:
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Program loading & linking

Shall we put the entire program & data of a process in
physical memory before the process can be executed?

@ For better memory space utilization

@ Dynamic loading
© Dynamic linking
@ Overlays
@ Swapping

%
5a
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Program loading

@ 3 modes

@ Absolute loading mode
© Relocatable loading mode
@ Dynamic run-time loading

.cn http://staff 0117401: Op



Program loading

@ Absolute loading mode (£EWZEAAR)

e Compiling:

@ Absolute code with absolute addresses

Operating system

e Loading:

@ Must be loaded into the specified
address

user

@ Loading address = absolute address

e Execution:

@ Logical address = absolute address

o Suitable for simple batch systems (B
. 512K
ERGD) 1

u.cn http://




Program loading

@ Relocatable loading mode (RIEEMEABI)

@ Mostly, the loading address can not be known at compile
time, but only be decided at load time.
e Compiling:

@ Relocatable code with relative addresses
e Loading:

@ According to loading address, relative addresses in file is
modified to absolute addresses in memory

o This is called relocation (EE({I)

e Static relocation (BABSETE):
because the address binding is completed one-time at load
time, and will not be changed after

e Execution:
@ Logical address = absolute address

e Suitable for multiprogramming systems (ZiHZRZE)
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Program loading

@ Relocatable loading mode (FJEEMEAAT)
@ The in—memory location of a program may be changed, that is,

the physical addresses is changed during execution

@ Example: swapping

o How? = To postpone the relocation time to real execution
dynamic run-time relocation (ENZSIGITETERE(L)
e Loading:

Addresses in memory = relative address
e Execution:

Logical address = relative address
@ need MMU with relocation register

relocatiof
register

logical physical
address address

346 U 14346

memory

cn http://staff 0117401: Operat

tem LRI 5%



Program loading

@ Dynamic Loading (EZEB1TEREAA)

Based on the principle of locality of reference (F
ERIERIE)

@ The main program is loaded into memory and is executed
e Routine is not loaded until it is called

Loading while execution: need the relocatable
linking loader

@ before loading: relocatable code

@ while calling and not in:
load the desired routine, update the program’ s address
tables and the control is passed to the newly loaded routine

Advantage:

@ Better memory-space utilization;
e unused routine is never loaded.

Useful when large amounts of code are needed to handle
infrequently occurring cases

@ Example: Error routine
No special support from OS is required

@ Due to the users
@ Special library routines that implementing dynamic loading
are needed

£0117401:



Overlays (B FA)

@ Keep in memory only those are
needed at any given time.

@ Needed when process is larger
than amount of memory allocated
to it.

e Implemented by user. no
special support needed from OS,
programming design of overlay
structure is complex

.edu.cn http://staff0117401: Op

70k

Symbol
table

Common
routines

Overlay
driver

Pass 1

20k

30k

10k

Pass 2

—

Overlays for a two-pass assemble
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Program linking

@ source files compiling object modules 1linking loadable
ST I
modules
@ according to the time of 1linking
@ static linking (ESEEREAR)
@ load-time dynamic linking (ZEANTEISHER)
@ run-time dynamic linking GEITHEHSHEES)

du.cn http: aff 0117401:
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Program linking

@ static linking FESEEREH )

@ Before loading, all object modules and required libraries
are linked into one loadable binary program image.

e In object modules and (static) libraries: relative
address

o Exist external calls or references to external symbols
(functions or variables):
object modules <——object modules; object modules —slibraries

@ While linking:

o relative addresses are modified:
multiple relative address spaces — one relative address space

e External calls and references are deliminated

e Disadvantage:
Each program on a system must include a copy of required
libraries
(or at leasted required routines)

@ Example: language libraries
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Program linking

@ load-time dynamic linking (GEARTZHARERE)
o Linking while loading:
e External calls and references are deliminated
According to external calls and references, the loading
program find the required object modules and libraries, and
load them into memory

@ Relative addresses are modified:
multiple relative address spaces — one relative address space

e Advantage:

e Easy to modify and update the object modules and
libraries
o Easy to share the object modules and libraries
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Program linking

@ Dynamic Linking GZEFRshASEER)

@ Every execution time, the set of executed modules of a
program may different

@ load all? on demand?
e Linking postponed until execution time
@ While linking:
@ A stub is included in the image for each library-routine
references

@ The stub is a small piece of code, used to locate the
appropriate memory-resident library routine

@ During execution:

@ Stub replaces itself with the address of the routine, and
executes the routine
@ 0S needed to check if routine is in processes’ memory address

@ Dynamic linking is particularly useful for libraries —
shared libraries
Advantage:

@ short load time; less memory space
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Outline

e Contiguous Memory Allocation GEZZNIEDHED)

%
5a
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Contiguous Memory Allocation GEZENIFHED)

Contiguous Memory Allocation GEZENTFE/HAED)

Each process is contained in a single contiguous section of
memory

@ Monoprogramming memory allocation (B—i%%:)
@ Multiple-partition allocation

0 FERENKX
@ IMAENK
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Monoprogramming memory allocation (EE—3EZE4HD)

=

@ Monoprogramming memory allocation
(ﬁ—ﬁziﬁj\@a> Operating system

@ The most simple method

@ At most one process at a time
@ Main memory usually divided into two
partitions:

user

@ Resident 0S, usually held in low memory
with interrupt vector
@ User processes then held in high memory

u.cn http://
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Monoprogramming memory allocation (BE—3EZE4H

@ Memory protection scheme

@ Use MMU. for example

limit relocatior
register register
logical J physical
T address g yes % address —
/
no
trap: addressing error

Figure: Hardware support for relocation and limit registers

@ Maybe not use any protection

%
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Multiple-partition allocation (%43 [X4HD)

@ Make several user processes reside in memory at the same
time.

e User partition is divided into n partitions
@ Each partition may contain exactly one process

@ VWhen a partition is free, a process in input queue is selected
and loaded into the free partition

@ When a process terminates, the partition becomes available
for another process

o The degree of multiprogramming (Zi&#EFE) is bound
by the number of partions.

Q Fixed-partition (EERKX)
@ Dynamic-partition (MIBZHKX)

du.cn http: aff 0117401:
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Fixed-sized-partition scheme ([&%E4[X)

@ The simplest multi-partition method: IBM 0S/360 (MFT)

The memory is divided into several fixed-sized partitions

Partition size: equal VS. not equal

e Data Structure & allocation algorithm
0

0S
X Joba
partition | size | start addr _ Job B
state 73K
number (KB) (KB) Tieo €
1 15 30 allocated {os¢
2 30 45 allocated
3 50 75 allocated
4 100 125 allocated
25K
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Fixed-sized-partition scheme ([&%E4[X)

@ Disadvantage

e Poor memory utility
@ Internal fragmentation & external fragmentation

e Internal Fragmentation (NIREFA)
Allocated memory may be slightly larger than requested
memory; this size difference is memory internal to a
partition, but not being used

e External Fragmentation (4NHRER)
Total memory space exists to satisfy a request, but it is not

contiguous
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Dynamic partition scheme

@ Hole — block of available memory

e Initially, all memory is considered one large hole;

@ When a process arrives, a hole large enough is searched.
If found, the memory is allocated to the process as needed,
the rest memory of the partition is keep available to
satisfy future requests.

o Holes of various size are scattered throughout memory.

0s 0s 0S 0s
process 5 process 5 process 5 process 5
process 9 process 9
process 8 :> :> :> process 10

process 2 process 2 process 2 process 2
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Dynamic partition scheme (B [X)

@ OS maintains information about:

@ Allocated partitions
@ Free partitions (hole)
Example:

@ Free partitions table: need extra memory to store the
table

Partition number | partition size | start address | state

@ Free partitions list: can make use of the free
partitions to store links and partition infomation

(T 137 [T 11 [I 17
BT Ja A
ki Eictan
L
N1 2 NANFTI A Nt 2
0 0
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Dynamic partition scheme (B [X)

@ Dynamic Storage-Allocation Problem:
How to satisfy a request of size n from a list of free holes

@ First-fit (HYOU&ER) : Allocate the first hole that is

big enough
@ Next-Fit (fEIAEVIERL) : Allocate the next hole that is
big enough

@ Best-fit (HfEi&N) : Allocate the smallest hole that is
big enough; must search entire list, unless ordered by size

@ Produces the smallest leftover hole

Q Worst-fit (FZiERI) : Allocate the largest hole; must
also search entire list

@ Produces the largest leftover hole

First-fit and best-fit better than worst-fit in
terms of speed and storage utilization
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Dynamic partition scheme (B [X)

e Partition allocation operation(5ECHE{E)

Suppose u is the requested partition, the size is u.size
@ Find a suitable partition m based on an algorithm
(above-mentioned), the size is m.size, we have

m.size > u.size

o Let min_size be the partition’ s minimal size allowed

@ If msize —u.size > min_size, partition m is divided into two
partitions,
one is for partition u, the other is added into free
partitions

@ Otherwise, let partition m be partition u

@ The first address of partition u is returned

The max size of internal fragmentations < min_size

u.cn http: aff 0117401: O




Dynamic partition scheme (B [X)

@ Partition deallocation operation (or free, [EUX/#%
TRIR1E)

suppose the size is dealloc size

0S 0S 0S 0S
process 5 process 5
process 9 process 9 process 9
process 10 i i i
process 2 process 2 process 2 process 2

e Combine with the prev free neighbor

@ Only need to expand the size of the prev neighbor partition

prev.size4 = dealloc_size

.cn http://staff 0117401: Operatin



Dynamic partition scheme

@ Partition deallocation operation (or free, [EUX/%%

TIRAE) :

suppose the size is dealloc_size

0S 0S 0S 0S
process 5 process 5
process 9 process 9 process 9
process 10 :> :> :
process 2 process 2 process 2 process 2

© Combination with the next free neighbor

@ Only need to modify the start address and the size of the next

neighbor partition

next.start_addr — = dealloc_size
next.size + = dealloc_size

1%
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Dynamic partition scheme (B [X)

@ Partition deallocation operation (or free, [EUX/#%
TRIR1E)

suppose the size is dealloc_size

0S 0S 0S 0S
process 5 process 5
process 9 process 9 process 9
process 10 i i i
process 2 process 2 process 2 process 2

@ Combination with both neighbors

@ Expand the size of the prev neighbor partition, and delete the
next partition item

prev.size+ = dealloc_size + next.size

u.cn http://



Dynamic partition scheme (B [X)

@ Partition deallocation operation (or free, [EUX/%
TRIR1E)

suppose the size is dealloc_size

0S 0S 0S 0S
process 5 process 5
process 9 process 9 process 9
process 10 i i i
process 2 process 2 process 2 process 2

@ No free neighbor, no combination

@ Build a new partition item, fill-in related information, and
then insert it into free partitions (structure)

u.cn http://



Dynamic partition scheme jJ)L,\ \[Z>

@ Partition deallocation operation (or free, [EUX/#%
MURIE) :

suppose the size is dealloc size

0S 0S 0S 0S
process 5 process 5
process 9 process 9 process 9
process 10 i i i
process 2 process 2 process 2 process 2

@ No free neighbor, no combination

@ Build a new partition item, fill-in related information, and
then insert it into free partitions (structure)

o LiftidfErf, MRIFBERAVLETHIN, WIHERR BN RIS A
HERTRIN E
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Dynamic partition scheme

e Disadvantage

o [EEDECHIHLT, ZSH ) XA BED BUE N AFRY &AL
o RUEHEML, HNAFTIRBII o HIBRERE, R BAISMRIEF

@ Solution

o Compaction (£%)
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Compaction (‘&i{&

@ Reduce external fragmentation by compaction (i)

o Shuffle memory contents to place all free memory together in
one large block

@ Compaction is possible only if relocation is dynamic,
and is done at execution time GZIFHTAUBIASTIEEMFIA)

o I/0 problem; Solution:

o Latch job in memory while it is involved in 1/0
e Do 1/0 only into OS buffers

Hole 1

0s 0S 0S
process 5 process 5 process 5
process 9 process 10

process 1 |Compaction

process 10 :> process 10

Can not fit in the holes, but if
move hole 1 and hole 2 ...

process 2 process 2 process 2

Hole 2
o HIBERE M X ACRE:
FINZREMESEEMEARNEE S R B R I%E
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Outline

e Swapping
@ Swapping (Xf#t)
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Outline

e Swapping
@ Swapping (Xf#t)

taff 0117401 : i stem J1HA



Swapping (Xf#t)

e Swapping (X&)
A process (or segment, data, etc.) can be swapped
temporarily out of memory to a backing store and then
brought back memory for continued execution.

e Advantage: memory

utilizationt “ >
operating
e First used in CTSS, MIT: system
@ Single user + time slice + @Swapout process P,
swapping —— >
. . P,
e Unit of swapping: @) swapin process P,
. =
@ Process: whole swapping: o
process swapping Spaco backing store
o Page. segment: partly :
Swapping main memory
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Swapping (Xf#t)

e Swapping requires:
@ Management of backing store G 23 1a])

@ Swap out (or roll out)
@ Swap in (or roll in)

@ Backing store
Fast disk large enough to accommodate copies of all
memory images for all users;
Must provide direct access to these memory images

@ In order to speed-up, consider the contiguous allocation,
and ignore the fragmentation problem

@ Need to provide data structure to manage the free disk
block

@ Similar to dynamic partition allocation

1%
5a
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Swapping (Xf#t)

@ Process swap out
@ Step 1: select a process to be swapped out

@ RR scheduling:
swapped out when a quantum expires

e Priority-based scheduling: Roll out, roll in
Lower-priority process is swapped out so higher-priority
process can be loaded and executed.

e Step 2: swap out

@ Determine the content to be swapped out
(1) Code and data segments that are non-sharable
(2) Code & data segments that are sharable: counter (iT#{&%)
@ Allocate spaces on backing store, swap out, and modify the
related data structures
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Swapping (Xf#t)

@ Process swap in
@ Step 1: select a process to be swapped in

@ Process with static ready state(FRIEFAZEIRTE) + other
principles

o Ready queue: all ready processes on backing store or in
memory

@ Step 2: allocate memory space and swap in

@ If memory is available,
@ Otherwise, free memory by swapping out other processes
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Swapping (Xf#t)

e Context switch(LETFXtN#&k) with swapping
@ Swapped in & out COST TOO MUCH!

Example. Assume:
process size 10MB, disk transfer rate 40MB/sec, average latency 8ms

@ Transfer time =10MB / (40MB/sec) = 1/4 sec = 250 ms
@ Swap time = 258 ms
@ Swap out & in = 516

Major part of swap time is transfer time:

Total transfer time is directly proportional to the

amount of memory swapped

@ For efficient CPU utilization, the execution time must be
long relative to the swap time.

@ For RR scheduling, time quantum should >> 516ms

0117401: Operatir



Swapping (Xf#t)

e Context switch(LETFXtI#) with swapping

@ Swapped in & out COST TOO MUCH!
@ For RR scheduling, time quantum should >> 516ms

@ Problems exist for processes swapping with pending I/0
(similar to the I1/0 problem of compaction (‘Z{%))

@ Solution 1: never swap processes with pending 1/0
@ Solution 2: only execute I/0 operation via 0S buffers

@ Modified versions of swapping are found on many systems

@ i.e., UNIX, Linux, and Windows

du.cn http: aff 0117401:
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Discrete Memory Allocation (BE{NAESED)

@ paging (HT)

e internal fragmentation <one page

@ segmentation (ﬁ&)

@ logical

@ combined paging & segmentation (EXTAR)
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Q rasing (5T
@ Basic Method
@ Hardware support

@ Memory Protection (Wﬁ{%TF)
@ Shared Pages (ﬁ#\ig)

f5# £ xlanchene edu.cn http://staff 0117401: Operat ystem HENEH 5% April 26, 2017




Outline

Q razing (570

@ Basic Method
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Paging (4371)

@ LAS of a process can be noncontiguous; process is
allocated physical memory whenever the latter is available
@ Basic Method

@ Divide physical memory into fixed-sized blocks called
frames (WHETHE): size is power of 2, 512B—8,192B

@ Page Frame Number (MJHETIHES. PFN): 0,1, ..., PFNpa

Logical memory

Physical memory
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Paging (4371)

@ LAS of a process can be noncontiguous; process is
allocated physical memory whenever the latter is available

@ Basic Method

@ Divide physical memory into fixed-sized blocks called
frames (WHETHE): size is power of 2, 512B—8,192B

@ Page Frame Number (MJHETIHES. PFN): 0,1, ..., PFNpa

0

1

2

w

=~

Logical memory

cN o wm

PFNpax

Physical memory

1%
5a
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Paging (4371)

@ LAS of a process can be noncontiguous; process is
allocated physical memory whenever the latter is available

@ Basic Method
@ Divide logical memory into blocks of same size called
pages GBI, T
@ Logical Frame Number (GEHETIHES. LFN): 0,1,...,LFNu,

0 page 0 0
1 page 1 1
2| page 2 2
3| page 3 3

Logical memory

PFNnax

Physical memory
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Paging (47T1)

@ LAS of a process can be noncontiguous; process is
allocated physical memory whenever the latter is available
@ Basic Method
@ The backing store is also divided into fixed-sized blocks
of same size as frames

0| page 0 0
1 page 1 1
2| page 2 2
3| page 3 3

Logical memory

PFNpax

Physical memory Backing store
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Paging (4371)

@ LAS of a process can be noncontiguous; process is
allocated physical memory whenever the latter is available

@ Basic Method
e Need hardware and software support for paging

@ Keep track of all free frames

du.cn http: aff 0117401:
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Paging (4371)

@ LAS of a process can be noncontiguous:; process is
allocated physical memory whenever the latter is available

@ Basic Method
@ Need hardware and software support for paging

@ Keep track of all free frames
@ To run a program of size n pages, need to find n free frames
and load program

0| page 0 0

1 page 1 1 page 0

2| page 2 2

3| page 3 3| page 2
4 page 1

Logical memory .

7 page 3

PFNpax

Physical memory Backing store
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Paging (4371)

@ LAS of a process can be noncontiguous; process is
allocated physical memory whenever the latter is available

@ Basic Method
G’ Need hardware and software support for paging

@ Keep track of all free frames

@ To run a program of size n pages, need to find n free frames
and load program

@ Set up a page table to translate logical to physical
addresses for each process

0 page 0 o
1| page 1 N =0
2| npage 2 = = P
3| page 3 3| page 2
Logical memory page table 4| pagel
5
6
7 page 3
PFNpax
Physical memory  Backing store
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@ LAS of a process can be noncontiguous; process is
allocated physical memory whenever the latter is available

@ Basic Method

@ Divide physical memory into fixed-sized blocks called
frames (YFETIHE): size is power of 2, 512B—8,192B

@ Page Frame Number (YJEETIHES. PFN): 0,1, ..., PPNy
@ Divide logical memory into blocks of same size called
pages GEHET, T
o Logical Frame Number GEHETIMES. LFN): 0,1,..., LFNpu
@ The backing store is also divided into fixed-sized blocks

of same size as frames
@ Need hardware and software support for paging

Q@ Keep track of all free frames

@ To run a program of size n pages, need to find n free frames
and load program

@ Set up a page table to translate logical to physical
addresses for each process

o Internal fragmentation < page size
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Paging Model of Logical and Physical Memory

frame
number
0 page 0 0
1 page 1 1 page 0
2 page 2 2
3| page 3 3 page 2
page table
Logical memory 4 page 1
5
6
7 page 3
Physical memory

£.0117401:



Address Translation Scheme

@ Address generated by CPU is divided into:

e Page number (p), LFN
e Page offset (d)

@ How to get p and d?
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Address Translation Scheme

@ Address generated by CPU is divided into:

e Page number (p), LFN
e Page offset (d)

@ How to get p and d?

o Let
A: An address, either logical address or physical address
L: The size of a page or page frame
p and d: The corresponding number of the page (frame), and

p=A /L
d=A mod L

page offset

%
5a
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Address Translation Scheme

@ Address generated by CPU is divided into:

e Page number (p), LFN
e Page offset (d)

@ How to get p and d?
e Suppose L = 2V:
p=A right_shrift N, BIARJ&E (M — N)fi7
d = ARRIRNAL
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Address Translation Scheme

@ Address generated by CPU is divided into:

e Page number (p), LFN
e Page offset (d)

page number page offset
p d
YYYY O Y¥YY OO VY
M—N(:LFN) N(:offset)

For given logical address space 2" and page size 2"

du.cn http: aff 0117401:
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Address Translation Scheme

@ Address generated by CPU is divided into:

e Page number (p), LFN
e Page offset (d)

page number page offset
p d
YYYY T OY¥YY OO VYV
M—N(=LFN) N(=offset)

For given logical address space 2" and page size 2"

@ For 32bits system & 4KB page size, M=32, N=12, M—N =20

Example: A = 0Ox 12345 678
—_— ——
) d
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Address Translation Scheme: Paging Hardware

@ Paging Hardware:

LEN (p) + offset (d)—  PEN(f) + offset (d)

Logical address Physical address
logical physical
address address £ 0000...00

CPU P

physical
memory

page table

tem LRI 5%



Paging Example

0
S
J
Kk
1
o a g| m
1| b n
2| ¢ °©
3| d D
4 e 12
5 f
6| & .
i - e What if read
1
o1 logical address 9?
1) 1
12 m page talbe 20| @
13| n ®
14| o ¢
15) p d
logical memory 24 2
g
h
32-byte memory with 28
4-byte pages

physical memory




Free Frames

@ Since 0S is managing physical memory, it must be aware
of the allocation details of physical memory

@ which frames are allocated
@ which frames are available
@ how many total frames

o ...

du.cn http: aff 0117401:
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Free Frames

@ Frame table: one entry for each physical page frame

free-frame list free—frame list
14 15
13 13[page 0
14 14|page 1
15 15
page
page 16 page 16
L 17 L 17
page page
new process 18 new process 18 |page 2
19 0 19
1[15
20 9 20|page 3
3120
21 new-process page table 21
(a) (b)
before allocation after allocation
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Outline
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@ Hardware support
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Hardware support

@ Special hardware (software) is needed to implement page
table

e Basic paging hardware
@ Paging hardware with TLB
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Hardware support

@ Implementation of Page Table : basic paging hardware
e Page table is kept in main memory

o Page-table base register (PTBR) points to the page table
o Page-table length register (PRLR) indicates size of the

page table
EXCEPTION: overflow
Page table registers logical address L
Page Table &\sc—uddrcss| Page Length ‘ page# (:‘8) | page offset

page#  frame#

0 1
1
2
3 b ———b]
4
Page table
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Hardware support

@ Implementation of Page Table : basic paging hardware
e Page table is kept in main memory

o Page-table base register (PTBR) points to the page table
o Page-table length register (PRLR) indicates size of the
page table

e Context switch?

@ Each process is associated with a page table.
@ Page table must be switched, too.

.cn http://staff0117401: Operatin: tem FHENFEHESE



Hardware support

@ Implementation of Page Table : basic paging hardware

o Effective memory-Access Time (EAT, B&iAinlAtiE])

@ Every data/instruction access requires two memory
accesses.

@ One for the page table
@ One for the data/instruction.

du.cn http: aff 0117401:
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Hardware support

@ Implementation of Page Table : basic paging hardware

o Effective memory-Access Time (EAT, B&iAinlftia])
o Every data/instruction access requires two memory
accesses.
@ One for the page table
@ One for the data/instruction.
e Solution to two memory access problem:

@ A special fast-lookup hardware cache called
associative memory or
translation look-aside buffers (TLBs)
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Hardware support

@ Paging Hardware With TLB

e Associative Memory

@ Each register: a key & a value
o Parallel search (high speed)
@ Expensive, typically 872048 entries

PageFA’ <

Address translation (A', A")

@ If A’ is in associative register, get frame # out

Page# Frame#

—+— Frame#A”

A/ TN

@ Otherwise get frame # from page table in memory
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Hardware support

@ Paging Hardware With TLB

CPU

logical
address
P
page frame
number number
TLB hit
physical
T d‘j address
TLB
p [
TLB miss 3
physical
memory
page table

e Context Switch?

@ TLB must be flushed after context is switched!

/staff 0117401 :
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Hardware support

@ Paging Hardware With TLB

logical
address
CPU P
page frame
number number
TLB hit
physical
address
£ d‘}———————*
TLB
P -
TLB miss T
physical
memory
page table

e Some TLBs store address-space identifiers (ASIDs) in
each TLB entry

@ Uniquely identifies each process to provide address-space

protection for that process




Hardware support

@ Paging Hardware With TLB

CPU

physical

logical
address
p
page frame
number number
TLB hit
physical
address
f dg}———————>
TLB
p U
TLB miss T
page table

o NOTE: CACHE VS. TLB

/staff 0117401 :
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TLB Miss

e TLB miss ( TLBEkLL)

e If the page number is not in the associative registers

@ Get & store

o Hit ratio (@pHZXR)

o The percentage of times that a page number is found in the
associative registers
@ Ratio related to number of associative registers

@ What will be happened after context is swiched?
@ TLB replacement algorithm

du.cn http: aff 0117401:
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Effective Access Time (HXRU5[AIETE])

o If

@ Associative Lookup = € time unit
@ Assume memory cycle time is t microsecond
e Hit ratio = «

@ Then Effective Access Time (EAT)

EAT = (t+ea+(2t+e)(1—-a)

@ If e=20ns, t=100ns, al =80%. a2 =98%:

If TLB hit: 20+ 100 = 120ns

If TLB miss: 20+ 100 4+ 100 = 220ns
EAT1 =120 % 0.8 4+ 220 % 0.2 = 140ns
EAT2 =120 % 0.98 + 220 % 0.02 = 122ns
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Q razing (570

@ Memory Protection (Wﬁ{%TF)

du.cn http: aff 0117401:

%
5a



Memory Protection (NAZ{RI)

@ If page size 2", page & frame is aligned at 2", so ---

Example: A = 0Ox 12345 678
—
D d

Only 0x12345 is stored in the page table entry.
@ Memory protection implemented by associating prcrtecth)n
bit with each frame

@ Provide read only, read-write, execute-only protection or---
e Valid-invalid bit attached to each entry in the page
table:

’

@ ' valid’® indicates that the associated page is in the
process’ logical address space, and is thus a legal page

@ ' invalid’ indicates that the page is not in the process’
logical address space
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Memory Protection (NAZ{RI)

@ Example: Valid (v) or Invalid (i) Bit In A Page Table

o Address space 214,
Page size 2KB:
Process size
(0~10468)

@ Page 5 has
internal
fragmentation

o PTLR=6, Page 6 & 7
are invalid

00000

10,468
12,287

page 0

page 1

page 2

page 3

page 4

page 5

frame number \ /valid—invalid bit

¥

ol & W N = O
offofo|~|afw|n @

—[—fl<l<|<|<|<|<

>

page table
10240

7

(=]

10486

12287

page 0

page 1

page 2

page 3

page 4

page 5

stem i| Ef




Outline
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@ Shared Pages (TIHE)
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Shared Pages (TIHE)

@ Shared code

e One copy of read-only (reentrant, ®][EA) code shared
among processes (i.e., text editors., compilers, window
systems) .

@ Shared code must appear in same location in the
logical address space of all processes

o WHY?

@ Private code and data

@ Each process keeps a separate copy of the code and data
@ The pages for the private code and data can appear
anywhere in the logical address space
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@ Shared Pages

Example
0
ed 1
s 1| data 1
e
43 2| data 3
e
3| ed 1
data 1| pase table
process Py for Py ed 1 4/ ed 2
ed 2 5
ed 3 6| ed 3
page table 7| data 2
ed 1 process Py for Py 8
d 2
° 9
d 3
© 10
data 3 page table 1
process Pg for Py
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e Structure of the Page Table
@ Hierarchical Paging
@ Hashed Page Tables (K375 T13%)
@ Inverted Page Tables ([ & HF%)
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Outline

e Structure of the Page Table
@ Hierarchical Paging
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Hierarchical Page Tables

@ Break up the LAS into multiple page tables

o Need directories
@ A simple technique is a two-level page table

0
1
—
11 -
: 109 *
500 |~
\\\\\\\\\-; 100 500
708 708
out page .
table : .
™ 929 900
900 ] :
page of
page table 929
page table :
memory

Two-Level Page-Table Scheme
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Two-Level Paging Scheme

@ On 32-bit machine with 4K page size, a logical address
is divided into

@ Page number: 20 bits & page offset: 12 bits
@ Since the page table is paged, the page number is further
divided into:

@ A 10-bit page number & a 10-bit page offset

@ Thus, a logical address is as follows:

page number page offset
b1 D2 d
10 10 12

Where p; is an index into the outer page table, and py is
the displacement within the page of the outer page table

u.cn http://



Two-Level Paging Scheme

@ Example
A = 0x 12345 678
D d
Pa=0x48 p1=0x345

p = 0x12345 =0001 0010 0011 0100 0101
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Two-Level Paging Scheme

@ Address-Translation Scheme

outer page inner page offset
Logical AddreJ P1 | ) \ d \

O O b [ d
=/ E

Outer Page Table Register

Outer Page Table Page Table
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Three-level Paging Scheme

outer page inner page offset
P1 P2 d
42 10 12
2nd outer page outer page inner page offset
P1 P2 P3 d
32 10 10 12

.cn http://staff 0117.
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of multi-level page tables

@ Assume memory cycle time is t microsecond,
If Level number =L, then

EAT = (L4 1)t

@ If using TLB, Assume Associative Lookup = ¢ time unit, Hit ratio

¢ EAT=a(t+e)+(1—a)(L+1)t+e)
t = 100ns
€ = 20ns
a=0.98
L=3

EAT = 0.98 x 120 4 0.02 x 420
=
= 126ns

which is only a 26% slowdown in memory access time.
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e Structure of the Page Table

@ Hashed Page Tables (M374T1FE)
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Hashed Page Tables (M&&ET1FE)

@ Common in address spaces > 32 bits

@ The virtual page number is hashed into a page table.
This page table contains a chain of elements hashing to the same
location.

@ Virtual page numbers are compared in this chain searching for a match.
If a match is found, the corresponding physical frame is extracted.

physical
logical address address

[p [ d] [r [d

physical
4 lags || Tlplrli_IT”. memory

hash table
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e Structure of the Page Table

@ Inverted Page Tables (X B T1F%)
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Inverted Page Table (W BT1F)

@ One entry for each real page of memory

@ Entry consists of the virtual address of the page stored in
that real memory location, with information about the
process that owns that page

@ Decreases memory needed to store each page table, but
increases time needed to search the table when a page
reference occurs

@ Use hash table to 1imit the search to one — or at most a
few — page-table entries

du.cn http: aff 0117401:
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Inverted Page Table Architecture

logical .
address physical
address physical
cPU —{pd| p [ d | N memory
searchl }i
pid | p
page table
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Discrete Memory Allocation (BE{NAESED)

@ paging (HT)

e internal fragmentation <one page

@ segmentation (ﬁ&)

@ logical

@ combined paging & segmentation (EXTAR)
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Outline

e Segmentation (4E%)
@ Basic Method
@ Hardware
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Outline

e Segmentation (4E%)
@ Basic Method
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Segmentation (43E%)

@ Segmentation: supporting user view of memory

@ A program is a collection of User’ s View of a Program
segments.
A segment is a logical unit gy I
such as:
main program, procedure,
mbol

function, method, Sytabole
object, local variables, S
global variables, common block, main

program
stack, symbol table,
arrays logical address

cn http://staff 0117401: Operat tem TTHEANRHE 5%



Logical address space

@ A collection of segments, each segment < name, length >

e 2-D address space

@ A logical address consists of a two tuple

@ < seg —name, offset >, or
@ < seg —num, offset >

@ Compiler automatically constructs segments reflecting the
input program.
@ Pascal compiler

@ FORTRAN compiler
@ C compiler, such as gcc,
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Logical View of

user space

Segmentation

@ Each segment is a logically
integrated unit.

@ Each segment is of variable

length.

@ Elements within one segment
is addressed from the
beginning of the segment.

Logical address =
(segment#, offset)

physical memory space

0117401:
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Outline

e Segmentation (4E%)

@ Hardware
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Segmentation Architecture

@ Segmentation Architecture

o Segment table(E%%) — maps 2-D LA — 1-D PA:
Each table entry has:

o Base — contains the starting physical address where the
segments reside in memory
© Limit — specifies the length of the segment

o Segment-table base register (STBR) points to the
segment table’ s location in memory
e Segment-table length register (STLR) indicates

number of segments used by a program;

segment number s is legal if s < STLR

du.cn http: aff 0117401:
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Segmentation Architecture

—limifbase

segment
table

CPU =

no

trap: addressing error physical memory




Segmentation Architecture

control registers

logical address

9K

segl

seg0

physical memory




Segmentation Architecture

BHERE
BRI

e Protection
@ With each entry in segment table associate:
e Validation bit = 0 = illegal segment
o Read/write/execute privileges
@ Protection bits associated with segments;
Code sharing occurs at segment level
o Since segments vary in length, memory allocation is a
dynamic storage-allocation problem

o First-fit, Best-fit, ...
o Externel fragmentation, compaction, ...




of Segmentation

@ < segment2, 53 >—

" 4300 + 53 = 4353
subroutine stack
e ° tment3, 852
setmen
segment 3 segment o < ) -
2400 3200 + 852 = 4052
symbol
segment 0 table @ What about
limit | base o
Sqrt segment 4 o[ 1000 | 1400 < segmentl, 536 >*
1| 400 |eaop | 9200
main 2| 400 | 4300
program 3| 1100 | 3200
4| 1000 | 4700 segment

segmenttable 4,

segment 2 O ararts
4700 2
logical address space isegment 4|
5700
6300
ment 1
6700 =

physical memory|

[£.0117401:




Differences between paging and segmentation

e Motivation and purpose

o Paging: system-oriented, discrete physically, reduce
external & internal fragmentation, memory utility?

@ Page is the physical unit of infomation

@ Segmentation: user-oriented, discrete logically, satisfy
the user’ s need

@ Segment is the logical unit of information with relatively
complete meaning

@ Size

o Paging: size is fixed, depends on hardware
@ Segmentation: size is not fixed, depends on the program and
decided while compiling

@ Dimension

@ Paging: 1-D
o Segmentation: 2-D, segment name (number) + segment offset
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Advantages of segmentation

@ Easy programming

@ Logically, easy to locate
o Dynamic, by segment table

@ Sharing

@ Shared segments

@ Same segment number
@ Protection

o Use segment table entry
e Protection bit

@ Read-only, execute-only, read/write
@ Validation bit, O=illegal segment

@ Dynamic linking
@ Growing dynamically (BhSHEIK)

Protection & sharing & linking at segment Jevel
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Sharing

Editor

Segment 0 | Data 1 ‘

Limit

Base

25286

43062

Segment 1

Logical address space
Process P1

Editor

Segment0 | patan

Segment 1

Logical address space
Process P2

u.cn http:

4425

68348

Segment table
Process P1

Limit

Base

25286

43062

8850

90003

Segment table
Process P1

43062
Editor
68348
Data 1
72773
0003
Data 2
98853
Physical memory

T

=




e Segmentation with paging (EZTIF()
@ Example: The Intel Pentium

%
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e Segmentation with paging (EZTIF()
@ Example: The Intel Pentium

%
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Example: The Intel Pentium

@ Supports both pure segmentation & segmentation with
paging

local linear physical

address |segmentation| address |paging| address |physical

CPU

unit unit memory

@ CPU generates logical addresses
@ Logical address given to segmentation unit which
produces linear addresses
@ Linear address given to paging unit which generates
physical address in main memory
e Paging units form equivalent of MMU

page number page offset
’ P b2 d
10 10 12

<lanchen@us du.cn http://staff 0117401: Operating System i1 EAH|JFHE 5%



Intel Pentium Segmentation

@ Intel segmentation
e Logical address = segment : offset
@ 6 16-bits segment registers: c¢s, ss, ds, es, fs
and gs
@ CS: code segment register
@ SS: stack segment register
o ds: data segment register
@ Since 80386, Intel microprocessors using two different
address translation scheme
@ Real-mode (SEET() (20-bits address space)
© Protection-mode (BR3P0 (32-bits address space)

1%
JBC
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Intel Pentium Segmentation

@ Real-mode (L&) (20-bits address space)
o Segment registers store segment base addresses, but only 16
bits
Therefore, segment base addresses must 4-bits aligned
(example: OxABCDO)

physical address = logical address

= value in segment register x 16 4+ offset

du.cn http: aff 0117401:
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Intel Pentium Segmentation

@ Protection-mode (fR¥IPHRIV) (32-bits address space)

@ 16-bits segment registers + GDT/LDT
o GDT/LDT and segment descriptor (EX#fulifd)

o Global descriptor table, GDT (2BHEHATFR)

Local descriptor table, LDT (/FZB#ARTFR): for process
GDT/LDT: One 8-bytes segment descriptor for each segment
GDT and LDT are also stored in memory

Register‘s GDTR and LDTR store the base address of a GDT
and LDT, respectively
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Intel Pentium Segmentation

@ Protection-mode (fR¥FHEZL) (32-bits address space)
e Segment selector (ERi%EEF): The value in segment
register, 16-bits

15 2 1 0

Segment selector

@ Index: 13 bits, the index of corresponding segment
descriptor in GDT/LDT

@ Table Indicator, TI-bit: 1 bit, GDT? LDT?

@ Request privilege level, RPL-bits: 2 bits
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Intel Pentium Segmentation

@ Protection-mode (fR¥FHED) (32-bits address space)

@ Linear address — segment base 4 offset
GDT or LDT Linear address

Logical address

e Linear address =Physical address: paging or not
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Intel Pentium Segmentation

@ Protection-mode ({RIFH#EI() (32-bits address space)
e Types of segment descriptors:

© Data Segment Descriptor (FIREXIHIMST): for data/stack
segments
Code Segment Descriptor (fUCHEERHIIMNET): for code segments
Task State Segment Descriptor ({EZ5IRAELHMAT)
LDT Descriptor (LDTHulifF)
System Segment Descriptor (RZLEIHILAT)

0000
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Intel Pentium Segmentation

@ Protection-mode ({RIFH#EI() (32-bits address space)
e Contents of segment descriptors:
@ Base (32-bits): Segment start address in physical memory
@ Limit (20-bits): for segment length
@ G-bit (1-bit): the unit of segment length (0: 1= 1B; 1:
1=4KB)
@ S-bit (1-bit): system segment (0) or not (1)
Type (4-bits): for code/data/tss/1dt/etc
@ DPL-bits (2-bits): descriptor privilege level of the
segment (00b~11b)
o Segment present flag (1-bit): present (1) or not (0)

%
5a
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Intel Pentium Segmentation

@ Protection-mode (fR#FHEIV) (32-bits address space)
e Contents of segment descriptors:
@ Base (32-bits): Segment start address in physical memory
o Limit (20-bits): for segment length
@ G-bit (1-bit): the unit of segment length (0: 1= 1B; 1:

Data Segment Descriptor
63 62 61 59 58 57 56 55 54 53 52 51 50 48 47 46 45 44 43 42 40 39 38 37 36 34 33 32

31 30 29 28 26 25 24 22 21 20 19 18 17 16 1514 1311 1098 76 5 4 3

Code Segment Descriptor
63 62 61 59 58 57 56 55 54 53 52 51 50 48 47 46 45 44 43 42 40 39 38 37 36 34 33 32

31 30 29 28 26 25 24 22 21 20 19 18 17 16 1514 1311 1098 7 6 5 4

System Segment Descriptor
63 62 61 59 58 57 56 55 54 53 52 51 50 48 47 46 45 44 43 42 40 39 38 37 36 34 33 32

31 30 29 28 26 25 24 22 21 20 19 18 17 16 1514 1311 1098 76 5 4




Intel Pentium Segmentation

@ Protection-mode (fR¥FHEIL) (32-bits address space)

e Selector and the quick access to descriptor

Segment

Segment register




Pentium Paging Architecture

(logical address)
31 22 21 12 11
page 4-KB
table page
page
directory
CRS_ —= 4-MB
register page
31 22 21

JREL 5




Linux on Pentium Systems

@ Linux does not rely on segmentation and uses it
minimally.
@ Only 6 segments

e _ KERNEL CS, _ KERNEL DS
e USER CS, _ USER DS
@ shared by all processes
@ all processes use the same logical address
o A Task-state segment (TSS)
@ A default LDT segment, shared by all processes, usually not
used

(allow processes to create its own LDT replacing the
default LDT)
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Linear Address in Linux

@ Linear address in Linux is broken into four parts with
three-level paging

(linear address)

global
directory ekl

directory page

page
frame

Ry ==
register
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NG

0 background
@ Storage hierarchy
@ Memory protection
@ Program execution, loading & linking
e Contiguous Memory Allocation (GEZENTESED)
e Swapping
@ Swapping (Xf#t)
Q recing (57
@ Basic Method
@ Hardware support
@ Memory Protection (JNAREERH)
@ Shared Pages (TIHE)
e Structure of the Page Table
@ Hierarchical Paging
@ Hashed Page Tables (M§75THF)
@ Inverted Page Tables (X B H1F#E)
e Segmentation (43E%)
@ Basic Method
@ Hardware
e Segmentation with paging (ﬁﬁﬁﬁ)
@ Example: The Intel Pentium

Q /\EAIEL
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o b, YWHHHIE L/ 2
@ 9.10 B — M TUERFHAENFII D TTRS:
o W —IRNFES A H200ns, [n]— T NAETE F £ /At ?
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e 9.16 R A FEMESE:

Segment | Base | Length
0 219 600
1 2300 14
2 90 100
3 1327 580
4 1952 96
T R Z bR £
e a, 0430
e b, 110
e c, 2500
e d, 3400
e e, 4122
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