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o Background

e Demand Paging (FZFFYHT1)
e Copy-on-VWrite (Ef&E#Hl)
@ raze Replacement (T )
e Allocation of Frames

e Thrashing ($}3))

e Memory-Mapped Files

e Allocating Kernel Memory
e Other Issues

@ Operating System Examples

@ sl
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Outline

e Background
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@ Instructions must be loaded into memory before execution.

@ Solutions in chapter 8:

Program entire Physical memory
Ty

@ Sometimes, jobs may be too big or too many.
How to expand the main memory?

e Physically? COST TOO HIGH!
e Logically? /
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@ Virtual memory: Why and How?

@ Some code may get no, or only little, opportunity of

execution,

for example, code for error handlers

e Some data may get no opportunity of access

Locality of reference (F2FRIFEPMHRIE). 1968, Denning
@ Temporal locality (Fst[E]EERME)
@ Spatial locality (ZX[A]fEERM:)

Idea: partly loading (&89%*A) ~demand loading (%
T|HRAN) ~replacement (&)
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@ Virtual Memory (EHIIFZfE#S)
=IEEBBEKIFATIINGENERINGE, SENBELNAFSE
LAY ZER — MR fER R %
@ Logical size:
NARGHEE: NEAEHIMIAE
NHBAEE: it SEREEEN;, NEAREHIMEAR
@ Speed: close to main memory
o Cost per bit: close to secondary storage (disks)
@ Virtual memory : separation of user logical memory from

physical memory.
° Only part of the program needs to be in memory for

execution
e Logical address space can therefore be much larger than

physical address space
@ Allows address spaces to be shared by several processes

@ Allows for more efficient process creation
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Background

page 0O

page 1

page 2

page Vv

virtual memory

memory map

physical memory

= E E
= E E
B EE
B EE
B EE

Example: virtual memory that is larger than physical memory




Background

@ Virtual memory can be implemented via:

@ Demand paging
@ Paging technology +
pager (3ERVET) and page replacement
@ Pager VS. swapper
the unit of swapping in/out is not the entire process but

page.

@ Demand segmentation
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Virtual-address Space (EFIHHEZI[8])

@ The virtual address space of a process
refers to the logical (or virtual)
view of how a process is stored in
memory.

o Typically: 07xxx & exists in contiguous
memory

@ In fact, the physical memory are
organized (partitioned) in page frames &
the page frames assigned to a process may
not be contiguous=MIU
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Some benefits

@ Shared library using virtual memory

stack

J

stack

shared library

shared pages

shared library

heap

data

code

@ Shared memory

© Speeding up process creation
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e Demand Paging (H%ﬁlﬁﬁ)
@ Basic Concepts (Hardware support)
@ Performance of Demand Paging
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Demand Paging (f&%%ﬁﬁ

e Do not load the entire program in physical memory at
program execution time.
NO NEED!

@ Bring a page into memory only when it is needed

@ less 1/0 needed
© Less memory needed
@ Faster response
@ More users

@ A page is needed « Reference to it

e Invalid reference =-Abort
o Not-in—memory =>Bring to memory

%
5a
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Demand Paging (%§§§j§ﬁ1>

@ Swapper VS. Pager

@ A swapper manipulates the entire processes
e Lazy swapper
Never swaps a page into memory unless the page will be needed

@ Swapper that deals with individual pages is a pager

<>

J o 10203 [

swap out

I atisdecir O

81 9] 107111

program A

n2[N3 11411501

program B [ swap in o E{‘ 18@ 19;‘

J RO R1 []220123[]

~

main memory

Example: Transfer of a paged memory to contiguous disk space
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Outline

e Demand Paging (H%ﬁlﬁﬁ)

@ Basic Concepts (Hardware support)
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Hardware support

@ The modified page table mechanism
@ Page fault
@ Address translation

@ Seccondary memory (as swap space)
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1) The modified page table mechanism

@ Valid-Invalid Bit (PRESENT bit)

e With each page table entry a
valid-invalid bit is associated

. . . Frame# valid-invalid bi
@ v = in-memory, i = not-in-memory "
o Initially valid-invalid bit is set Z
to 1 on all entries 5
@ During address translation, if i
valid-invalid bit in page table entry
is 1 = page fault 7
@ Reference bits (for pager out) v abie

@ Modify bit (or dirty bit)
@ Secondary storage info (for pager in)
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1) The modified page table mechanism

@ Page table when some pages are not in main memory

0
1
0 A _valid-invalid 2 Q
1 B frame# / bit 3
2 4l HED
3D 5
4 E 6l ¢ =
e 7 ]
6l G S
7 H i 9 F
logical memory page table 10 D D D
11 \/
12
13
14
15

physical memory

.cn http://staff0117401: Operatin: tem FHENFEHESE



2) Page Fault (HRDIfME)

@ First reference to a page will trap to OS:
page fault(#k T &I/ F%/FB7)

e Page fault trap (FRIIRE)

o Exact exception (trap)., (i
Restart the process in exactly the same place and state.
Re-execute the instruction which triggered the trap

@ Execution of one instruction may cause multiply page faults

6] B:
__{:::::::}__ @ Page fault may occur at every memory

reference

40 A:
3__{:::::::}__ @ One instruction may cause multiply page

faults while fetching instruction or r/w

2
. MOV A, B operators

Example: One instruction and 6 page faults

ul
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2) Page Fault (BRTT#fE)

@ Page Fault Handling:

@ O0S looks at an internal table to decide:

@ Invalid reference = abort
@ Just not in memory =

© Get empty frame
e Swap page into frame

@ Pager out & pager in

@ lModify the internal tables & Set validation bit = v
@ Restart the instruction that caused the page fault
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2) Page Fault (BRTT#fE)

3 page is on backing store

operating system

:

2 trap

1 referenc

load M i
6 restart
instructign

free frame

5 reset 4 bring {Q\\\\“‘¥4-._"’//
page table missing page

physical memory

Steps in handling a page fault




3) address translation

@ Address translation hardware + page fault handling
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Resume the execution

e Context save ({R7FINi%)
Before OS handling the page fault, the state of the process
must be saved

e Example: record its register values, PC
e Context restore (VxEMi7H)

The saved state allows the process to be resumed from the
line where it was interrupted.

@ NOTE: distinguish the following 2 situation

o Illegal reference=-The process is terminated
o Page fault=> Load in or pager in
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Outline

e Demand Paging (H%ﬁlﬁﬁ)

@ Performance of Demand Paging
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Performance of Demand Paging

@ Let p = Page Fault Rate (0 <p <1.0)
e If p=0, no page faults

e If p=1.0, every reference is a fault

@ Effective Access Time (EAT)

EAT = (1 — p) X Memory access

+p X page fault time

page Tault time = page fault overhead
+swap page out
+swap page in

+restart overhead
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Performance of Demand Paging

@ Example

@ Memory access time = 200ns
@ Average page-fault service time = 8ms

EAT = (1—p)x 200+ p x 8ms
= (1—7p) x 200+ p x 8,000,000
200 + p x 7,999, 800

@ If one access out of 1,000 causes a page fault, then

p = 0.001
EAT = 8§,199.8ns =8.2us

. . 8.2us __ 1
This is a slowdown by a factor of Soons — 40!!

edu.cn http://staff 0117401: Operati stem THEAFHE 5%



Performance of Demand Paging

@ Example

@ Memory access time = 200ns
@ Average page-fault service time = 8ms

EAT = (1-—p)x 200+ p x 8ms
= (1—p) x 200+ p x 8,000,000
= 2004 p x 7,999,800

@ If we want performance degradation < 10%, then

EAT =200+ p x 7,999,800 < 200 (1+ 10%) =220
P x 7,999,800 < 20
p < 20/7,999,800 ~ 0.0000025
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Method for better performance

e To keep the fault time low

G' Swap space, faster then file system

@ Only dirty page is swapped out, or

G’ Demand paging only from the swap space, or

@ Initially demand paging from the file system, swap out to
swap space, and all subsequent paging from swap space

o Keep the fault rate extremely low
@ Localization of program executing

@ Time, space
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e Copy-on-Write (EKIEH])
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Process Creation

@ Virtual memory allows other benefits during process
creation:

@ Copy-on-Write (BEE#)
e Memory-Mapped Files (later)

du.cn http: aff 0117401:
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Copy-on-Write (EHE )

@ Copy-on-Write (COW, EH}E i)

e allows both parent and child processes to initially share
the same pages in memory

e If either process modifies a shared page, only then is the
page copied

@ COW allows more efficient process creation as only
modified pages are copied

@ Free pages are allocated from a pool of zeroed-out pages

du.cn http: aff 0117401:
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Copy-on-Write (EREH|)

@ Example:
process; physical memor processy

I page A 1

L page B |

—L> page C ]

Before Process 1 Modifies Page C
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Copy-on-Write (BB} &E ]

@ Example:

process; physical memor processy

I page A 1

[ page B ]

page C ]

opy of page

After Process 1 Modifies Page C

.cn http://staff 0117 i em THENEHSE



e Page Replacement (T1[H &H#Ht)

@ Basic Page Replacement
First-In-First-Out (FIFO) Algorithm
Optimal Algorithm
Least Recently Used (LRU) Algorithm
LRU Approximation Algorithms
Counting Algorithms

Page-Buffeing Algorithms
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What happens if there is no free frame?

e Page replacement (TIHEHE)
Find some page in memory, but not really in use, swap it
out

@ Algorithm?

e Performance?
want an algorithm which will result in minimum number of
page faults

@ Same page may be brought into memory several times
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Need of Page Replacement (TI[HEEHL) I

@ Free page frame is managed by OS using free-frame-1list

@ Over-allocation: No free frames; All memory is in use.

valid-invalid C
frame# /bit
0 i - / 0 monitor]
pc—1| load M 3 |v
o3 s el [+
5 v 2 D
3 i M i 3 i
logical memory page table
for user 1 for user 4| load M
5 J
6 A
valid-invali E
7 /bit
0 A frame // * physical memory \\\\\\‘_4__4/,,//
1 B 6 v
i
2 D 2 |v
3 E 7 lv
logical memory page table
for user 2 for user 2

Example of over-allocation
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Need of Page Replacement (Ti[HEEHL) 11

@ What happens if there is no free frame?

@ Solution:
Page replacement (T TH&H#h)
Prevent over-allocation of memory by modifying page-fault
service routine to include page replacement
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Outline

e Page Replacement (T1[H &H#Ht)

@ Basic Page Replacement
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Basic Page Replacement

@ Basic Page Replacement
@ Find the location of the desired page on disk
© Find a free frame:

@ If there is a free frame, use it
@ If there is no free frame, use a page replacement algorithm to

select a victim frame
e Bring the desired page into the (newly) free frame;
Update the page and frame tables
@ Restart the process
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Basic Page Replacement

frame? valid-invalid bit

2 change 1 swap out 'l:‘
0 |3 to invalid victim
page
& v 4 reset page
table for R Ghet da
new page
page table 3 swap in

desired page \‘:‘

physical memory




Basic Page Replacement

@ NO MODIFY, NO WRITTEN (to disk/swap space)

e Use modify (dirty) bit to reduce overhead of page
transfers

@ Only modified pages are written to disk
@ This technique also applies to read-only pages

@ For example, pages of binary code

@ Page replacement completes separation between
logical memory and physical memory
@ Large virtual memory can be provided on a smaller physical
memory
@ Demand paging, to lowest page-fault rate, two major
problems

@ Frame-allocation algorithms
© Page-replacement algorithms
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Page Replacement Algorithms

@ GOAL: to lowest page-fault rate

e Different algorithms are evaluated by running it
on a particular string of memory references (reference
string) and computing the number of page faults on
that string

Q@ A reference string is
a sequence of addresses referenced by a program
Example:

@ An address reference string:
0100 0432 0101 0612 0102 0103 0104 0101 0611 0103 0104
0101 0610 0102 0103 0104 0101 0609 0102 0105

@ Assuming page size = 100 B, then its corresponding page
reference string is:
14161616161
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Page Replacement Algorithms

@ How many page faults?

e Determined by the number of page frames assigned
to the process

e For the upper example: 1 4161616161

@ If >3, then only 3 page faults
@ If =1, 11 pages faults
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Page Replacement Algorithms

@ How many page faults?

o Determined by the number of page frames assigned
to the process
@ For the upper example: 1 4161616161

@ If >3, then only 3 page faults
@ If =1, 11 pages faults

o N B O
T T T

number of page faults

)
T

1 I 1 I 1 I
1 2 3 4 5 6
number of frames

Graph of Page Faults Versus The Number of Frames
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Page Replacement Algorithms

@ In all our examples, the reference strings are

@1.2.3,4,1,2,5,1,2,3,4,5
Q@7.0,1,2,0,3,0,4,2,3,0,3,2,1,2,0,1,7,0,1

du.cn http: aff 0117401:
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e Page Replacement (T1[H &H#Ht)

@ First-In-First-Out (FIFO) Algorithm

du.cn http: aff 0117401:
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First-In-First-Out (FIFO) Algorithm

@ The simplest page-replacement algorithm: FIFO

@ For each page: a time when it was brought into memory

e For replacement: the oldest page is chosen
e Data structure: a FIFO queue

@ Replace the page at the head of the queue
@ Insert a new page at the end of the queue

@ Example 1: 15 page faults, 12 page replacements

0 3 0 4 2 3 0 3 2 1 2 0 1
2] 2] [ [ ] o] o] [0
] ] ma
[ (o] [of fo] [2] [2] 3] [2

Reference string

u.cn http:




First-In-First-Out (FIFO) Algorithm

© Example 2: Reference string:
1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

Reference string

If 3 page frames:
9 page faults

page frames

Reference string

If 4 page frames:

10 page faults

page frames
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First-In-First-Out (FIFO) Algorithm

e More memory, better performance? MAY BE NOT!!
o Belady’s anomaly (DUEHFHIR) :

more frames = more page faults

16|
1) 14
=
1S 12
[
2 10}
o
G gl
g
£ 6
=]
= 4_
2_
| 1 1 1 1 1
1 2 3 4 5 6 7
number of frames

FIFO illustrating Belady’ s Anomaly
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e Page Replacement (T1[H &H#Ht)

@ Optimal Algorithm

u.cn http: aff 0117401:



Optimal Algorithm

e Optimal page-replacement algorithm:
Replace page that will not be used for longest
period of time

e It has the lowest page-fault rate
e It will never suffer from Belady'’'s anomaly

@ Examplel: 9 page faults, 6 page replacements

Reference string

page frames
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Optimal Algorithm

@ 4 frames example
1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

Reference string

If 4 page frames:

6 page faults

page frames

@ OPT: Difficult to implement

o How to know the future knowledge of the reference string?

@ So, it is only used for measuring how well other algorithm
performs
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e Page Replacement (T1[H &H#Ht)

@ Least Recently Used (LRU) Algorithm

du.cn http: aff 0117401:
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Least Recently Used (LRU) Algorithm

@ LRU: an approximation of the OPT algorighm
Use the recent past as an approximation of the
near future
e To replace the page that has not been used for the
longest period of time

@ For each page: a time of its last use
@ For replace: the oldest time value

@ Examplel: 12 page faults; 9 page replacements

Reference string

page frames
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Least Recently Used (LRU) Algorithm

@ LRU: an approximation of the OPT algorighm
Use the recent past as an approximation of the
near future

o To replace the page that has not been used for the

longest period of time
o For each page: a time of its last use
@ For replace: the oldest time value

@ Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

Reference string

If 4 page frames:

7 page faults

page frames
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Least Recently Used (LRU) Algorithm

HOW to implement LRU replacement?
@ Counter implementation

@ Every page entry has a counter;
every time page is referenced through this entry, copy the
clock into the counter

@ When a page needs to be changed, look at the counters to
determine which are to change
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Least Recently Used (LRU) Algorithm

HOW to implement LRU replacement?
@ Stack implementation — keep a stack of page numbers in a
double 1ink form:
o When page referenced: Move it to the top
@ Requires 6 pointers to be changed

@ No search for replacement

reference string
4 7 07 1 01 2 1 2 7 1 2

stack
before
a

u.cn http: aff 0117401: Oper



e Page Replacement (T1[H &H#Ht)

@ LRU Approximation Algorithms
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LRU Approximation Algorithms

@ Reference bit

@ With each page associate a bit, initially = 0
@ When page is referenced bit set to 1
o Replace the one which is 0 (if one exists)

@ We do not know the order, however

Q@ Additinal-Reference-Bits Algorithm:
Reference bits + time ordering, for example: 8 bits

@ HW modifies the highest bit, only
@ Periodically, right shift the 8 bits for each page
e 00000000, ..., O1110111, ..., 11000100, ..., 11111111

du.cn http: aff 0117401:
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LRU Approximation Algorithms

@ Second chance (clock) Algorithm

e Need only 1 reference bit, modified FIFO algorithm

@ First, a page is selected by FIFO

@ Then, the reference bit of the page is checked:
O=replace it
1=not replace it, get a second chance with reference bit:
1—0, and time—current
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LRU Approximation Algorithms

@ Second chance (clock) Algorithm
e Implementation: Clock replacement

@ Clock order

rferencs — pages refeence — pages
(o] (o]
o [o]

jom =p{] o]
[o]
< N
11

circular queue of pages circular queue of pages
(a)
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LRU Approximation Algorithms

© Enhanced Second-Chance Algothm

@ Reference bit + modify bit
o 4 page classes (Pf[AIfL, &ML

@ (0, 0) — best page to replace

@ (0, 1) — not quite as good
@ (1, 0) — probably be used again soon
@ (1, 1) — probably be used again soon, and be dirty

@ Replace the first page encountered in the lowest nonempty
class.

@ Scan for (0, 0)
@ Scan for (0, 1), & set reference bits to 0
@ Loop back to step (a)
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Outline

e Page Replacement (T1[H &H#Ht)

@ Counting Algorithms
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Counting Algorithms

e Counting algorithms:
Keep a counter of the number of references that
have been made to each page

@ LFU Algorithm: replaces page with smallest count

@ VMFU Algorithm: based on the argument that the page with
the smallest count was probably Jjust brought in and has yet
to be used
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e Page Replacement (T1[H &H#Ht)

@ Page-Buffeing Algorithms

u.cn http: aff 0117401:



Page-Buffeing Algorithms

@ System commonly keep a pool of free frames
@ When replacement occurs, two frames are involved
Q@ A free frame from the pool is allocated to the process
@ The desired page is read into the frame

@ A viction frame is chosen

@ Written out later and the frame is added to the free pool

e NO NEED to write out before read in

@ An expansion

@ Maintain a list of modified pages
o When a paging device is idle, select a modified page, write

it out, modify bit—O0
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Page-Buffeing Algorithms

@ Another modification

@ Free frame with old page
@ The old page can be reused

@ Less write out and less read in

VAX/VMS
Some UNIX: + second chance

u.cn http: aff 0117401:



Outline

e Allocation of Frames




Allocation of Frames

@ Minimum number of pages

@ Each process needs minimum number of pages
o Determined by ISA (Instruction-Set Architecture )

@ We must have enough frames to hold all the different pages
that any single instruction can reference

e Example: IBM 370
6 pages to handle SS MOVE instruction:

@ Instruction is 6 bytes, might span 2 pages
@ 2 pages to handle from
@ 2 pages to handle to
@ Two major allocation schemes
e Fixed allocation: priority allocation
@ Two replacement policy
@ Global vs. local
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Allocation scheme 1: Fixed Allocation

@ Equal allocation

For example, if there are 100 frames and 5 processes, give

each process 20 frames.

m
frame number for any process = —
n
m = total memory frames

n = number of processes
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Allocation scheme 1: Fixed Allocation

@ Proportional allocation
Allocate according to the size of process

@ example:

m = 64
s; = size of process p; S, = 10
S = ES{ 82 — 127
m = total number of frames 10
. S5 a; = — XxX64=5
a; = allocation for p; = — xm 137
> ag = 127 X 64 =~ 59
> 7 137 -
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Allocation scheme 1: Priority Allocation

@ Use a proportional allocation scheme using priorities
rather than size

@ If process P; generates a page fault,

G’ Select for replacement one of its frames
e’ Select for replacement a frame from a process with lower
priority number

du.cn http: aff 0117401:
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Replacement policy: Global vs. Local Allocation

e Global replacement
process selects a replacement frame from the set of all
frames; one process can take a frame from another

@ Problem: a process cannot control its own page-fault rate

e Local replacement
each process selects from only its own set of allocated

frames

e Problem?
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e Thrashing ($lzh)
@ Cause of trashing
@ Working-Set Model (T {/EEERETAD)
@ Page-Fault Frequency (BRTISIZR)
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Outline

e Thrashing ($lzh)

@ Cause of trashing
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Thrashing (#}5fh)

@ If a process does not have “enough” pages, the
page-fault rate is very high. This leads to:
@ Low CPU utilization
@ OS thinks that it needs to increase the degree of

multiprogramming
@ Another process added to the system, getting worse!

@ Thrashing = a process is busy swapping pages in and out
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Thrashing (#}5h)

e Cause of trashing: unreasonable degree of
multiprogramming (FEEMSERRFE)

h

thrashing

CPU utilization

degree of multiprogramming

April 28, 2017 49 / 17
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Thrashing (#}5fh)

@ How to 1limit the effects of thrashing

@ Local replacement algorithm? not entirely sloved.

e We must provide a process with as many frames as
it needs—1locality

o How do we know how many frames is needed?

o working-set strategy «<Locality model

@ Locality model: This is the reason why demand paging
works
@ Process migrates from one locality to another

e’ Localities may overlap

@ Why does thrashing occur?
Ysize of locality > total memory size

%
5a
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Thrashing (#}5h)
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e Thrashing ($lzh)

@ Working-Set Model (T {/EEERETAD)
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Working-Set Model (T AEEERLIAY)

@ The working-set model is based on the assumption of
locality.

@ let
A = working — set window

= a fixed number of page references

For example: 10,000 instructions

e Working set (I{E£E):

The set of pages in the most recent A page references.

e An approximation of the program’ s locality.
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Working-Set Model (T AEEERLIAY)

@ Example: A =10

page reference table
...2615777751623412344434344413234443444...
A | A |
i t,
WS(t,) = {1,2,5,6,7} WS(t,) = {3.4)

e Working set size:

WSS; (working set of Process P;)
= total number of pages referenced in the most rece:

e Varies in time, depend on the selection of A

e if A too small will not encompass entire locality
e if A too large will encompass several localities
e if A =00 = will encompass entire program
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Working-Set Model (T AEEERLIAY)

@ For all processes in the system, currently

D = XWSS; = total demand frames

@ D >m = Thrashing
e Policy:

if D > m, then suspend one of the processes
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Keeping Track of the Working Set

@ Approximate with: interval timer + reference bits
@ Example: A = 10,000

o Timer interrupts after every 5000 time units

o Keep in memory 2 bits for each page

@ Whenever a timer interrupts, copy and sets the values of all
reference bits to 0

@ If one of the bits in memory = 1 = page in working set

@ Why is this not completely accurate?

e IN!! But where?

e Improvement:

@ 10 bits and interrupt every 1000 time units
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e Thrashing ($lzh)

@ Page-Fault Frequency (ﬁ{ﬁﬁﬂz)
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Page-Fault Frequency Scheme

() Page—Fault Frequency: helpful for controlling trashing

@ Trashing has a high page-fault rate.
o Establish “acceptable” page-fault rate

@ If actual rate too low, process loses frame
@ If actual rate too high, process gains frame

increase number
of frames

upper bound

page-fault rate

lower bound
decrease number
of frames

number of frames
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Working sets and page fault rates

working set

page
fault
|rate

time
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e Memory-Mapped Files
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Memory-Mapped Files

@ Memory-mapped file 1/0
allows file I/0 to be treated as routine memory
access by mapping a disk block to a page in memory

@ A file is initially read using demand paging. A page-sized
portion of the file is read from the file system into a
physical page.
Subsequent reads/writes to/from the file are treated as
ordinary memory accesses.

e Simplifies file access by treating file I/0 through
memory rather than read() write() system calls
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Memory-Mapped Files

@ Also allows several processes to map the same file
allowing the _nases in memorv to he shared

1
2
1 3 3
2 4
3 5
4 6
5
6
Process A Process B

disk file

.cn http://staff0117401: Operatin: tem FHENFEHESE



Shared Memory in Windows using

Memory-Mapped 1/0

process;

shared
memory

~

~ memory-mapped file

shared
memory

processy
-
~
~
~
shared
~ - memory
~
~
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Memory —mapped 1/0

@ Many computer architectures provide memory-mapped I/0

@ Ranges of memory addresses are set aside and are mapped to
the device registers.

o Directly read/write the mapped range of memory address for
transfer data from/to device registers

o Fast response times

@ For example: video controler

@ Displaying text on the screen is almost as easy as writing the
text into the appropriate memory-mapped locations.
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e Allocating Kernel Memory
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Allocating Kernel Memory

@ Kernel memory
Treated differently from user memory

e Process’'s logical (virtual) address space Vs.
kernel address space

@ different privilege
@ allow page fault or not?

@ Often allocated from a free-memory pool

@ Kernel requests memory for structures of varying sizes
@ Some kernel memory needs to be contiguous

@ Buddy system (fkKtER%E
@ Slab allocator (slabdrBC#s)

1%
5a
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1. Buddy System (YkfERZR

@ Allocates memory from
fixed-size segment consisting of
physically-contiguous pages
@ Memory allocated using power-of-2 allocator
o Satisfies requests in units sized as power of 2
e Request rounded up to next highest power of 2
@ When smaller allocation needed than current size is
available, current chunk split into two buddies of
next-lower power of 2, continue until appropriate sized
chunk available

physically contiguous pages

‘ 256 KB ‘

Bfi7& = xlanchen



2. Slab Allocator (slab%pBCzs) I

@ Slab allocator: Alternate strategy

kernel objects caches slabs

> \\
3 KB i —
object

0 Ry
= v
/

L

physical contiguous pages
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2. Slab Allocator (slab%pBizs) 11

@ Slab is one or more physically contiguous pages

Cache consists of one or more slabs
@ Single cache for each unique kernel data structure

@ Each cache filled with objects — instantiations of the data
structure

When cache created, filled with objects marked as free
When structures stored, objects marked as used

@ If slab is full of used objects, next object allocated from
empty slab

@ If no empty slabs, new slab allocated

@ Benefits: no fragmentation, fast memory request
satisfaction
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e Other Issues




@ Prepaging
@ To reduce the large number of page faults that occurs at
process startup
o Prepage all or some of the pages a process will
need, before they are referenced
e But if prepaged pages are unused, 1/0 and memory was wasted
@ Assume s pages are prepaged and o of the pages is used

@ Is cost of sx*xa save pages faults > or < than the cost of
prepaging s *(1 —»a) unnecessary pages?
@ ( near zero = prepaging loses

@ Page Size
@ Page size selection must take into consideration:

Fragmentation
Table size
1/0 overhead
Locality

0000
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@ TLB Reach - The amount of memory accessible from the TLB
e TLB Reach = (TLB Size) x (Page Size)

@ Ideally, the working set of each process is stored in the TLB,
Otherwise there is a high degree of page faults

@ Increase the Page Size.
This may lead to an increase in fragmentation as not all

applications require a large page size

@ Provide Multiple Page Sizes.
This allows applications that require larger page sizes the

opportunity to use them without an increase in fragmentation

Q@ Inverted page tables
@ This can reduce the memory used to store page tables.
o Need an external page table (one per process) for the
infomation of the logical address space
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@ Program structure

int[128,128] data; // Each row is stored in one pag

Program 1

Program 2

for (j = 0; § <128; j++)
for (i = 0; 1 < 128; i++)
datali,j| = 0;

for (i = 0; i < 128; i++)
for (4 = 0; 4 < 128; j++)
datali,j] = 0;

@ 128 x 128 = 16,384 page

128 fault
faults ° page tauits
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@ I/0 Interlock — Pages must sometimes be locked into
memory
o Consider I/0 — Pages that are used for copying a file from

a device must be locked from being selected for eviction by
a page replacement algorithm

buffer jl = >
disk drive

Reason why frames used for I/() must be in memory
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@ Operating System Examples
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Operating System Examples

@ Windows XP

@ Solaris

u.cn http: aff 0117401:



Windows XP

@ Uses demand paging with clustering. Clustering
brings in pages surrounding the faulting page.
@ Processes are assigned working set minimum and
working set maximum
@ 507345 pages
o Working set minimum is the minimum number of pages the
process is guaranteed to have in memory,
@ A process may be assigned as many pages up to its working
set maximum
o When page fault:
@ if < working set maximum, allocates a new page
@ if =max, uses local page-replacement policy
@ When the amount of free memory in the system falls below a
threshold, automatic working set trimming is
performed to restore the amount of free memory

@ Working set trimming removes pages from processes that have
pages in excess of their working set minimum

%
5a
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@ Maintains a list of free pages to assign faulting processes

o Parameter lotsfree— threshold (amount of free memory) to
begin paging, 1/64 the size of physical memory
@ check the amount of free pages 4 times per second

@ Paging is performed by pageout process using modified
second-chance algorithm (with two hands)

@ Desfree— threshold parameter to increasing paging

@ Minfree— threshold parameter to being swapping

@ Scanrate is the rate at which pages are scanned. This
ranges from slowscan to fastscan

@ Pageout is called more frequently depending upon the amount
of free memory available
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Solaris

11

8192
fastscan

scan rate

100
slowscan

I I I
minfree desfree lotsfree

amount of free memory

Solaris 2 page scanner

£.011740




Outline

@ AR




NG

o Background

e Demand Paging (FZFFYHT1)
e Copy-on-VWrite (Ef&E#Hl)
@ raze Replacement (T )
e Allocation of Frames

e Thrashing ($}3))

e Memory-Mapped Files

e Allocating Kernel Memory
e Other Issues

@ Operating System Examples

@ sl

taff 0117401 ing S it% 5158



e 10.3 FMITEANLA B PR T 232800 B it 25 /] o AL
B 2B HENAT o BN AR A 01 AN 4KBAY 43 TUHL | 5%
o — AN PR A ik 11123456, IIZEREE— F R5/ERE
AN P B AE o X — TN IRIERIRE IR -

o 10.4 MTHKIAT, FEERMITEHBL "7 2 0
B 4R P Wit A0

a, HERR

b, MG FE

c, IFHZE
d, ZHERE
e, 4ifthy

£, MERE
g, [EEEFHE

hen@ustc.edu.cn http://staff 0117401: Operating System ITELHJFH 5%



o 10.10 fHE ~ 4N,
int A[][] = new int[100][100];

TE— DU R/ 20009 53 TN R STH, A 0] [O)FF BUAEH1E200
H o — NMREEEHAR/NATRIEAFAETUEO (MhkoEI199) 5 3XHE,
BRETE S ER M T O FREY o
XT3N T, R T 2H AN R ROEEE W GRAIEEARE o A R A 2 A T
;ﬁ%? B FHLRUE# B, T RAERGHRE, RO RIERT

for (int j=0;4<100;j++)

for (int 1=0;i<100;i++)
Alil[4]=0;

u.cn http://staff 0117401: Operating System i1HAH|FH 5%



for (int 1=0;i<100;i++)
for (int j=0;4<100;j++)
Ali][4]=0;
e 10.11 fRi%AE FH 5| HFFI:
1,2,3,4,2,1,5,6,2,1,2,3,7,6,3,2,1,2,3,6
TR T B R ES T E 2 DIRER TR R 9 AR
BH1~2~3~4~5~6~71 ° FrAEINRIGERNZ o HE—1TTRHA
IS5 —IR TSR o
o LRUE A £
o FIROEH &
o HILEMEE
e 10.20 BIENRYREEAT AY RE/ERERMEISN? — B RS2+
5], RGUEFEIEFRIX A
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