0117401: Operating System
ERERGIRESIRIT

Chapter 11: File system implementation ({4 & %tsCHN)

RE=
xlanchen@ustc.edu.cn
http://staff.ustc.edu.cn/~xlanchen

Computer Application Laboratory, CS, USTC @ Hefei
Embedded System Laboratory, CS, USTC @ Suzhou

May 10, 2019

ImE RN -

AT IEMEARNTIER,
ETERE EXHEERS.

AEmiRe HETRIE,

e
File-System Structure
FS Implementation
Directory Implementation
Allocation Methods (3 EE/57%)
Free-Space Management
Efficiency (=8/&]) and Performance (AJ&])
Recovery

Log Structured File Systems

INGS

Outline

File-System Structure

File-System Structure

» File structure
> Logical storage unit o
» Collection of related information?@ppication programs

» FS resides on secondary storage File name

logical file system

(disks) _
. . Logical block address
> FS organlzatlon file-organization module
» How FS should look to the user l Physical block address
» How to map the logical FS onto basic file system
the physical secondary-storage l t'gsr“e‘:rfgvrzrgﬁ’y‘gz;f’gé °
devices 1/O control
o o Hardware-specific
» FS organized into layers l instructions
devices

Figure: Layered File System

Outline

FS Implementation

FS Implementation

» Structures and operations used to implement file
system operation, OS- & FS-dependment

1. On-disk structures
2. In-memory structures

FS Implementation

1. On-disk structures
1.1 Boot control block
> To boot an OS from the partition (volume)
> If empty, no OS is contained on the partition
1.2 Volume control block
1.3 Directory structure
1.4 Per-file FCB

file permissions

file dates (create, access, write)

file owner, group, ACL

file size

file data blocks or pointers to file data blocks

Figure: A typical file control block

FS Implementation

2. In-memory information: For both FS management
and performence improvement via caching
> Data are loaded at mount time and discarded at
dismount

» Structures include:
> in-memory mount table;
> in-memory directory-structure cache
> system-wide open-file table;
> per-process open-file table

FS Implementation

2. In-memory information: For both FS management
and performence improvement via caching
> Data are loaded at mount time and discarded at

dismount
» Structures include:
> i
> i — [
» gppen (file name) U
directory structure

>

F directory structure }fi{!—control block

user space kernel memory secondary storage

(a

index

LILIL]

read (index)_,j ”D D D

directory blocks

per-process system-wide | =
open file table open file table| file-control block

user space kernel memory secondary storage
(b)

Partitions and mounting

» Partition (9X)
» Raw (E.g. UNIX swap space & some database) VS.
cooked
» Boot information, with its own format

»> Boot image
» Boot loader unstanding multiple FSes & OSes
Dual-boot

» Root partition is mounted at boot time

» Others can be automatically mounted at boot or
manually mounted later

Virtual File Systems (BEHSTI4-Z %)

» Virtual File Systems (VFS, B HFRS) provide an
object-oriented way of implementing file systems.

» VFS allows the same system call interface (the API) to
be used for different types of file systems.

» The API is to the VFS interface, rather than any specific
type of file system.

file-system interface

VFS interface

local file system
type 2

remote file system
type 1

local file system
type 1

|

Schematic View of Virtual File System

Outline

Directory Implementation

Directory Implementation

1. Linear list of file names with pointer to the data
blocks.
» Simple to program
» Time-consuming to execute
2. Hash Table- linear list with hash data structure.
» Decreases directory search time
» Collisions - situations where two file names hash to

the same location
» Fixed & variable size or chained-overflow hash table

Outline

Allocation Methods (5&2/5%)

Allocation Methods (5 ECHIE)

» An allocation method refers to
how disk blocks are allocated for files
so that disk space is utilized effectively
& files can be accessed quickly

1. Contiguous allocation (E£z5Ec)
2. Linked allocation (§&ZE5HE)
3. Indexed allocation (ZR2|95E?)
4. Combined (B&7=)

1. Contiguous Allocation ((ZE£z52HEc) |

» Each file occupies a set of contiguous blocks on the
disk
» Simple — directory entry only need
> starting location (block #)
> & length (number of blocks)
» Mapping from logical to physical
LogicalAddress/512 = Q... ... R
Block to be accessed = Q + starting address
Displacement into block = R

1. Contiguous Allocation (1E£z5Ec) |

N
count
o] 1 21 31
f
4] 5[] e[7[] directory
file start length
‘a 9D1ODt1r1D count 0 2
12013014151 tr 14 3
mail 19 6
teLl17LI18L 190] list 28 4
mal
20[121221237 f 6 2
24125 126[1271
list
28|:|29|:|I30|:|31|:|

~_

1. Contiguous Allocation (1E£z45Ec) Il

» Advantages:

» Support both random & sequential access

» Start block: b;
Logical block number: i
=physical block number: b + i
> Fast access speed, because of short head movement

» Disadvantages:

> External fragmentation

> Wasteful of space (dynamic storage-allocation
problem).
» Files cannot grow,
or File size must be known in advance.
=Internal fragmentation

Extent-Based Systems

» Many newer file systems (l.e. Veritas File System) use a
modified contiguous allocation scheme

» Extent-based file systems allocate disk blocks in
extents

» An extent is a contiguous block of disks

» Extents are allocated for file allocation
» A file consists of one or more extents.

2. Linked Allocation (g5 g)

» Each file is a linked list of disk blocks: blocks may be
scattered anywhere on the disk.

» Two types

1. Implicit (BazCHEE)
2. Explicit (2HEE)

2. Linked Allocation (g5 g)

1. Implicit (FaXEEE)

> Directory contains a pointer to the first block
& last block of the file.

> Each block contains a pointer to to the next
block.

a block = | pointer

> Allocate as needed, link together

» Simple — need only starting address
> Free-space management system — no waste
of space

16[1 17031801901

directory

file start end
jeep 9 25

20D21?22D23D
2402551262707

28[J29[]30[131[]

2. Linked Allocation (g5 g)

1. Implicit (BaXHEE)

» Disadvantage:

> No random access
> Link pointers need disk sapce
E.g.: 512 per block, 4 per pointer =0.78%
Solution: clusters
= disk throughput ¢
But internal fragmentation?t

16[1 17001801900

directory

file start end
jeep 9 25

20Dz1$l]23[|
24251261271

28291301311

2. Linked Allocation (g5 g)

1. Implicit (FRREEE)

» Mapping:
Suppose

1.1 block size=512B, o
1.2 block pointer size=1B, using the first byteofa b~ directory

file start end

blOCk o[1[x] jeep 9 25
1.3 Logical addr in the file to be accessed= A 0 sBa 10
we have 8] AEhol
1.1 Data size for each block =512 — 1 = 511 PE)m B
1.2 A/511=Q...... R 16[1 170018001900
then 20D21$D23D
24[J25[]26[127[]

1.1 Block to be accessed is the Q" block in the S ———
linked chain of blocks representing the file. <
1.2 Displacement into block = R + 1

» How to reduce searching time?

2. Linked Allocation (g5 g)

2. Explicit linked allocation:
File Allocation table, FAT
Disk-space allocation used by MS-DOS and OS/2

ory entry
[test | - [217
name start block
0
> A section of disk at the beginning of each
17[618

partition is set aside to contain the FAT

» Each disk block one entry
> The entry contains 339 j|

(1) the index of the next block in the file
(2) end-of-file, for the last block entry
(3) 0, for unused block

618 339

> Directory entry contains the first block
number no. of disk blocks -1

FAT

2. Linked Allocation (g5 g)

2. Explicit linked allocation:
File Allocation table, FAT
Disk-space allocation used by MS-DOS and OS/2

ory entry
[test | - [217
name start block
0
17| 618
> Now support random access, 130
but still not very efficient
> May result in a significant disk head seeks. s18 339
Solution: Cached FAT
no. of disk blocks -1

FAT

2. Linked Allocation (g5 g)

2. Explicit linked allocation:
File Allocation table, FAT

Disk-space allocation used by MS-DOS and OS/2

ory entry
[test | - [217
name start block
» How to compute FAT size? 0
Suppose
2.1 Disk space = 80 GB i 618
2.2 Block size = 4 KB
Then 339
2.1 Total block number = 80 x 230/2!2 = 5 x 22
22 4x22 =2 <5x2% <8x222=2% 618 339
> Length of each FAT entry?
(25bits? 28bits? 32bits?) no. of disk blocks -1

> Length of FAT?

(5 x 2% x 4B = 80MB = 80GB/2'°) FAT

3. Indexed Allocation (Z3|%)

» Indexed Allocation (Z5|43ER):
Brings all pointers together into one location — the

index block.

» Each file has its own index block

> Directory entry contains the
index block address

» Each index block: An array of
pointers (an index table)

Logical block number i
= the it" pointer

20[]21[J22[A23[]
24[J25[J26[127(]

28[J29[]30[131]
v

directory

file index block
jeep 1|9

3. Indexed Allocation (Z3|%)

» Indexed Allocation (Z5|43ER):
Brings all pointers together into one location — the
index block.

> Advantage: directory
file index block
» Random access jeep 19
» Dynamic access without -
external fragmentation N
9
» Disadvantage: 1
. 10
> have overhead of index block. 19 25
> File size limitation, since one i
index block can contains limited -1
pointers ~_
28[]29[130[131[]

~

3. Indexed Allocation (Z3|%)

» Indexed Allocation (Z5|43EL):
Brings all pointers together into one location — the

index block.
» Mapping from logical to physical
Suppose
(1) Block size = 1KB
(2) Index size = 4B

Then for logical address LA, we
have
LA/512=Q..R

(3)Q = the index of the pointer
(4)R = displacement into block

We also have Max file size
=219/4 x 1KB = 256KB

24[]25[]26[127[]
28[]29[]30[131]

~

directory

file index block
jeep 19

N

9
16
1
10

3. Indexed Allocation (Z3|%)

» Indexed Allocation (Z5|43ER):
Brings all pointers together into one location — the

index block.
directory
file index block
jeep 1|9
. 1]
» How to support a file of P
unbounded length? o
1. linked scheme]0
2. multi-level index scheme i® 25
;
24250262701 \1/
28[]29[130[131[]

~

3. Indexed Allocation (Z3|%)

1. Linked scheme

» Link blocks of index table (no limit on size).
» Mapping
Suppose
(1) Block size=1KB
(2) Index or link pointer size = 4B
Then
LA/ (1KB x (1K/4—-1)) =Q;...R;
(3) Q; = block of index table
(4) Ry is used as follows:
Ri/1IK=Q,y...... Ra
(5) Q, = index into block of index table
(6) Ry = displacement into block of file:

3. Indexed Allocation (Z3|%)

2. multi-level index scheme
Example: Two-level index (maximum file size is ?)

B]
| — ol
> We have
LA/ (1K x 1K/4) = Q; ... Ry
(1) Q: = index into outer-index
(2) Ry is used as follows:
Ri/1KB=Q....R,
(3) Q. = displacement into block _~
of index table outer-index
(4) R2 = displacement into block index table file

of file

4. Combined Scheme ((H&7T): UNIX (4K bytes
per block) |

mode

owners (2)

timestamps (3)

size block count

direct blocks _|

single indirect

double indirect |

triple indirect

4. Combined Scheme (B&A):
per block) I

» if 4KB per block, and 4B per entry

Direct blocks =

Number of entries per block
Single indirect

Double indirect

Triple indirect =

Maximnm file size = ?

UNIX (4K bytes

10 x 4KB = 40KB
4KB/4B = 1K

1K x 4KB = 4MB
1K x 4MB = 4GB
1K x 4GB = 4TB

Outline

Free-Space Management

Free-Space Management

» Disk Space: limited
> Free space management: To keep track of free disk
space
» How? Free-space list?
> Algorithms
1. Bit vector
2. Linked list

3. Grouping (RE4BEEEE)
4. Counting

Free-Space Management

1. Bit vector
> Free-space list is implemented as a bit map or bit
vector
> 1 bit for each block
1=free;
O=allocated
> Example:
a disk where blocks
2,3,4,58,9,10,11,12,13,17,18,25,26,27 are free and the
rest blocks are allocated. The bitmap would be

0011 1100 1111 1100 0110 0000 0111 0000 O...

> Bit map length.
For n blocks, if the base unit is word, and the size of
word is 16 bits, then

bit map length = (n + 15)/16
U16 bitMap[bitMaptLength];

Free-Space Management

1. Bit vector
» How to find the first free block or n consecutive free
blocks on the disk?

»> Many computers supply bit-manipulation instructions

> To find the first free block:
Suppose: base unit = word (16 bits) or other
(1) find the first non-0 word
(2) find the first 1 bit in the first non-0 word

> If first K words is 0, & (K + 1) word > 0,
the first (K+ 1) word’ s first 1 bit has offset L,
then

first free block number N = K x 16 + L

Free-Space Management

1. Bit vector
> Simple
> Must be kept on disk
Bit map requires extra space,
Example:
block size = 22 bytes
disk size = 230 bytes (1 gigabyte)
n = 230/212 = 218 bits (or 32K bytes)
» Solution: Clustering

Free-Space Management

1. Bit vector
> Efficient to get the first free block or n consecutive free
blocks, if we can always store the vector in memory.
> But copy in memory and disk may differ.
E.g. bit[i] = 1 in memory & bit[i] = 0 on disk
> Solution:
Set bit[i] = 1 in memory.
Allocate block]i]
Set bit[i] = 1 in disk
> Need to protect:
> Pointer to free list
> Bit map

Free-Space Management
2. Linked Free Space List on Disk

free-space list head —

> Link together all the free disk
blocks

> First free block
> Next pointer

» Not efficient

» Cannot get contiguous space easily
> No waste of space

28[]29[130[131[]
_/

Free-Space Management

3. Grouping(R;{B%EH%X): To store the addresses of n
free blocks (a group) in the first free block. E.g.: UNIX
» First n-1 group members are actually free

» Last one contain the next group

> Andsoon =g 100 100 99
et 400 0
399 - 7999
Sfree| 100 301 1 7901
o[300
1] 299 300 400 7900
FRERDN
RRBSEEE
299 399 7899 7999
98| 202 ; ; : :
99| 201
201 301 7801 7901

Free-Space Management

4. Counting

> Assume:
Several contiguous blocks may be allocated or freed
simultaneously

» Each = first free block number & a counter (number of
free blocks)

» Shorter than linked list at most time, generally counter
> 1

Outline

Efficiency (Z5i8]) and Performance (FJi&])

1 Efficiency (Z5/a])

Efficiency in usage of disk space dependent on:
1. Disk allocation and directory algorithms

2. Various approaches
> Inodes distribution
» Variable cluster size
> Types of data kept in file’ s directory entry
> Large pointers provides larger file length, but cost
more disk space

2 Performance (Ad(8])

» Performance: other ways

>

>

>

disk cache - on disk controllers, large enough to store
entire tracks at a time.

buffer cache — separate section of main memory for
frequently used blocks

page cache - uses virtual memory techniques to cache
file data as pages rather than as file-system-oriented
blocks

Synchronous writes VS. Asynchronous writes
free-behind and read-ahead — techniques to optimize
sequential access

improve PC performance by dedicating section of
memory as virtual disk, or RAM disk

2 Performance (Ad(8])

disk

r 1

: ram disk i

: : i track i

: ! buffer !
CPU 1 open-file table i ---------

' controller

main memory

Unified Buffer Cache

» 1/0 Without a Unified Buffer Cache
» Memory-mapped I/O uses a page
cache
> Routine I/0 through the file system
uses the buffer (disk) cache
> Problem: double caching

» 1/0 Using a Unified Buffer Cache
» A unified buffer cache uses the

same page cache to cache both |mmry_mappeaI 0| [aouEns
memory-mapped pages and

ordinary file system I/O
y y / buffer cache

1/0 using

memory-mapped /O | . 4"3nd write(

page cache

file system

Outline

Recovery

Recovery

» Consistency checking (—X4185)

» compares data in directory structure with data blocks
on disk, and tries to fix inconsistencies

> UNIX: fsck

» MS-DOS: chkdsk

» Backup & restore

> Use system programs to back up data from disk to
another storage device (floppy disk, magnetic tape,
other magnetic disk, optical)
> Recover lost file or disk by restoring data from backup
> A typical backup schedule may be:
Day1: full backup;
Day2: incremental backup;

BayN: incremental backup. Then go back to Day1.

Outline

Log Structured File Systems

Log Structured File Systems

» Log-based transaction-oriented (or journaling, HE)
file systems record each update to the file system as a
transaction

» All transactions are written to a log
> A transaction is considered committed once it is
written to the log
> However, the file system may not yet be updated
» The transactions in the log are asynchronously
written to the file system
> When the file system is modified, the transaction is
removed from the log
» If the file system crashes, all remaining transactions in
the log must still be performed

Outline

INES

INEE,
File-System Structure
FS Implementation
Directory Implementation
Allocation Methods (53E2/55%)
Free-Space Management
Efficiency (Z5/8]) and Performance (B8]
Recovery

Log Structured File Systems

INEE

Thank you! Any question?

	File-System Structure
	FS Implementation
	Directory Implementation
	Allocation Methods (分配方法)
	Free-Space Management
	Efficiency (空间) and Performance (时间)
	Recovery
	Log Structured File Systems
	小结

