0117401: Operating System
BFRRRIESRIT

Chapter 13: 10 Systems (IO&1&)

BRE=
xlanchen@ustc.edu.cn
http://staff.ustc.edu.cn/~xlanchen

Computer Application Laboratory, CS, USTC @ Hefei
Embedded System Laboratory, CS, USTC @ Suzhou

May 22, 2019

p&&= xlanchen@ustc.edu.cn http://staff.ud117401: Operating System #2{EZRFt[RIEEE May 22, 2019 1/54

AT IEHMBARNTIIER,
EERE EXYIERERE.

AEmRE HFFTHIE,

pE&= xlanchen@ustc.edu.cn http://staff.ud117401: Operating System #2{EZRFt/RIEE May 22, 2019 2/54

&7
/O Hardware and I/O control methods
@ Polling (#1875=)
@ Interrupts (FlrA =)
@ Direct Memory Access (DMAST)
@ 1/O hardware summary
e Application 1/O Interface
@ Block and Character Devices
@ Network Devices
@ Clocks and Timers
@ Blocking (BE2E) and Nonblocking (3EBEZE) I/0
© Kernel I/0 Subsystem
I/O Scheduling
Buffering (&% #l)
Caching, Spooling & device reservation
Error Handling
I/0 Protection
Kernel Data Structures
§ Transforming I/O Requests to Hardware Operations

Performance
INEE
pR&E= xlanchen@ustc.edu.cn http://staff.u0117401: Operating System EMERST/RIEE May 22,2019 3/54

Overview

@ The role of OS in I/O is to manage and control I/O operations
and I/O devices connected to the computer.

e Challenge: I/0 devices vary widely.
@ HOW: a combination of HW and SW techniques.

Chapter Objectives
@ To explore the structure of an OS’ s I/O subsystem.
@ To discuss the principles of /O HW and its complexity.

@ To provide details of the performance aspects of /O HW and
SW.

v

pR&E= xlanchen@ustc.edu.cn http://staff.u0117401: Operating System EMERST/RIEE May 22,2019 4/54

Outline

@ /0 Hardware and I/0 control methods
o Polling (755t
@ Interrupts (FFliA=)
@ Direct Memory Access (DMAJT)
@ 1/O hardware summary

pE&= xlanchen@ustc.edu.cn http://staff.ud117401: Operating System #2{EZRFt/RIEE May 22, 2019 5/54

/O Hardware overview

@ Incredible variety of I/O devices

Processor-memory

sybsystinl B @

processor

: cache @

monitor

SCSI bus

graphics ridge/memory memol SCS! controller
controller controller

i - bus:
Fast(flevice ! I L—PCl bus \) Wires & protocals
IDE disk controller expansion bus interface
keyboard

@ @ Slow devife —expansion bus——)
! !

@ @ parallel serial
port port

Figure: A typical PC bus structure.

May 22,2019 6/54

f&&= xlanchen@ustc.edu.cn http://staff.ud117401: Operating System #2{EZRS/RIE.

/O Hardware overview

@ Common concepts : CPU—PORT—BUS—Controller

» Port (i%[): the connection point via which a device
communicates with the machine.

» Bus (££): daisy chain(E1£%) or shared direct access
* PCl (Peripheral Component Interconnect(JMERE4EHE))
* SCSI (Small computer systems interface)
* Expansion bus

» Controller ($=#28)
* Simple: serial port
* Complex: bus controller (host adapter), device controller

pR&E= xlanchen@ustc.edu.cn http://staff.u0117401: Operating System EMERST/RIEE May 22,2019 6/54

/O Hardware overview

@ How can the processor command controller?
» Controller has one or more registers for data and control
signals.
» The processor communicates with the controller by reading
and writing bit patterns in the registers.
@ Two communication techniques:
@ Direct I/0 instructions
* Access the port address
* Each port typically contains of four registers, i.e., status, control,
data-in and data-out.
* |nstructions: In, out
©@ Memory-mapped 1/0

* Example: 0xa0000 ~ Oxfffff are reserved to ISA graphics cards
and BIOS routines

» Some systems use both techniques: PC as an example.

pR&E= xlanchen@ustc.edu.cn http://staff.u0117401: Operating System EMERST/RIEE May 22,2019 6/54

/O Hardware overview

@ |/O address range
Device 1/0 Port Locations on PCs (partial)

I/0 address range device
(hexadecimal)

000-00F DMA controller
020-021 interrupt controller
040-043 timer
200-20F game controller
2F8-2FF serial port (secondary)
320-32F hard-disk controller
378-37F parallel port
3D0-3DF graphics controller
3F0-3F7 diskette-drive controller
3F8-3FF serial port (primary)

pR&E= xlanchen@ustc.edu.cn http://staff.u0117401: Operating System EMERST/RIEE May 22,2019 6/54

/O Control Methods

@ Polling (#i87530)

@ Interrupts (FEFA)

© DMA (DMABR)

Q E#HL: AEEERIHTS

p&&= xlanchen@ustc.edu.cn http://staff.ud117401: Operating System #2{EZRFt[RIEEE May 22, 2019 7/54

Outline

@ /0 Hardware and I/0 control methods
® Polling (%if753\)

pFE= xlanchen@ustc.edu.cn http://staff.u0117401: Operating System #5

Polling (#2185 T0)
@ Need handshaking (I&¥F)
@ State of device

@ command-ready

* In command register
* 1: a command is available for the controller

©Q busy

* In status register
* 0: ready for the next command; 1: busy

© Error
* To indicate whether an 1/0O is ok.

p&&= xlanchen@ustc.edu.cn http://staff.ud117401: Operating System #2{EZRFt[RIEEE May 22, 2019 9/54

Polling (#18752)
@ Basic handshaking notion for writing output

@ Host repeatedly reads the busy bit until it is 0

@ Host sets write bit in command register and writes a byte into
data-out register

© Host sets command-ready bit

© When controller notices command-ready bit, it sets busy bit

© Controller gets write command and data, and works

@ Controller clears command-ready bit, error bit and busy bit

@ Step1: Busy-wait cycle to wait for I/0O from device
=busy-waiting=polling

pR&E= xlanchen@ustc.edu.cn http://staff.u0117401: Operating System EMERST/RIEE May 22,2019 9/54

Outline

@ /0 Hardware and I/0 control methods

@ Interrupts (FEFA)

pFE= xlanchen@ustc.edu.cn http://staff.u0117401: Operating System #5

Interrupts (PR Z)

@ CPU Interrupt-request line triggered by 1/0 device

@ Interrupt handler receives interrupts
@ Basic interrupt scheme
» Raise — Catch — Dispatch — Clear

| 8259
master

CPU

Devices |::> —

—1 8259
— slave

(O

p&&= xlanchen@ustc.edu.cn http://staff.ud117401: Operating System #2{EZRFt[RIEEE

May 22, 2019

11/54

Interrupts (PR Z)

CPU 1/0 controller
1

—> device driver initiates /0 \ZA
initiates 1/0

CPU executirl19 checks for

interrupts between instructions 3
Y
CPU receiving interrupt, 4 input ready, output
transfers control to complete, or error
interrupt handler generates interrupt signal
5
7 interrupt handler

processes data,
returns from interrupt

6

CPU resumes
L processing of
interrupted task

Figure: Interrupt-Driven I/O Cycle

&= xlanchen@ustc.edu.cn http://staff.u0117401: Operating System E{EFRS/RIE.

May 22, 2019

11/54

Interrupts (PR Z)

@ More sophisticated interrupt-handling features:
Most CPU have two interrupt request lines.
@ Nonmaskable
@ Maskable to ignore or delay some interrupts
e Efficient dispatching without polling the devices
» Interrupt vector: to dispatch interrupt to correct handler
» Interrupt chaining: to allow more device & more interrupt
handlers
@ Distinguish between high- and low-priority interrupts:
» Interrupt priority: the handling of low-priority interrupts is
deferred without masking, even preempted.

@ Interrupt mechanism also used for exceptions

pR&E= xlanchen@ustc.edu.cn http://staff.u0117401: Operating System EMERST/RIEE May 22, 2019 11/54

Interrupts (KA 0)

@ Example: Intel Pentium Processor Event-Vector Table

vector vector
description description
number number
0 divide error 1 segment no present
1 debug exception 12 stack fault
2 null interrupt 13 general protection
3 breakpoint 14 page fault
4 INTO-detected overflow 15 (Intel reserved, do not use)
5 bound range exception 16 floating-point error
6 invalid opcode 17 alignment check
7 device not available 18 machine check
8 double fault 19-31 (Intel reserved, do not use)
9 coprocessor segment overrun (reserved) 32-255 maskable interrupts
10 invalid task state segment

fEE= xlan

n@ustc.edu.cn http://staff.ud117401: Operating System R{ERFRIEE

May 22, 2019

11/54

Outline

@ /0 Hardware and I/0 control methods

@ Direct Memory Access (DMAF ()

pFE= xlanchen@ustc.edu.cn http://staff.u0117401: Operating System #5

Direct Memory Access (DMABGT)

@ Direct Memory Access (DMAJB):
Used to avoid programmed I/O for large data movement,
and bypasses CPU to transfer data directly between 1/0
device and memory
@ Requires DMA controller
» the host prepares a DMA command block in memory
* a pointer to the source of a transfer
* a pointer to the destination of the transfer
* a count of the number of bytes to be transfered
» CPU writes the address of the DMA command block to DMA
controller, and then goes on with other work.

pR&E= xlanchen@ustc.edu.cn http://staff.u0117401: Operating System EMERST/RIEE May 22, 2019 13/54

Direct Memory Access (DMAF)
@ Handshaking between DMA controller & device controller

@ Device controller raises DMA-request when one word is
available

© DMA controller seizes memory bus, places the desired
address on memory-address wires, and raises
DMA-acknowledge

© Device controller transfers the word to memory, and removes
the DMA-request signal. Goto 1

© DMA controller interrupts the CPU.

pR&E= xlanchen@ustc.edu.cn http://staff.u0117401: Operating System EMERST/RIEE May 22, 2019 13/54

Direct Memory Access (DMAF)
@ Six Steps in a DMA transfer

1. device driver is told
to transfer disk data to CPU
buffer at address X.

2. device driver tells disk
controller to transfer C
bytes from disk to buffer cache

5. DMA controller
transfers bytes to buffer
X, increasing memory
address and at address X
decreasing C until C=0 DMA/bus/

6. when C=0, DMA interrupt)CPU memory bus- memor})(

interrupts CPU to signal controller
transfer completion I
(I ! PCI bus)

‘ 3. disk controller initiates
IDE disk DAM transfer
controller 4. disk controller sends each

ggbmmmm

@ Cycle stealing: when DMA seizes the memory bus, CPU is
momentarily prevented from accessing main memory

&= xlanchen@ustc.edu.cn http://staff.u0117401: Operating System E{EFRS/RIE. May 22, 2019 13/54

Outline

@ /0 Hardware and I/0 control methods

@ |/O hardware summary

fFE= xlanchen@ustc.edu.cn http://staff.ud117401: Operating System Z(FRG/REE

I/O hardware summary

@ Abus
@ A controller
@ An 1/O port and its registers

@ The handshaking relationship between the host and a device
controller

@ The execution of this handshaing in a pooling loop via
interrupts

@ the offloading of this work to a DMA controller for large
transfer

pR&E= xlanchen@ustc.edu.cn http://staff.u0117401: Operating System EMERST/RIEE May 22, 2019 15/54

Outline

@ Application I/0 Interface
@ Block and Character Devices
@ Network Devices
@ Clocks and Timers
@ Blocking (PEZE) and Nonblocking (IEFEZE) I/O

pE&= xlanchen@ustc.edu.cn http://staff.ud117401: Operating System #2{EZRFt/RIEE May 22, 2019 16/54

I/O control challenges

@ Two challenges
Applications — OS < Devices
» How can the OS give a convenient, uniform 1/0 interface to
applications?
» How can the OS be designed such that new devices can be
attached to the computer without the OS being rewritten?

pR&E= xlanchen@ustc.edu.cn http://staff.u0117401: Operating System EMERST/RIEE May 22, 2019 17/54

I/O control challenges

@ Device-driver Layer hides differences among device
controllers from the 1/O subsystem of the kernel

kernel
<4
S kernel I/O subsystem
3
SCISI | keyboard| mouse PCl bus | floppy ATAPI
device | device | device 000 device | device | device
driver driver driver driver driver driver
SCISI | keyboard| mouse PCl bus | floppy ATAPI
device | device | device o oo device | device | device
@ | controller | controller| controller controller| controller| controller
5
3
I T T T
< ATAPI
scsi floppy- || devices
dovi keyboard| | mouse LY PCl bus disk (disks,
evices devices tapes,
drives)

Figure: A Kernel 1/O Structure

fEE= xlan

n@ustc.edu.cn http://staff.u0117401: Operating System #Z2{ERS/RIE.

May 22, 2019

17/54

Application 1/O Interface

@ 1/0 system calls encapsulate the behavior of devices in a few
generic classes that hide HW differences from APPs. J

o iREMIME (7] : MARREFSERIMWIERETX.

@ Devices vary in many dimensions
Character-stream or block
Sequential or random-access
Sharable or dedicated

Speed of operation

read-write, read only, or write only

vV vy vy VvYyy

pR&E= xlanchen@ustc.edu.cn http://staff.u0117401: Operating System EMERST/RIEE May 22, 2019 18/54

Characteristics of 1/O Devices

’ aspect ‘ variation ‘ example
data-transfer mode | character terminal
block disk
access method sequential modem
random CD-ROM
transfer schedule synchronous tape
asynchronous keyboard
sharing dedicated tape
sharable keyboard
device speed latency
seek time
transfer rate
delay between operations
I/O direction read only CD-ROM
write only graphics controller
read-write disk

pR&E= xlanchen@ustc.edu.cn http://staff.u0117401: Operating System EMERST/RIEE

May 22, 2019

19/54

Major Device Access Conventions

@ Block I/O

@ Character-stream 1/0

@ Memory-mapped file access
@ Network sockets

@ Clock and Time

p&&= xlanchen@ustc.edu.cn http://staff.ud117401: Operating System #2{EZRFt[RIEEE May 22, 2019 20/54

Outline

@ Application I/0 Interface
@ Block and Character Devices

pFE= xlanchen@ustc.edu.cn http://staff.u0117401: Operating System #5

Block and Character Devices

@ Block devices include disk drives

» Commands include read, write, seek
» Raw I/O or file-system access
» Memory-mapped file access possible

@ Character devices include keyboards, mice, serial ports

» Commands include get, put
» Libraries layered on top allow line editing

pR&E= xlanchen@ustc.edu.cn http://staff.u0117401: Operating System EMERST/RIEE May 22,2019 22/54

Outline

@ Application I/0 Interface

@ Network Devices

fFE= xlanchen@ustc.edu.cn http://staff.ud117401: Operating System Z(FRG/REE

Network Devices

@ Varying enough from block and character to have own
interface

@ Unix and Windows NT/9x/2000 include socket interface
Separates network protocol from network operation
Server — socket, bind, listen, accept

Client — socket, connect

Includes select functionality

@ Approaches vary widely (pipes, FIFOs, streams, queues,
mailboxes)

vV vy VvYy

pR&E= xlanchen@ustc.edu.cn http://staff.u0117401: Operating System EMERST/RIEE May 22,2019 24/54

Outline

@ Application I/0 Interface

@ Clocks and Timers

fFE= xlanchen@ustc.edu.cn http://staff.ud117401: Operating System Z(FRG/REE

Clocks and Timers

@ Provide current time, elapsed time, timer

@ Hardware clocks
@ Real Time Clock (RTC, SA3HTHh)
@ Time Stamp Counter (TSC, BIEIEEiT44ES)
© Programmable Interval Timer (PIT, Al4{RIZEIIEERER)
* used for timings, periodic interrupts

@ ioctl (on UNIX) covers odd aspects of /0 such as clocks and
timers

pE&= xlanchen@ustc.edu.cn http://staff.ud117401: Operating System #2{EZRFt/RIEE May 22, 2019 26/54

Clocks and Timers

© Real Time Clock (RTC, SERIAT4H)

» Integrated with CMOS RAM, always tick.
Seconds from 00:00:00 January 1, 1970 UTC
» Can be used as an alarm clock

* |IRQ8

* Interrupt frequency: 2HZ~8192HZ
I/O address (port no): 0x70, 0x71
Example:

* Motorola 146818: CMOS RAM + RTC
Second+ year, month, date, week HOW?

v

v

v

v

pR&E= xlanchen@ustc.edu.cn http://staff.u0117401: Operating System EMERST/RIEE May 22,2019 26/54

Clocks and Timers

@ Time Stamp Counter (TSC, BJEEEi+E428)
» 64bit TSC register in the processor
* Pentium and after

» Incremented at each clock signal on CLK input pin
* example: CPU frequency 400MHZ
adds 1 per 2.5 ns = adds 400 x 10° per second
» Instruction: rdtsc
» How to know CPU frequency?

pR&E= xlanchen@ustc.edu.cn http://staff.u0117401: Operating System EMERST/RIEE May 22,2019 26/54

Clocks and Timers

© Programmable Interval Timer (PIT, Al4RiZEIIEERES)

» 8253, 8254
» Issues time interrupt in a programmable time internal
» Can also be used to calculate processor frequency during boot
up.
» 8253
* 14,3178 MHz crystal =4,772,727 Hz system clock =1,193,180

Hz to 8253
* using 16 bit divisor = interrupt every 838 ns ~ 54.925493 ms

pR&E= xlanchen@ustc.edu.cn http://staff.u0117401: Operating System EMERST/RIEE May 22,2019 26/54

Outline

@ Application I/0 Interface

@ Blocking (BEZE) and Nonblocking (FFFEZE) I/O

pE&= xlanchen@ustc.edu.cn http://staff.ud117401: Operating System #2{EZRFt/RIEE May 22, 2019 27/54

Blocking (fBZE) and Nonblocking (FEFEZE) I/O

@ Blocking (PHZE) — process suspended until I/O completed

» Easy to use and understand
» Insufficient for some needs

@ Nonblocking (JEFEZE) — I/O call returns as much as available

User interface, data copy (buffered 1/0)

» Implemented via multi-threading

» Returns quickly with count of bytes read or written

» Asynchronous (5545) — process runs while I/O executes
* Difficult to use
* 1/0 subsystem signals process when 1/0 completed

v

pR&E= xlanchen@ustc.edu.cn http://staff.u0117401: Operating System EMERST/RIEE May 22,2019 28/54

Two I/O Methods

user

kernel

hardware

pRE= xlanchen@ustc.edu.cn http://staff.ud117401: Operating System #E{FRS/RIE

Requesting process

device driver
waiting

Interrupt handler

Hardware

data transfer

time —>

(a)
Synchronous

user

kernel

hardware

? Requesting process

device driver

Interrupt handler

Hardware
data transfer

time —>

(b)

Asynchronous

May 22, 2019

29/54

Outline

© Kernel I/0 Subsystem

I/O Scheduling

Buffering (ZZiF#/1H)

Caching, Spooling & device reservation
Error Handling

I/O Protection

Kernel Data Structures

pR&E= xlanchen@ustc.edu.cn http://staff.u0117401: Operating System EMERST/RIEE May 22,2019 30/54

Kernel 1/O Subsystem Services

@ Kernel 1/0 Subsystem Services

@ 1/0 Scheduling

© Buffering

© Caching

© Spooling

© Device reservation
@ Error handling

p&&= xlanchen@ustc.edu.cn http://staff.ud117401: Operating System #2{EZRFt[RIEEE May 22, 2019 31/54

Outline

© Kernel I/0 Subsystem
@ |/0O Scheduling

fFE= xlanchen@ustc.edu.cn http://staff.ud117401: Operating System Z(FRG/REE

1/O Scheduling

@ 1/0 scheduling:
To schedule a set of I/O requests means to determine a
good order in which to execute them
» Origin order: the order in which applictions issue system calls:
May NOT the best order!
» Scheduling can
* Improve overall system performance
* Share device access fairly among processes
* Reduce the average waiting time for I/O to complete
» Example: Disk read request from Apps.
App1: 0; App2: 100; App3: 50;
Now at 100;
The OS may serve the applications in the order App2, App3,

App1.

pR&E= xlanchen@ustc.edu.cn http://staff.u0117401: Operating System EMERST/RIEE May 22,2019 33/54

1/O Scheduling
@ OS maintaining a wait queue of request for each device
» Device-status Table

device: card reader 1
status: idle
device: line printer 3 request for -j.
status: busy line printer
address: 38546
device: disk unit 1 length: 1372
status: idle
device: disk unit 2
status: idle
device: disk unit 3 1
status: busy =T request for =| request for —
disk unit 3 disk unit 3
file: xxx file: yyy
operation: read operation: write
address: 43046 address: 03458
length: 20000 length: 500

» 1/O scheduling,
Some OSes try fairness, some not

pR&E= xlanchen@ustc.edu.cn http://staff.u0117401: Operating System EMERST/RIEE May 22, 2019

33/54

1/O Scheduling

@ Another way to improve performance is by using storage
space in main memory or on disk
> Buffering (&RiFH/LiH)
» Caching
» Spooling

p&&= xlanchen@ustc.edu.cn http://staff.ud117401: Operating System #2{EZRFt[RIEEE May 22, 2019 33/54

Outline

© Kernel I/0 Subsystem

@ Buffering (& h#14l)

pE&= xlanchen@ustc.edu.cn http://staff.ud117401: Operating System #2{EZRFt/RIEE

Buffering (Z2)4#15)
o Buffering (¢E#Hl)

» Buffer — A memory area that stores data while they are
transferred between two devices or between a device and an
application

» Store data in memory while transferring between devices

@ Why buffering?

@ To cope with device speed mismatch.
Example: Receive a file via modem and store the file to local
hard disk.

* Speed: The modem is about a thousand times slower than the
hard disk.
* Two buffers are used.

pR&E= xlanchen@ustc.edu.cn http://staff.u0117401: Operating System EMERST/RIEE May 22,2019 35/54

Buffering (Z2)4#15)
o Buffering (¢E#l)

» Buffer — A memory area that stores data while they are
transferred between two devices or between a device and an
application

» Store data in memory while transferring between devices

@ Why buffering?
@ To cope with device transfer size mismatch.
Example: Send/receive a large message via network.
* At sending side: the large message is fragmented into small
network packets.

* At receiving side: the network packets are placed in a reasembly
buffer.

pR&E= xlanchen@ustc.edu.cn http://staff.u0117401: Operating System EMERST/RIEE May 22,2019 35/54

Buffering (Z2)4#15)
@ Buffering (¢E#l)

» Buffer — A memory area that stores data while they are
transferred between two devices or between a device and an
application

» Store data in memory while transferring between devices

@ Why buffering?
© To maintain “copy semantics”
Example: When write() data to disk, it first copy the data from
application’ s buffer to a kernel buffer.

pR&E= xlanchen@ustc.edu.cn http://staff.u0117401: Operating System EMERST/RIEE May 22,2019 35/54

Buffering (Z2)4#15)

@ Sun Enterprise 6000 Device-Transfer Rates

gigaplane
bus
SBUS |———
SCS! bus H
fast
ethernet
hard disk %
cthormot S ——
laser
printer
o w
mouse
keyboard H
0 0.01 01 1 10 100 S S
§EEEE
~ S
= N&

pRE= xlanchen@ustc.edu.cn http://staff.ud117401: Operating System Z(FRG/REE

Buffering (Z2)4#15)
@ Single buffer (Ba4Erh)

» APP.workspace +——— 95 ™), o5 buffer <22 T, Device

» Suppose the computing time of APP is T,
if current Tc can parallel with the next T,
We have Taverage - maX (Tc, TT) + TM

user APP [N
Compute (T¢)

oS t;ansfer buffer device input Y® dlavic
M

Tr
pevice T R L To4
APP Tcl Tcl Tcl

pR&E= xlanchen@ustc.edu.cn http://staff.u0117401: Operating System EMERST/RIEE May 22,2019 35/54

Buffering (&% 4/1l)
@ Double buffer (&)
> ~max(Tc, Tr); EERAN (Tc <Ir) HEEETE (Tc > Tr)

Use
Compute (T¢)
welo -

Device Tr1 (buffer 1) T2 (buffer 2) T3 (buffer 1)
os .TM_l.
APP 1 t

pR&E= xlanchen@ustc.edu.cn http://staff.u0117401: Operating System EMERST/RIEE May 22,2019 35/54

Buffering (Z2)4#15)
@ Double buffer (&)

» Another usage of single buffer and double buffers: in
communication between two machines
machine A machine B

machine A machine B

Send Receive

Buffer Buffer

Buffer D D Buffer Receive Send
Buffer Buffer

single buffer

&= xlanchen@ustc.edu.cn http://staff.u0117401: Operating System E{EFRS/RIE. May 22,2019 35/54

Buffering (&% 4/1l)

© Circular buffer (fFIREH)
» Multiple (types of) buffers + multiple buffer pointers

* Empty buffers and Next;
Full buffers and Nextg;
the current buffer in consumption

» Similar to the PC problem.
© Buffer pool (&Erhith)
> BI=M, ZEPXEEAN
» NIEEERPXFIRER: REAHRIE

pR&E= xlanchen@ustc.edu.cn http://staff.u0117401: Operating System EMERST/RIEE May 22,2019 35/54

Outline

© Kernel I/0 Subsystem

@ Caching, Spooling & device reservation

pFE= xlanchen@ustc.edu.cn http://staff.u0117401: Operating System #5

Caching, Spooling & device reservation

@ Caching - fast memory holding copy of data
» Always just a copy
» Key to performance

@ Spooling - hold output for a device

» Dedicated device can serve only one request at a time

» Spooling is a way of dealing with 1/O devices in a
multiprogramming system

» Example: Printing

© Device reservation - provides exclusive access to a device

» System calls for allocation and deallocation
» Watch out for deadlock

pR&E= xlanchen@ustc.edu.cn http://staff.u0117401: Operating System EMERST/RIEE May 22,2019 37/54

Spooling
@ Out-line 1/0 (B#/llI/0), (EFASMEHN (peripheral machine)

Input peripheral

evies machine .
B E i peripheral Output
SI= machine device
FA—

@ SPOOL:
Simultaneous Peripheral Operation On-Line
(GNERIRBERHLFHTIRME, (ERARHN)

» Dedicated device — sharable device
» Using processes of multiprogramming system

pR&E= xlanchen@ustc.edu.cn http://staff.u0117401: Operating System EMERST/RIEE May 22,2019 38/54

Spooling
e SPOOL:

Simultaneous Peripheral Operation On-Line

(GMERIRBBERNFATIRIE, (RAHN)

» Structure

*

* % %

Input-well (BIAF), output-well (EEHF)
Input-buffer, output-buffer
Input-process SP;,, output-process SPout
Requested-queue

SPin | SPout

Input device

™[Input buffer |

Output device

p&&= xlanchen@ustc.edu.cn http://staff.ud117401: Operating System #2{EZRFt[RIEEE

Input-well

|
/4 Output buffer Output-well
memory disk
May 22, 2019

38/54

Outline

© Kernel I/0 Subsystem

@ Error Handling

fFE= xlanchen@ustc.edu.cn http://staff.ud117401: Operating System Z(FRG/REE

Error Handling

@ OS can recover from disk read, device unavailable, transient
write failures

» Example: read() again, resend(), ..., according to some
sepecified rules

@ Most return an error number or code when I/O request fails
@ System error logs hold problem reports

pR&E= xlanchen@ustc.edu.cn http://staff.u0117401: Operating System EMERST/RIEE May 22,2019 40/54

Outline

© Kernel I/0 Subsystem

@ |/O Protection

fFE= xlanchen@ustc.edu.cn http://staff.ud117401: Operating System Z(FRG/REE

I/O Protection |

@ User process may accidentally or

purposefully attempt to disrupt
normal operation via illegal 1/0 1 kernel
instructions rapto. 2
@ To prevent users from periorm 0
performing illegal 1/0 5
» All 1/0 instructions defined to return
be privileged 5 to user
» 1/O must be performed via - systemalin user
system calls : program
* Memory-mapped and I/O port
memory locations must be
protected too Use of a System Call to Perform

I/O

pRE= xlanchen@ustc.edu.cn http://staff.ud117401: Operating System #E{FRS/RIE May 22,2019 42/54

Outline

© Kernel I/0 Subsystem

@ Kernel Data Structures

fFE= xlanchen@ustc.edu.cn http://staff.ud117401: Operating System Z(FRG/REE

Kernel Data Structures

@ Kernel keeps state info for I/O components, including
» open file tables,
» network connections,
» character device state

@ Many, many complex data structures to track buffers,
memory allocation, “dirty” blocks

@ Some use object-oriented methods and message passing to
implement 1/0

pR&E= xlanchen@ustc.edu.cn http://staff.u0117401: Operating System EMERST/RIEE May 22,2019 44/54

Kernel Data Structures

@ Example: UNIX I/O Kernel Structure

per-process
open-file table

file descriptor

user-process memory

system-wide open-file table active-inodg
table
file-system record 1
inode pointer
pointer to read and write functions
pointer to select function
pointer to ioctl function
pointer to close function network-
information|
. table
networking (socket) record]l
pointer to network info
pointer to read and write functions
pointer to select function
pointer to ioctl function
pointer to close function
kernel memory
May 22,2019 44/54

fEE= xlan

ustc.edu.cn http://staff.ud117401: Operating System #{EZR SR

Outline

e Transforming I/O Requests to Hardware Operations

pFE= xlanchen@ustc.edu.cn http://staff.u0117401: Operating System #5

I/O Requests to Hardware Operations

@ Consider reading a file from disk for a process:
@ Determine device holding file
@ Translate name to device representation
© Physically read data from disk into buffer
© Make data available to requesting process
© Return control to process

pR&E= xlanchen@ustc.edu.cn http://staff.u0117401: Operating System EMERST/RIEE May 22,2019 46/54

The Typical Life Cycle of An I/O Request

fEE= xlan

user
Request I/0 process
T
system call
kernel

can already
satisfy request?

1/0 subsystem

send request to device
driver, block process if
appropriate

]

process request, issue

commands to controller,
configure controller to
block until interrupted

device-controller commands

monitor device
interrupt when I/O

1/0 completed,
input data available, or
output completed

I

transfer data
(if appropriate) to process,
return conmpletion
or error code

completed

kernel
1/0 sub-
system
devi determine which 1/0
deY'Ce completed, indicate state
river change to I/O subsystem
receive interrupt, store
interrupt | data in device-driver buffer
handler if input, sign to unblock
device driver
T
interrupt
.
device
controller 1/0 completed,
generate interrupt
time

>

n@ustc.edu.cn http://staff.ud117401: Operating System R{ERFRIEE

May 22, 2019

47/54

Outline

© Performance

pRE= xlanchen@ustc.edu.cn http://staff.ud117401: Operating System

Performance

@ |/0 is a major factor in system performance:
Demands CPU to execute device driver, kernel I/0 code
Context switches due to interrupts

Data copying

Network traffic especially stressful

v

v vy

pR&E= xlanchen@ustc.edu.cn http://staff.u0117401: Operating System EMERST/RIEE May 22,2019 49/54

Intercomputer Communications

character
typed system call
completes
gl
interrupt interrupt
generated handled

interrupt interrupt
handled generated
<netw_°rl%>
device network
driver adapter
kernel device
driver

=

xX|<

g

S|z

user context Pl
process | switch

sending system

network
adapter

Interrupt
generated

Networ
a higl

network

. ‘ subdaemon

%<
]
x
z

gontex

network |conte:
daemon | switch i ‘

receiving system

&= xlanchen@ustc.edu.cn http://staff.u0117401: Operating System E{EFRS/RIE.

May 22, 2019

k traffic can also cause
n context-switch rate

50/54

Improving Performance

@ Reduce number of context switches

© Reduce data copying

© Reduce interrupts by using large transfers, smart controllers,
polling

Q@ Use DMA

© Move processing primitives into hardware

© Balance CPU, memory, bus, and I/O performance for highest
throughput

pR&E= xlanchen@ustc.edu.cn http://staff.u0117401: Operating System EMERST/RIEE May 22,2019 51/54

Device-Functionality Progression

Where should the
I/0O functionality new algorithm

be implemented?

application code

|
4

kernel code

device-driver code

increased efficiency

device-controller code (hardware)

increased abstraction
increased flexibility

device code (hardware)

< increased development cost ‘

<
\

< increased time (generations)

<

pR&E= xlanchen@ustc.edu.cn http://staff.u0117401: Operating System EMERST/RIEE May 22,2019 52/54

Outline

O &

pRE= xlanchen@ustc.edu.cn http://sta 117401: Operating System %

\zE

6'5'0 Hardware and I/O control methods

@ Polling #iEAR)

@ Interrupts (/5)

@ Direct Memory Access (DMAFT)

@ 1/O hardware summary
e Application 1/O Interface

@ Block and Character Devices

@ Network Devices

@ Clocks and Timers

@ Blocking (BEZE) and Nonblocking (FFFEZE) I/O
© Kernel I/0 Subsystem
I/O Scheduling
Buffering (4&/9#/1)
Caching, Spooling & device reservation
Error Handling
I/O Protection
Kernel Data Structures

2 Transforming I/O Requests to Hardware Operations
pR&E= xlanchen@ustc.edu.cn http://staff.u0117401: Operating System EMERST/RIEE May 22,2019 54/54

	I/O Hardware and I/O control methods
	Polling (轮询方式)
	Interrupts (中断方式)
	Direct Memory Access (DMA方式)
	I/O hardware summary

	Application I/O Interface
	Block and Character Devices
	Network Devices
	Clocks and Timers
	Blocking (阻塞) and Nonblocking (非阻塞) I/O

	Kernel I/O Subsystem
	I/O Scheduling
	Buffering (缓冲机制)
	Caching, Spooling & device reservation
	Error Handling
	I/O Protection
	Kernel Data Structures

	Transforming I/O Requests to Hardware Operations
	Performance
	小结

