0117401: Operating System
BMERFIRESIRT

Chapter 5: CPU scheduling

fFE=
xlanchen@ustc.edu.cn
http://staff.ustc.edu.cn/~xlanchen

Computer Application Laboratory, CS, USTC @ Hefei
Embedded System Laboratory, CS, USTC @ Suzhou

March 27, 2019

p&&= xlanchen@ustc.edu.cn http://staff.ud117401: Operating System #2{EZRFt[RIEEE March 27, 2019 1/68

o4 1

AT IEHMBARNTIIER,
EERE EXYIERERE.

AEmRE HFFTHIE,

pE&= xlanchen@ustc.edu.cn http://staff.ud117401: Operating System #2{EZRFt/RIEE March 27, 2019 2/68

Chapter Objectives
@ To introduce CPU scheduling.
@ To describe various CPU-scheduling algorithms.

@ To discuss evaluation crieria for selecting a CPU-scheduling
algorithm for a particular system.

pR&E= xlanchen@ustc.edu.cn http://staff.u0117401: Operating System EMERST/RIEE March 27,2019 3/68

1249——CPU scheduling
@ Basic Concepts

@ Sscheduling Criteria

e Scheduling Algorithms

@ Multiple-Processor Scheduling
© Real-Time Scheduling

@ 05 examples

@ Algorithm Evaluation

Q &

p&&= xlanchen@ustc.edu.cn http://staff.ud117401: Operating System #2{EZRFt[RIEEE March 27,2019 4/68

Outline

@ Basic Concepts
@ CPU-1/0O Burst Cycle
@ CPU Scheduler
@ Preemptive Scheduling
@ Dispatcher

pE&= xlanchen@ustc.edu.cn http://staff.ud117401: Operating System #2{EZRFt/RIEE March 27, 2019 5/68

Basic Concepts

@ Scheduling is a fundamental OS function.

Almost all computer resources are scheduled before use.
CPU scheduling is the basis of multiprogrammed OSes.

Objective of multiprogramming
@ Maximum CPU utilization

pE&= xlanchen@ustc.edu.cn http://staff.ud117401: Operating System #2{EZRFt/RIEE March 27, 2019 6/68

Outline

@ Basic Concepts
@ CPU-I/O Burst Cycle

pFE= xlanchen@ustc.edu.cn http://staff.u0117401: Operating System #5

Basic Concepts: CPU-1/O Burst Cycle

@ A property of process :
CPU-1/0 Burst Cycle

@ Process execution consists of a load store
cycle of CPU execution and 1/O add store CPU burst

read from file

wait
@ Alternating Sequence of CPU And /O burst
|/O BUI’StS store increment
i : index CPU burst
@ Begin and end with a CPU burst write to file
@ Process execution 1/0 burst
= n (CPU execution + /0 wait) load store
+ CPU execution add store CPU burst

read from file

wait for I/O 1/0 burst

pR&E= xlanchen@ustc.edu.cn http://staff.u0117401: Operating System EMERST/RIEE March 27,2019 8/68

CPU burst distribution

160

140 A

120 l
100 l
I
|

[e]
o

frequency

(2]
o

N S
o o
-

0 8 16 24 32 40
burst duration (milliseconds)

Histogram of CPU-burst Times

p&&= xlanchen@ustc.edu.cn http://staff.ud117401: Operating System #2{EZRFt[RIEEE March 27, 2019 9/68

Outline

@ Basic Concepts

@ CPU Scheduler

fFE= xlanchen@ustc.edu.cn http://staff.ud117401: Operating System Z(FRG/REE

CPU Scheduler

@ CPU scheduler (Short-term Scheduler)
selects a process from the processes in memory that are
ready to execute and allocates the CPU to the process

@ Ready Queue could be:
» a FIFO Queue?
» a priority queue?
» atree?
» an unordered linked list?

pR&E= xlanchen@ustc.edu.cn http://staff.u0117401: Operating System EMERST/RIEE March 27, 2019 11/68

Outline

@ Basic Concepts

@ Preemptive Scheduling

fFE= xlanchen@ustc.edu.cn http://staff.ud117401: Operating System Z(FRG/REE

Preemptive Scheduling |

@ CPU scheduling decisions may take place when a process:
@ Switches from new to ready state
@ Switches from running to ready state
© Switches from waiting to ready state
© Switches from running to waiting state
© Terminates

For 4 & 5, must schedule;
For 1 & 2 & 3, schedule? VS. not schedule?

(2)interrupt terminated

scheduler dispatch

(3)I/0 or event
completion

(4)1/0 or event
wait

pR&E= xlanchen@ustc.edu.cn http://staff.u0117401: Operating System EMERST/RIEE March 27, 2019 13/68

Preemptive Scheduling I

Two scheduling scheme:

©@ nonpreemptive(IEI2HTU): only 4 & 5
» Windows 3.x
» before Mac OS X

© otherwise preemptive(i£5z)
» Windows 95 & ...

» Mac OS X
» usually needs a hardware timer, synchronization overhead

Two processes sharing data

@ If one process is preempted while it is updating the data,
data is in an inconsistent(A—%{) state

pR&E= xlanchen@ustc.edu.cn http://staff.u0117401: Operating System EMERST/RIEE March 27, 2019 14/68

Preemptive Scheduling Il

COST for preemption

@ needs special HW, for example, a timer.
@ synchronization overhead with shared data.

pE&= xlanchen@ustc.edu.cn http://staff.ud117401: Operating System #2{EZRFt/RIEE March 27, 2019 15/68

Preemption of the OS kernel

@ What happens if the process is preempted in the middle of
some activities that changes important kernel data?

o preemptive kernel VS. nonpreemptive kernel?
@ Interrupt affected code VS normal kernel code?

@ new mechnisms are needed, such as

» disable interrupt
» some synchronization mechnisms

pR&E= xlanchen@ustc.edu.cn http://staff.u0117401: Operating System EMERST/RIEE March 27, 2019 16/68

Outline

@ Basic Concepts

@ Dispatcher

fFE= xlanchen@ustc.edu.cn http://staff.ud117401: Operating System Z(FRG/REE

Dispatcher

@ Dispatcher module gives control of the CPU to the process
selected by the cpu scheduler; this involves:
@ switching context
@ switching to user mode
© jumping to the proper location in the user program to
continue the execution of that program

@ Dispatch latency — time it takes for the dispatcher to stop
one process and start another running
> tSHOULD be as fast as possible

even response to event

response interval

process made

interrupt available .
processing real-time
le——— dispatch latency —— process

executing

re— conflicts —>|<— dispatch ——

[xlanchen@ustc.edu.cn http://staff.u0117401: Operating System E#{ERFH/RIE. March 27,2019 18/68

Outline

@ Sscheduling Criteria
@ Scheduling Criteria

fFE= xlanchen@ustc.edu.cn http://staff.ud117401: Operating System Z(FRG/REE

Outline

@ Sscheduling Criteria
@ Scheduling Criteria

fFE= xlanchen@ustc.edu.cn http://staff.ud117401: Operating System Z(FRG/REE

Scheduling Criteria

@ CPU utilization (CPU FIFE=)
@ Throughput (FI1X)

© Turnaround time (BiLHTE))
Q Waiting time (Z13At78))

© Response time (aRzATE])

pR&E= xlanchen@ustc.edu.cn http://staff.u0117401: Operating System EMERST/RIEE March 27,2019 21/68

Scheduling Criteria
@ CPU utilization (CPU FJFH=)- keep the CPU as busy as

possible
» conceptually: 0% ~ 100%; in a real system: 40% ~ 90%

AiZBEAEMIFELINnUXPIIZATRICPUFIFRZRIER (0-7, &)
@ Throughput (FIX)
© Turnaround time (FE#&RTE)
0 Waiting tlme (’=’€1='=E‘JIEH)

I
fRE= xlanchen@ustc edu cn http //staff uO1 1 7401 Operatlng System IERGFRIBE

Scheduling Criteria

@ CPU utilization (CPU FJFE=R)
@ Throughput (FITE)- # of processes that complete their
execution per time unit

» different from one process set to another process set
» for long processes: may be 1 process per hour
» for short transactions: may be 10 processes per second

© Turnaround time (JE#EATE])
Q Waiting time (Z4301]3)
© Response time (IiFzAE])

pR&E= xlanchen@ustc.edu.cn http://staff.u0117401: Operating System EMERST/RIEE March 27,2019 21/68

Scheduling Criteria

@ CPU utilization (CPU FIF=)
@ Throughput (FI1=R)
© Turnaround time (F4&RT[E]))- amount of time to execute a

particular process

» from the time of submission of a process to the time of
completion
= the periods spent waiting to get into memory, waiting in
the ready queue, executing on the CPU, and doing 1/0.

© Waiting time (Z4301]3)
© Response time (IiRzA/E])

[xlanchen@ustc.edu.cn http://staff.u0117401: Operating System #E{FRG/RIEE March 27,2019 21/68

Scheduling Criteria

@ CPU utilization (CPU FIFER)
@ Throughput (FItXR)
© Turnaround time (FEERE])

© Waiting time (Z4FH(8]))- amount of time a process has been
waiting in the ready queue

© Response time (IiRzAF(AE])

pR&E= xlanchen@ustc.edu.cn http://staff.u0117401: Operating System EMERST/RIEE March 27,2019 21/68

Scheduling Criteria

@ CPU utilization (CPU FIFE=)

@ Throughput (FI=)

© Turnaround time (EiLATE])

Q Waiting time (&£50a))

© Response time (I[RZET(E))- amount of time it takes from
when a request was submitted until the first response is

produced, not output
» for time-sharing environment

pR&E= xlanchen@ustc.edu.cn http://staff.u0117401: Operating System EMERST/RIEE March 27,2019 21/68

Optimization Criteria

@ Maximize?
» CPU utilization
» throughput
@ Minimize?
» turnaround time
» waiting time
» response time
@ Average?

o Stability?

different from system to system. J

pE&= xlanchen@ustc.edu.cn http://staff.ud117401: Operating System #2{EZRFt/RIEE March 27, 2019 22/68

Outline

e Scheduling Algorithms

FCFS(5c3k5thR3%) Scheduling

SIFGEELALSE) Scheduling

Priority Scheduling

Round Robin(AJjE)F#4%) Scheduling

Multilevel Queue (Z%4%BA%!) Scheduling

Multilevel Feedback Queue (Z%&iEISI) Scheduling

[xlanchen@ustc.edu.cn http://staff.u0117401: Operating System #E{FRG/RIEE March 27,2019 23/68

Outline

e Scheduling Algorithms
@ FCFS(5ckHiRSS) Scheduling

pE&= xlanchen@ustc.edu.cn http://staff.ud117401: Operating System #2{EZRFt/RIEE

FCFS Scheduling

@ First-Come, First-Served(563K5%HRSS)
» nonpreemptive(IFE &)
@ Implementation:

» Normal Queue: FIFO Queue

ordered by request time

linked list

Insert: linked to the tail of the queue

scheduling: removed from the head of the queue

v

v vy

pR&E= xlanchen@ustc.edu.cn http://staff.u0117401: Operating System EMERST/RIEE March 27,2019 25/68

Example of FCFS Scheduling

Process BurstTime(ms)

@ Suppose that the processes arrive

. , P1 24
in the order: P2 3
P1,P2,P3 P3 3
@ The Gantt Chart(H4FEl) for the schedule is:
P Py | Ps
0 24 27 30

@ Waiting time for P1 = 0; P2 = 24; P3 = 27
@ Average waiting time: (0 + 24 + 27)/3 =17

pR&E= xlanchen@ustc.edu.cn http://staff.u0117401: Operating System EMERST/RIEE March 27,2019 26/68

Example of FCFS Scheduling

Process BurstTime(ms)

@ Suppose that the processes arrive

. P1 24
in the order P2 3
P2, P3,P1 P3 3
@ The Gantt chart(H45E) for the schedule is:
P, | P3 P,
0 3 6 30

@ Waiting time for P1 = 6; P2 = 0; P3 =3
@ Average waiting time: (6 +0+3)/3=3

MUCH BETTER THAN PREVIOUS CASE! J

pR&E= xlanchen@ustc.edu.cn http://staff.u0117401: Operating System EMERST/RIEE March 27,2019 27/68

Convoy effect (PR, RIRIN)

Convoy effect (FFARN; R BRUN)

@ all the other processes wait for the one big process to get off
the CPU

@ =short process behind long process

example situation:

@ one CPU-bound process
@ many I/O-bound processes

pR&E= xlanchen@ustc.edu.cn http://staff.u0117401: Operating System EMERST/RIEE March 27,2019 28/68

Outline

e Scheduling Algorithms

o SJIF(RE{ENAILST) Scheduling

pFE= xlanchen@ustc.edu.cn http://staff.u0117401: Operating System #5

SJF Scheduling

@ Shortest-Job-First(J8{Edk{fi5%)
Shortest-Next-CPU-Burst algorithm

» Associate with each process the length of its next CPU burst.
» Schedule the process with the shortest time.

pR&E= xlanchen@ustc.edu.cn http://staff.u0117401: Operating System EMERST/RIEE March 27,2019 30/68

SJF Scheduling

@ SJF scheduling example
Process BurstTime(ms)

P1 6
p2 8
P3 7
P4 3
» The Gantt chart for the schedule is:
Py Py Ps P
0 3 9 16 24

@ Waiting time forP1 =3;P2=16;P3=9;P4=0
@ Average waiting time: (3+16+9+0)/4=7

If FCFS, average waiting time: (0 + 6 + 14+ 21)/4 = 10.25

pR&E= xlanchen@ustc.edu.cn http://staff.u0117401: Operating System EMERST/RIEE March 27,2019 30/68

SJF Scheduling

SJF is optimal (Ffithd)

- gives minimum average waiting time(f/MNEIFFAIE) for a
given set of processes

pE&= xlanchen@ustc.edu.cn http://staff.ud117401: Operating System #2{EZRFt/RIEE March 27, 2019 30/68

SJF scheduling schemes

@ Two schemes:
@ nonpreemptive
—once CPU given to the process it cannot be preempted until
completes its CPU burst
© preemptive
—if a new process arrives with CPU burst length less than
remaining time of current executing process, preempt. This

scheme is known as the Shortest-Remaining-Time-First
(SRTF)

pE&= xlanchen@ustc.edu.cn http://staff.ud117401: Operating System #2{EZRFt/RIEE

March 27, 2019 31/68

SJF scheduling schemes

@ Example of Non-Preemptive SJF
Process ArrivalTime BurstTime(ms)

P1 0.0 7
P2 2.0 4
P3 4.0 1
P4 5.0 4

» The Gantt chart for SJF (non-preemptive)

Py P3 P2 P4

1 EPURL UL
91%34{§678910111213141516

» Average waiting time: (0+6+3+7)/4=4

pE&= xlanchen@ustc.edu.cn http://staff.ud117401: Operating System #2{EZRFt/RIEE March 27, 2019 31/68

SJF scheduling schemes

© Example of Preemptive SJF
Process ArrivalTime BurstTime(ms)

P1 0.0 7
P2 2.0 4
P3 4.0 1
P4 5.0 4

» The Gantt chart for SJF (preemptive)

Pr | P2 [Py Py P4 Py

I I I T T T
9 1 % 3 ‘T" ? 6 78 910111213141516
P3

» Average waiting time: ((11-2)+ (5—-4)+0+(7-5))/4=3

pR&E= xlanchen@ustc.edu.cn http://staff.u0117401: Operating System EMERST/RIEE March 27,2019 31/68

Determining Length of Next CPU Burst

@ For job scheduling:
depend on user?
@ For CPU scheduling:
can only estimate the length

@ Example: by using the length of previous CPU bursts, using
exponential averaging (}§£15F13)
@ t, =actual length of nth CPU burst
@ 7.1 = predicted value for the next CPU burst
Q a, 0<a<1
©Q Define: i1 =aty +(1—a)m

@ If we expand the formula, we get:

Tn+1:aTn+(1—a)aTn_1—|—~--—|—(1—a)jarn_j—|—~--—|—(1—a)"+17'o J

Since 0 < a, 1 — a < 1, each successive term has less weight
than its predecessor

pR&E= xlanchen@ustc.edu.cn http://staff.u0117401: Operating System EMERST/RIEE March 27,2019 32/68

Determining Length of Next CPU Burst

@ Prediction of the Length of the Next CPU Burst
» Example: o =1/2; 75 = 10

CPU burst {t) 6 4 6 4 13 13 13

'quess"(t) 10 8 6 6 5 9 11 12

&= xlanchen@ustc.edu.cn http://staff.u0117401: Operating System Z{EZR SRR March 27, 2019 32/68

Determining Length of Next CPU Burst

@ Examples of Exponential Averaging
» ifa=0
* Th+1 = atn + (1 — a)Tn = otn + T™h = Tn
* Recent history does not count
» ifa=1
* Thpr = otn + (1 - Oé)Tn =1t + 0'7'n =1
* Only the actual last CPU burst counts

pE&= xlanchen@ustc.edu.cn http://staff.ud117401: Operating System #2{EZRFt/RIEE March 27, 2019 32/68

Outline

e Scheduling Algorithms

@ Priority Scheduling

fFE= xlanchen@ustc.edu.cn http://staff.ud117401: Operating System Z(FRG/REE

Priority(fL5%c4%) Scheduling

@ A priority number(fli5c2) is associated with each process
» priority number(ffi5c&%) VS. priority({it5c4%)
» usually an integer, &
usually, smallest integer = highest priority
@ The CPU is allocated to the process with the highest priority
» Preemptive VS. Nonpreemptive
@ SJF is a special case of general priority scheduling where
priority is the predicted next CPU burst time

pR&E= xlanchen@ustc.edu.cn http://staff.u0117401: Operating System EMERST/RIEE March 27,2019 34/68

Priority(fL5%c4%) Scheduling

@ Example
Process BurstTime(ms) Priority
P1 10 3
P2 1 1
P3 2 4
P4 1 5
P5 5 2
» The Gantt chart for the schedule is:
p2 P5 P1 P3 |P4
01 6 16 1819

» Average waiting time: (6+0+16+18+1)/5=18.2

pE&= xlanchen@ustc.edu.cn http://staff.ud117401: Operating System #2{EZRFt/RIEE March 27, 2019

34/68

Priority(fL5%c4%) Scheduling

@ Problem: The determination of priority
» internally, for example:
* time limits, memory requirement, the number of open files, ...
» externally, for example:
* the importance, the type and amount of funds, the department,

pE&= xlanchen@ustc.edu.cn http://staff.ud117401: Operating System #2{EZRFt/RIEE March 27, 2019 34/68

Priority(fL5%c4%) Scheduling

@ Priority Scheduling problem - Starvation (indefinite
blocking):
low priority processes may never execute
» Solution - Aging:
as time progresses increase the priority of the process

Example:
priorities: 127(low)-0(high)

the priority of a waiting process is increased by 1 every 15 minutes
How long from 127 to 0?

[xlanchen@ustc.edu.cn http://staff.u0117401: Operating System #E{FRG/RIEE March 27,2019 34/68

Outline

e Scheduling Algorithms

@ Round Robin(A¥[&] 5%%) Scheduling

pR&E= xlanchen@ustc.edu.cn http://staff.u0117401: Operating System EMERST/RIEE March 27,2019 35/68

Round Robin (AYjalF%%2, RR) Scheduling

@ Time quantum, time slice(A3EF)
» a small unit of CPU time
» usually 10-100 ms

@ Implementation
Ready queue: a FIFO circular queue
Each process gets 1 time quantum
Insert: to the tail of the queue
Scheduling: pick the first process; set timer; and dispatch
two situation:
* CPU burst < 1 time quantum
* CPU burst > 1 time quantum.
After this time has elapsed, the process is preempted (##8 &)
and added to the end of the ready queue.

vV vy vy VvYyy

[xlanchen@ustc.edu.cn http://staff.u0117401: Operating System #E{FRG/RIEE March 27,2019 36/68

Round Robin (AYjalF%%2, RR) Scheduling

@ Example of RR with Time Quantum = 20
Process BurstTime

P1 53
p2 17
P3 68
P4 24
» The Gantt chart is:
P4
i}

P, [Py Py | Py | P, | Py Py Py Py

0 20 37 57 77 97 117121134 154162

@ Typically, higher average turnaround than SJF, but better
response

pR&E= xlanchen@ustc.edu.cn http://staff.u0117401: Operating System EMERST/RIEE March 27,2019 36/68

Round Robin (AYjalF%%2, RR) Scheduling

@ Performance

» If there are n processes in the ready queue and the time
quantum is g, then each process gets 1/n of the CPU time in
chunks of at most g time units at once.
No process waits more than (n-1)q time units.

* Example: 5 processes, time quantum=20ms

» The performance of RR dependes heavily on the size of the

time quantum.

* if q is too large? =FIFO
* if q is too small? =q must be large with respect to context
switch, otherwise overhead is too high

[xlanchen@ustc.edu.cn http://staff.u0117401: Operating System #E{FRG/RIEE March 27,2019 36/68

Time Quantum and Context Switch Time

@ The effect of context switching on the performance of RR

scheduling
context
process time = 10 quantum ¢\itches
12 0
0 10
6 1
0 6 10
1 9

012345678910

» typically the context-switch time is a small fraction of the time
quantum
* usually: time quantum: 10 ~100ms & context switch time: 10us

pR&E= xlanchen@ustc.edu.cn http://staff.u0117401: Operating System EMERST/RIEE March 27,2019 37/68

Turnaround Time Varies With The Time Quantum

12.5

12.0

11.0

10.5

10.0

9.5

average turnaround time

9.0

85

/

process | time
Py 6
Py 3
Ps3 1
Py 7

4 5
time quantum

6

7

pR&E= xlanchen@ustc.edu.cn http://staff.u0117401: Operating System EMERST/RIEE

March 27, 2019

38/68

Outline

e Scheduling Algorithms

@ Multilevel Queue (Z4FA%I) Scheduling

pR&E= xlanchen@ustc.edu.cn http://staff.u0117401: Operating System EMERST/RIEE March 27,2019 39/68

Multilevel Queue (ZZBA%I) Scheduling |

@ Ready queue is partitioned into separate queues.
Each queue has its own scheduling algorithm

» foreground (interactive) - RR
» background (batch) — FCFS

@ Scheduling must be done between the queues
» Fixed priority scheduling;

* Example: serve all from foreground then from background
* Possibility of starvation.

» Time slice — each queue gets a certain amount of CPU time
which it can schedule amongst its processes; i.e.,

* 80% to foreground in RR
* 20% to background in FCFS

[xlanchen@ustc.edu.cn http://staff.u0117401: Operating System #E{ERF/RIEE March 27,2019 40/68

example

highest priority

system processes

interactive processes

interactive editing processes

batch processes

student processes

11111
T

lowest priority

[xlanchen@ustc.edu.cn http://staff.u0117401: Operating System $E{EZRF/RIE. March 27,2019 41/68

Outline

e Scheduling Algorithms

@ Multilevel Feedback Queue (Z%xiEBA%I) Scheduling

pE&= xlanchen@ustc.edu.cn http://staff.ud117401: Operating System #2{EZRFt/RIEE March 27,2019 42/68

Multilevel-Feedback-Queue(Z 4 [z i=EAF!)
Scheduling

@ A process can move between the various queues;
aging can be implemented this way

@ Multilevel-feedback-queue(ZziEHRAF!) scheduler defined
by the following parameters:

number of queues

scheduling algorithms for each queue

method used to determine when to upgrade a process
method used to determine when to demote a process
method used to determine which queue a process will enter
when that process needs service

vV vy VY VvYYy

[xlanchen@ustc.edu.cn http://staff.u0117401: Operating System #E{ERF/RIEE March 27,2019 43/68

Example of Multilevel Feedback Queue

A
@ Three queues ——[qmn-s |

» Qo — RR with time quantum 8ms ——
» Q, - RR time quantum 16ms _,
» Q, - FCFS
A
— s [
@ Scheduling
» A new job enters Q, which is served FCFS.
When it gains CPU, job receives 8ms.
If it does not finish in 8ms, job is moved to Q;.

» At Q, job is again served FCFS and receives additional 16ms.
If it still does not complete, it is preempted and moved to Q..

[xlanchen@ustc.edu.cn http://staff.u0117401: Operating System #E{FRG/RIEE March 27,2019 44/68

Outline

e Multiple-Processor Scheduling

fFE= xlanchen@ustc.edu.cn http://staff.ud117401: Operating System Z(FRG/REE

Multiple-Processor Scheduling

@ One single processor — multiple CPUS
» CPU scheduling more complex
» Load sharing

@ To be simple, suppose

» the processors are identical - homogeneous — in terms of
their functionality
» SO, any processor can execute any process in the queue

pR&E= xlanchen@ustc.edu.cn http://staff.u0117401: Operating System EMERST/RIEE March 27,2019 46/68

Multiple-Processor Scheduling

@ Approches to Multiple-Processor Scheduling
» Asymmetric multiprocessing — only one processor accesses
the system data structures, alleviating the need for data
sharing
» Symmetric multiprocessing /
* one common ready queue, or
* one private ready queue for each processor

pR&E= xlanchen@ustc.edu.cn http://staff.u0117401: Operating System EMERST/RIEE March 27,2019 46/68

Multiple-Processor Scheduling

@ Processor Affinity
» Migration of processes from one processor to another
processor COSTs much.

* For example: cache
* most SMP systems try to avoid such migration

» Processor affinity(ZEF0{%):
a process has an affinity for the processor on which it is

currently running.
» SOFT affinity VS. HARD affinity.

pR&E= xlanchen@ustc.edu.cn http://staff.u0117401: Operating System EMERST/RIEE March 27,2019 46/68

Multiple-Processor Scheduling

@ Load Balancing

» Load balanceing attempts to keep the workload evenly
* for SMP system with one private ready queue for each processor

» two general approaches
* push migration(iF#g)
* pull migration

often works together in load balancing systems
» load balancing VS. processor affinity

pR&E= xlanchen@ustc.edu.cn http://staff.u0117401: Operating System EMERST/RIEE March 27,2019 46/68

Multiple-Processor Scheduling

@ Symmetric Multithreading
» INTEL: hyperthreading technology (HT)

» logical processors VS. physical processors

* each logical processor has its own architecture state, including
general-purpose registers and machine-state registers, and

interrupts

* share: cache memory and bueses
» ? from the viewpoint of OS ?

logical
CPU

logical
CPU

physical

CPU

logical
CPU

logical
CPU

physical

CPU

system bus

pE&= xlanchen@ustc.edu.cn http://staff.ud117401: Operating System #2{EZRFt/RIEE

March 27, 2019

Outline

© Real-Time Scheduling

&= xlanchen@ustc.edu.cn http://staff.u01174 i RORIEE

Real-Time Scheduling

@ Hard real-time systems — required to complete a critical
task within a guaranteed amount of time
@ Soft real-time computing — requires that critical processes
receive priority over less fortunate ones
e OS
@ priority scheduling
@ short dispatch latency
@ approaches for short dispatch latency
@ preemption

@ preemption point (}&553) in system calls with long period
@ preemptible kernel

@ priority inversion
@ priority-inheritance protocol
@ priority-ceiling protocol

[xlanchen@ustc.edu.cn http://staff.u0117401: Operating System #E{ERF/RIEE March 27,2019 48/68

dispatch latency

event response to event
response interval
process made
interrupt available
processing

real-time

~——dispatch latency —————————— process
execution

——conflicts I dispatch

conflicts=preemption + resource releasing by processes with
lower priority

p&&= xlanchen@ustc.edu.cn http://staff.ud117401: Operating System #2{EZRFt[RIEEE March 27,2019 49/68

Outline

@ 0s examples
@ Linux Scheduling
@ uC/os-Il scheduling

fFE= xlanchen@ustc.edu.cn http://staff.ud117401: Operating System Z(FRG/REE

OS examples

@ READING

Solaris (thread)
Windows (thread)
Linux (process)./
uC/0S — 11/

vV vy VvYy

pR&E= xlanchen@ustc.edu.cn http://staff.u0117401: Operating System EMERST/RIEE

March 27, 2019

51/68

Outline

@ 0s examples
@ Linux Scheduling

pFE= xlanchen@ustc.edu.cn http://staff.u0117401: Operating System £

Linux Scheduling

@ Linux is a general-purpose OS
» Processes: time-sharing/real-time
» Linux scheduler is both time-sharing-based and priority-based
* With the changing of version, time-sharing technique changes
too

@ Scheduling policy:
B—HHN, SlIREMHARHRLLIEENG ISR FTHEE

7.
Linux 2.6.265

» SCHED _NORMAL

> SCHED FIFO (for real-time process)
> SCHED RR (for real-time process)
> SCHED_BATCH

» SCHED IDLE

[xlanchen@ustc.edu.cn http://staff.u0117401: Operating System #E{ERF/RIEE March 27,2019 53/68

Priorities
@ The Linux scheduler: preemptive, priority-based
» two seperate priority ranges: lower value = higher priority
real-time range: 0~99
a nice value rang: 100~140
@ higher-priority = longer time quanta
(Unlike Solaris and Windows XP)

numeric relative time
priority priority quantum
0 highest 200ms
° real-time
° tasks
[]
99
100
[
. other
. tasks
140 lowest 10ms

The Relationship Between Priorities and Time-slice length List of Tasks

pR&E= xlanchen@ustc.edu.cn http://staff.u0117401: Operating System EMERST/RIEE March 27,2019 54/68

Priorities

@ The Linux scheduler: preemptive, priority-based
» two seperate priority ranges: lower value = higher priority
real-time range: 0~99
a nice value rang: 100~140
@ higher-priority = longer time quanta
(Unlike Solaris and Windows XP)

@ Dynamic priorities:
scheduler may change the priority of a process
» BAKATEIR S ECEICPURTHHTE, 1BET
» EZ2ECPULEIT TRIKITEAHE, BEFE!

[xlanchen@ustc.edu.cn http://staff.u0117401: Operating System #E{FRG/RIEE March 27,2019 54/68

Linux scheduling algorithms

@ Linux 2.4 scheduler
» need to traverse the runqueue, O(n)

Unqueu g ask |—{ Process, | —{process: |- -
[}

» Epoch, default time slice (BAHRJiE5), dynamic priorities

ol L.
Epoch POC—1 ™ . CPU time

pE&= xlanchen@ustc.edu.cn http://staff.ud117401: Operating System #2{EZRFt/RIEE March 27, 2019 55/68

Linux scheduling algorithms

@ Linux 2.6.17 scheduler (<2.6.23)
» O(1)

» Double priority-based arrays (XBA%): active & expire

active expired
array array
priority task lists priority task lists
[0] oO—0O (0] oO—0O—-=0
(1] o—0O—-—=0 (1] O
[140] O (140] o—0O

List of tasks indexed according to priorities

pE&= xlanchen@ustc.edu.cn http://staff.ud117401: Operating System #2{EZRFt/RIEE

March 27, 2019 55/68

Linux scheduling algorithms

@ Linux 2.6.26 scheduler (>2.6.23)
» O(1)
» non-real-time: Complete-Fair-Scheduling(CFS, 552/ 3
E), vruntime, red-black tree (£I22FY)
» real-time: priority arrays

Nodes represent
sched_entity(s)

indexed by their
vritual runtime

Virtual runtime
Most need of CPU Least need of CPU

[xlanchen@ustc.edu.cn http://staff.u0117401: Operating System E#{ERFH/RIE. March 27,2019 55/68

Outline

@ 0s examples

@ uC/os-Il scheduling

pFE= xlanchen@ustc.edu.cn http://staff.u0117401: Operating System £

uC/os-Il scheduling

@ Priority-based scheduler
» MAX Tasks: 64
» priority number: 0~63

OSRdyGrp
[7]6]5[4[3[2]1]0] OsRdyTbI[OS LOWEST PRIO/8+1]
| X |

01 7]6]5[4|3]|2|1]|0
—— (11 [15[15[13[12[11{10[9 | 8
[2] |23[22]21[20]19]18[17]16
[31 31]30[2928]27[26]25]24| v
[4] [39383736/35[34(33|32
[5] [47|46/45/44/4342/41/40
[6] |55/54(53|52|51|50[49/48
[71 63]62/61/6059/58/57/56] |

rq bitmap

O<task’ s priority<63
LoJoY]Y[Y[X]X]X]

[xlanchen@ustc.edu.cn http://staff.u0117401: Operating System $E{EZRF/RIE. March 27,2019 57/68

Outline

@ Algorithm Evaluation

&= xlanchen@ustc.edu.cn http://staff.u01174 i RORIEE

Algorithm Evaluation

@ How do we select a CPU scheduling algorithm for a
particular system?
» firstly, which criteria? What is the relative importance of these
measures

» then, evaluate the algorithms
@ Deterministic Modeling (i E{#z215)
@ Queueing Models(HEBAIEERY)
g Simulations({&}l)

Implementation

p&&= xlanchen@ustc.edu.cn http://staff.ud117401: Operating System #2{EZRFt[RIEEE March 27, 2019 59/68

1. Deterministic Modeling (ffiE THER) |

@ Analytic evaluation($3#riF{&i%): One major class of
evaluation methods

» uses the given algorithm and the system workload to
produce a formula or number that evaluates the
performance of the algorithm for that workload.

@ Deterministic modeling(fAE4i£4E) — takes a particular
predetermined workload and defines the performance of
each algorithm for that workload

@ Example - Consider FCFS, SJF, and RR (quantum=10ms)
Process BurstTime

P1 10
P2 29
P3 3
P4 7
P5 12

[xlanchen@ustc.edu.cn http://staff.u0117401: Operating System #E{ERF/RIEE March 27,2019 60/68

1. Deterministic Modeling (ffiETHER) ||

@ FCFS: average waiting time =(0+10+39+42+49)/5=28

P1 P2 P3| P4 P5

0 10 39 42 49 61
@ SJF: average waiting time =(10+32+0+3+20)/5=13

P3| P4 P1 P5 P2

0 3 10 20 32 61

© RR: average waiting time =(0+(10+20+2)+20+23+(30+10))/
5=23
‘ P1 ‘ P2 ‘PS‘ P4 ‘ P5 ‘ P2 ‘PS‘ P2 ‘
0 10 20 23 30 40 5052 61

@ advantages and disadvantages
> HREM vs. BRMANSEAY

[xlanchen@ustc.edu.cn http://staff.u0117401: Operating System #E{ERF/RIEE March 27,2019 61/68

2. Queueing Models (HEBAMEEL)

@ Usually, two distributions can be measured and then
approximated or simply estimated

» the distribution of CPU and 1/0 bursts
» the arrival-time distribution

@ Queueing-network analysis(HEPARIZE531T)
» Computer System: a network of servers, each server has a
queue of waiting processes
* CPU: ready queus;
* |/0: device queues (=waiting queue)
» Given arriving rates and service rates =-utilization, average
queue length, average wait time, ...

pR&E= xlanchen@ustc.edu.cn http://staff.u0117401: Operating System EMERST/RIEE March 27,2019 62/68

2. Queueing Models (HEBAMEEL)

@ Example:
@ n: the average queue length
© W: the average waiting time
©) the average arrival rate

for a steady waits (Little formula, LittleA=):

n=X\xW

» Little formula is particularly useful because it is valid for any
scheduling algorithm and arrival distribution.

» If we know two of the three variables, we can use Little
formula to compute the other one.

pR&E= xlanchen@ustc.edu.cn http://staff.u0117401: Operating System EMERST/RIEE March 27,2019 62/68

3. Simulations(&#)) |

@ Running simulations involves programming a model of the
computer system.
» Software data structures represent the major components

* a clock
* the system state is modified to reflect the activities of the
devices, the processes and the scheduler.

» finally, the statictics are gathered

@ How to generate the data to drive the simulation?
» distribution-driven simulation

* ramdon-number generator, according to probability
distributions, to generate processes, CPU burst times, arrivals,
departures, ...

* the distributions can be defined mathematically(uniform,
exponential, Poisson) or empirically

* may be inaccurate

» trace tapes(IRIZRETY)

[xlanchen@ustc.edu.cn http://staff.u0117401: Operating System #E{ERF/RIEE March 27,2019 63/68

3. Simulations(f&$)) Il

simulation —

| s 1

CPU 10
1/0 213
actual CPU 12
process —= 1/0 112 simulation =)
execution CPU 2
1/0 147
CPU 173 SJF

trace tape
simulation =

RR(q=14)

eveluation of CPU schedulers by simulation

pR&E= xlanchen@ustc.edu.cn http://staff.u0117401: Operating System EMERST/RIEE March 27,2019 64/68

4. Implementation

@ This approach put the actual algorithm in the real system
for evaluation under real operating conditions

@ the main difficulty: high cost

pR&E= xlanchen@ustc.edu.cn http://staff.u0117401: Operating System EMERST/RIEE March 27,2019 65/68

Outline

O &

pRE= xlanchen@ustc.edu.cn http://sta 117401: Operating System %

\ZE
6 Hasic Concepts

@ CPU-1/0 Burst Cycle

@ CPU Scheduler

@ Preemptive Scheduling

@ Dispatcher
@ scheduling Criteria

@ Scheduling Criteria
e Scheduling Algorithms
FCFS(5t3k5hR3%) Scheduling
SIFGE{FALSE) Scheduling
Priority Scheduling
Round Robin(FJiE]F#%E) Scheduling
Multilevel Queue (Z4BA%I) Scheduling
Multilevel Feedback Queue (Z4f2fHEBAS) Scheduling

§ Multiple-Processor Scheduling

Real-Time Scheduling

OS examples

@ Linux Scheduling

@ uC/os-ll scheduling
8 Algorithm Evaluation

INGE

pR&E= xlanchen@ustc.edu.cn http://staff.u0117401: Operating System EMERST/RIEE March 27,2019 67/68

i85 |

	Basic Concepts
	CPU-I/O Burst Cycle
	CPU Scheduler
	Preemptive Scheduling
	Dispatcher

	Scheduling Criteria
	Scheduling Criteria

	Scheduling Algorithms
	FCFS(先来先服务) Scheduling
	SJF(短作业优先) Scheduling
	Priority Scheduling
	Round Robin(时间片轮转) Scheduling
	Multilevel Queue（多级队列） Scheduling
	Multilevel Feedback Queue（多级反馈队列） Scheduling

	Multiple-Processor Scheduling
	Real-Time Scheduling
	OS examples
	Linux Scheduling
	uC/os-II scheduling

	Algorithm Evaluation
	小结

