0117401: Operating System
BFRBRIESRIT

Chapter 4: Threads

fFRE=
xlanchen@ustc.edu.cn
http://staff.ustc.edu.cn/~xlanchen

Computer Application Laboratory, CS, USTC @ Hefei
Embedded System Laboratory, CS, USTC @ Suzhou

March 29, 2019

p&&= xlanchen@ustc.edu.cn http://staff.ud117401: Operating System #2{EZRFt[RIEEE March 29, 2019 1/44

o4 1

AT IEHMBARNTIIER,
EERE EXYIERERE.

AEmRE HFFTHIE,

pE&= xlanchen@ustc.edu.cn http://staff.ud117401: Operating System #2{EZRFt/RIEE March 29, 2019 2/44

2N

@ Overview

@ Multithreading Models
© Thread Libraries

e Threading Issues

© 0s Examples for Thread

@ Thread Scheduling
@ OS Examples for Thread Scheduling

Q &

pR&E= xlanchen@ustc.edu.cn http://staff.u0117401: Operating System EMERST/RIEE March 29,2019 3/44

Chapter Objectives

Chapter Objectives

© To introduce the notion of a thread — a fundamental unit of
CPU utiliazation that forms the basis of multithreaded
computer system.

@ To discuss the APIs for Pthreads, Win32, and JAVA thread
libraries.

pR&E= xlanchen@ustc.edu.cn http://staff.u0117401: Operating System EMERST/RIEE March 29,2019 4/44

Outline

@ Overview

pRE= xlanchen@ustc.edu.cn http://staff.ud117401: Operating System

Thread concept overview

@ A thread is a basic unit of CPU utilization;

» it comprises a thread ID, a program counter, a register set,
and a stack.

» It shares with other threads belonging to the same process
the code section, the data section, and other OS resources,
such as open files, signals, etc

@ A traditional process has a single thread of control:

heavyweight process.

‘ code ‘ ‘ data ‘ ‘ files ‘ ‘ code ‘ ‘ data ‘ ‘ files ‘
‘ stack ‘ ‘ registers ‘ ‘ registers‘ ‘ registers ‘
‘ stack ‘ ‘ stack ‘ ‘ stack ‘
thread —>§ g % g
single-threaded process multithreaded process

pR&E= xlanchen@ustc.edu.cn http://staff.u0117401: Operating System EMERST/RIEE March 29,2019 6/44

Motivation

@ On modern desktop PC, many APPs are multithreaded.
» a seperate process with several threads
» Example 1: A web browser
* one for displaying images or text;
* another for retrieving data from network
» Example 2: A word processor
* one for displaying graphics;
* another for responding to keystrokes from the user;
* and a third for performing spelling & grammer checking in the
background
» Example 3: RPC servers
* for each message, a separate thread is used to service the
message
* concurrency?t

pRE= xlanchen@ustc.edu.cn http://staff.ud117401: Operating System #E{FRS/RIE March 29,2019 7/44

Motivation

@ Motivation
» In certain situations, a single application may be required to
perform several similar tasks. Example: a web server
» Allow a server to service several concurrent requests. Example:
an RPC server and Java’ s RMI systems
» The OS itself needs to perform some specific tasks in kernel,
such as manging devices or interrupt handling.
* PARTICULAR, many OS systems are now multithreaded.
* Example: Solaris, Linux

pR&E= xlanchen@ustc.edu.cn http://staff.u0117401: Operating System EMERST/RIEE March 29,2019 7/44

Benefits

@ Responsiveness (INRES)

» Example: an interactive application such as web browser,
while one thread loading an image, another thread allowing
user interaction

© Resource Sharing
» address space, memory, and other resources

© Economy
» Solaris:
creating a process is about 30 times slower then creating a
thread;
context switching is about 5 times slower
@ Utilization of MP Architectures

» parallelism and concurrency

pR&E= xlanchen@ustc.edu.cn http://staff.u0117401: Operating System EMERST/RIEE March 29,2019 8/44

Outline

@ Multithreading Models

&= xlanchen@ustc.edu.cn http://staff.u0117401: Operating System #&

Two Methods

Two methods to support threads
@ User threads VS. Kernel threads J

@ User threads
» Thread management done by user-level threads library
without kernel support
* Kernel may be multithreaded or not.
» Three primary thread libraries:

@ POSIX Pthreads
@ Win32 threads
© Java threads

pE&= xlanchen@ustc.edu.cn http://staff.ud117401: Operating System #2{EZRFt/RIEE March 29, 2019 10/44

Two Methods

Two methods to support threads
@ User threads VS. Kernel threads J

© Kernel Threads

» Supported by the Kernel, usually may be slower then user
thread

» Examples

Windows XP/2000

Solaris

Linux

Tru64 UNIX (formerly Digital UNIX)

Mac OS X

*

* ok % %

pE&= xlanchen@ustc.edu.cn http://staff.ud117401: Operating System #2{EZRFt/RIEE March 29, 2019 10/44

Multithreading Models

@ The relationship between user threads and kernel threads
©@ Many-to-One [n:1]
© One-to-One [1:1]
© Many-to-Many [n:m]

©@ Many-to-One [n:1] é é
» Many user-level threads
mapped to single kernel thread
» Examples:

* Solaris Green Threads
* GNU Portable Threads

é < user
thread

kernel
thread

pE&= xlanchen@ustc.edu.cn http://staff.ud117401: Operating System #2{EZRFt/RIEE March 29, 2019 11/44

Multithreading Models

@ One-to-One [1:1] ; § § é o user
thread
» Each user-level thread maps to
a kernel thread
» Examples cernel
* Windows NT/XP/2000 “ thread
* Linux

* Solaris 9 and later

pE&= xlanchen@ustc.edu.cn http://staff.ud117401: Operating System #2{EZRFt/RIEE March 29, 2019 11/44

Multithreading Models

© Many-to-Many [n:m] é é
» Allows many user level threads é
to be mapped to many kernel
threads
» Allows the operating system to
create a sufficient number of
kernel threads
» Examples

é < user
thread

kernel

* Solaris prior to version 9 thread
* Windows NT/2000 with the
ThreadFiber package

pR&E= xlanchen@ustc.edu.cn http://staff.u0117401: Operating System EMERST/RIEE March 29, 2019 11/44

Multithreading Models

© Two-level Model, a popular

variation on many-to-many é

model ;
» Similar to n:m, except that it
allows a user thread to be
bound to a kernel thread
» Examples
* |RIX
* HP-UX
* Tru64 UNIX
* Solaris 8 and earlier

pE&= xlanchen@ustc.edu.cn http://staff.ud117401: Operating System #2{EZRFt/RIEE

March 29, 2019

user
thread

kernel
thread

11/44

Outline

© Thread Libraries

fF&E= xlanchen@ustc.edu.cn http://staff.u01174 i RSRIRE

Thread Libraries |

@ A thread library provides an API for creating and managing
threads.
Two primary ways
@ to provide a library entirely in user space with no kernel

support
Qo tolijraplement a kernel-level library supported directly by the
(0N
’ library ‘ code & data ‘ API ‘ invoking method inside API ‘
user-level | entirely in user space | user space a local function call
kernel-level kernel space user space system call

@ Two general strategies
» Asynchronous threading
* threads are independent with little data sharing
» Synchronous threading or fork-join strategy

* parent waits until all children have joined
* involves significant data sharing among threads

[xlanchen@ustc.edu.cn http://staff.u0117401: Operating System #E{ERF/RIEE March 29,2019 13/44

Thread Libraries Il

@ Three main thead libraries
@ POSIX Pthreads
@ Win32 threads
© Java threads

Example: a multithreaded program
@ Summation:

N.
sum =i

i=0

pRE= xlanchen@ustc.edu.cn http://staff.ud117401: Operating System #E{FRS/RIE

March 29, 2019 14/44

1 Pthreads

@ Pthreads

» A POSIX standard (IEEE 1003.1c) API for thread creation and
synchronization

» API specifies behavior of the thread library, implementation is
up to development of the library

» Common in UNIX OSes (Solaris, Linux, Mac OS X)

pR&E= xlanchen@ustc.edu.cn http://staff.u0117401: Operating System EMERST/RIEE March 29, 2019 15/44

Multithreaded C program using the Pthreads API |

#include <pthread.h>
#include <stdio.h>

int sum; /* this data is shared by the thread(s) */

/* The thread will begin control in this function */
void *runner(void *param) {

int i, upper = atoi(param);

sum = 0;

if (upper > 0) {
for (i=1;i <= upper; i++)
sum +=i;
}
pthread_exit(0);
}

int main(int argc, char *argv[]) {
pthread t tid; /* the thread identifier */
pthread attr t attr; /* set of attributes for the thread */

pR&E= xlanchen@ustc.edu.cn http://staff.u0117401: Operating System EMERST/RIEE March 29, 2019 16/44

Multithreaded C program using the Pthreads API Il

if (argc !=2) {
fprintf(stderr, “usage: a.out <integer value>\n");
return -1;

}

if (atoi(argv[1]) < 0) {
fprintf(stderr, “Argument %d must be non-negative\n" ,atoi(argv[1]));
return -1;

}

pthread_attr init(&attr); /* get the default attributes */
pthread create(&tid,&attr,runner,argv(1]); /* create the thread */
pthread join(tid,NULL); /* now wait for the thread to exit */

printf(“sum = %d\n" ,sum);

pR&E= xlanchen@ustc.edu.cn http://staff.u0117401: Operating System EMERST/RIEE March 29, 2019 17/44

pthread_attr init

NAME
pthread_attr init, pthread_attr_destroy - initialise and destroy threads attribute
object

SYNOPSIS

#include <pthread.h>

int pthread attr init(pthread_attr t *attr);

int pthread_attr_destroy(pthread_attr_t *attr);

DESCRIPTION
The function pthread_attr_init() initialises a thread attributes object attr with the
default value for all of the individual attributes used by a given implementation.

.T.h.e pthread_attr destroy() function is used to destroy a thread attributes
object.

RETURN VALUE
Upon successful completion, both return a value of 0.
Otherwise, an error number is returned to indicate the error.

[xlanchen@ustc.edu.cn http://staff.u0117401: Operating System #E{ERF/RIEE March 29,2019 18/44

pthread create()

NAME
pthread create - thread creation

SYNOPSIS

#include <pthread.h>

int pthread create(pthread _t *thread, const pthread_attr t *attr,
void *(*start_routine)(void*), void *arg);

DESCRIPTION

The pthread _create() function is used to create a new thread, with attributes
specified by attr, within a process. ... Upon successful completion,
pthread_create() stores the ID of the created thread in the location referenced
by thread.

The thread is created executing start_routine with arg as its sole argument. . ..

If pthread _create() fails, no new thread is created and the contents of the
location referenced by thread are undefined.

RETURN VALUE
If successful, the pthread create() function returns zero.
Otherwise, an error number is returned to indicate the error.

pR&E= xlanchen@ustc.edu.cn http://staff.u0117401: Operating System EMERST/RIEE March 29, 2019 19/44

pthread join

NAME
pthread join - wait for thread termination

SYNOPSIS
#include <pthread.h>
int pthread join(pthread_t thread, void **value_ptr);

DESCRIPTION

The pthread_join() function suspends execution of the calling thread until the
target thread terminates, unless the target thread has already terminated. ...
The results of multiple simultaneous calls to pthread _join() specifying the same
target thread are undefined. ...

RETURN VALUE
If successful, the pthread _join() function returns zero.
Otherwise, an error number is returned to indicate the error.

[xlanchen@ustc.edu.cn http://staff.u0117401: Operating System #E{ERF/RIEE March 29,2019 20/44

pthread_exit

NAME
pthread exit - thread termination

SYNOPSIS
#include <pthread.h>
void pthread_exit(void *value ptr);

DESCRIPTION
The pthread_exit() function terminates the calling thread and makes the value
value_ptr available to any successful join with the terminating thread. ...

RETURN VALUE
The pthread_exit() function cannot return to its caller.

[xlanchen@ustc.edu.cn http://staff.u0117401: Operating System #E{ERF/RIEE March 29,2019 21/44

2 Win32 Threads Example |

@ Similar to the Pthreads technique.
@ Multithreaded C program using the Win32 API

#include <stdio.h>
#include <windows.h>
DWORD Sum; /* data is shared by the thread(s) */

/* the thread runs in this separate function */
DWORD WINAPI Summation(PVOID Param){
DWORD Upper = *(DWORD *)Param;
for (DWORD i = 0; i <= Upper; i++)
Sum +=i;
return O;

}

int main(int argc, char *argv[]){
DWORD Threadld;
HANDLE ThreadHandle;
int Param;
// do some basic error checking

[xlanchen@ustc.edu.cn http://staff.u0117401: Operating System #E{ERF/RIEE March 29,2019 22/44

2 Win32 Threads Example Il

if (argc != 2){
fprintf(stderr,” An integer parameter is required\n”);
return -1;

}

Param = atoi(argv[1]);

if (Param < 0){
fprintf(stderr, "an integer >= 0 is required \n");
return -1;

}

// create the thread

ThreadHandle = CreateThread(NULL, //default security attribute
0, //default stack size
Summation, //thread function
&Param, //parameter to thread function
0, //default creation flags
&Threadld);

if (ThreadHandle !'= NULL)

WaitForSingleObject(ThreadHandle, INFINITE);

pR&E= xlanchen@ustc.edu.cn http://staff.u0117401: Operating System EMERST/RIEE March 29,2019 23/44

2 Win32 Threads Example Il

CloseHandle(ThreadHandle);

printf(“sum = %d\n” ,Sum);

p&&= xlanchen@ustc.edu.cn http://staff.ud117401: Operating System #2{EZRFt[RIEEE

3 Java Threads

@ Java Threads

» Threads are the fundamental model for program execution.
» Java threads may be created by:
* Extending Thread class
to create a new class that is derived from the Thread class and
override its run() method.
* Implementing the Runnable interface

p&&= xlanchen@ustc.edu.cn http://staff.ud117401: Operating System #2{EZRFt[RIEEE March 29, 2019 25/44

Java Thread Example |

class Summation implements Runnable{
private int upper;
private Sum sumValue;

class Sum {

private int sum; public Summation(int upper, Sum sumValue) {

if (upper < 0) throw new
IllegalArgumentException();
this.upper = upper;
this.sumValue = sumValue;

public int get() {
return sum;

})

public void set(int sum) {

this.sum = sum; public void run() {

int sum = 0;
; for (inti = 0;i <= upper; i++)
}) sum +=i;
sumValue.set(sum);

}
}

pR&E= xlanchen@ustc.edu.cn http://staff.u0117401: Operating System EMERST/RIEE March 29,2019 26/44

Java Thread Example Il

public class Driver {
public static void main(String[] args) {
if (args.length != 1) {
System.err.printin(“Usage Driver <integer>");
System.exit(0);
}

Sum sumObject = new Sum();
int upper = Integer.parselnt(args[0]);
Thread worker = new Thread(new Summation(upper, sumObject));
worker.start();
try {
worker.join();
} catch (InterruptedException ie) { }

"

System.out.println(“The sum of” + upper + “is " + sumObject.get());

[xlanchen@ustc.edu.cn http://staff.u0117401: Operating System #E{FRG/RIEE March 29,2019 27/44

Outline

@ Threading Issues

fF&E= xlanchen@ustc.edu.cn http://staff.u01174 i RSRIRE

Threading Issues
@ Implicit threading
» Developing multithreaded application is hard, error-prone
and time-consuming

» How to transfer the creation and management of threading
from APPs developers to compilers and run-time LIBs.

@ Semantics of fork() and exec() system calls
» Does fork() duplicate only the calling thread or all threads?
» Some UNIX system have chosen to have two versions
» Which one version to use? Depend on the APP.
@ Thread cancellation
» Terminating a thread before it has finished
» Two general approaches:

* Asynchronous cancellation terminates the target thread
immediately

* Deferred cancellation allows the target thread to periodically
check if it should be cancelled

pR&E= xlanchen@ustc.edu.cn http://staff.u0117401: Operating System EMERST/RIEE

March 29, 2019 29/44

Threading Issues
@ Signal Handling
» Signals are used in UNIX systems to notify a process that a
particular event has occurred :
* Synchronous: illegal memory access, division by 0
* Asynchronous: Ctrl+C
» All signals follow the same pattern:

@ Signal is generated by particular event
@ Signal is delivered to a process
© Signal is handled

» Signal handler may be handled by
* a default signal handler, or
* a user-defined signal handler
» When multithread, where should a signal be delivered?

Deliver the signal to the thread to which the signal applies
Deliver the signal to every thread in the process

Deliver the signal to certain threads in the process

Assign a specific thread to receive all signals for the process

*

* o %

[xlanchen@ustc.edu.cn http://staff.u0117401: Operating System #E{ERF/RIEE March 29,2019 29/44

Threading Issues
@ Thread Pools
» Create a number of threads in a pool where they await work
» Advantages:
* Usually slightly faster to service a request with an existing
thread than create a new thread
* Allows the number of threads in the application(s) to be bound
to the size of the pool

@ Thread Specific Data
» Allows each thread to have its own copy of data
» Useful when you do not have control over the thread creation
process (i.e., when using a thread pool)

@ Scheduler Activations

» Both n:m and Two-level models require communication to
maintain the appropriate number of kernel threads allocated
to the application

» Scheduler activations provide upcalls - a communication
mechanism from the kernel to the thread library

» This communication allows an application to maintain the
correct number kernel threads

pR&E= xlanchen@ustc.edu.cn http://staff.u0117401: Operating System EMERST/RIEE March 29,2019 29/44

Outline

© 0s Examples for Thread

&= xlanchen@ustc.edu.cn http://staff.u0117401: Operating System #&

Windows XP Threads

@ An Windows XP application runs as a seperate process, and
each process may contain one or more threads.
@ Implements the one-to-one mapping

» each user-level thread maps to an assotiated kernel thread
» any thread belonging to a process can access the address
space of the process

@ Each thread contains

A thread id

Register set

Separate user and kernel stacks

Private data storage area

@ The register set, stacks, and private storage area are known
as the context of the threads

v

v vyy

[xlanchen@ustc.edu.cn http://staff.u0117401: Operating System #E{ERF/RIEE March 29,2019 31/44

Windows XP Threads
@ The primary data structures of a thread include ETHREAD
(executive thread block), KTHREAD (kernel thread block) ;
TEB (thread environment block)

ETHREAD
thread start
address
Pointer to
parent processes KTHREAD
scheduling
and
. synchronization
: information
kernel TEB
stack
thread identifier
user
H stack
thread-local
storage
kernel space user space

[xlanchen@ustc.edu.cn http://staff.u0117401: Operating System $E{EZRF/RIE. March 29,2019 31/44

Linux Threads

@ Linux refers to them as tasks rather than threads
@ Thread creation is done through clone() system call

@ clone() allows a child task to share the address space of
the parent task (process)

@ clone() VS. fork()

] flag \ meaning \
CLONE_FS File-system information is shared
CLONE_ VM The same memory space is shared

CLONE_SIGHAND Signal handlers are shared
CLONE_FILES The set of open files is shared

pR&E= xlanchen@ustc.edu.cn http://staff.u0117401: Operating System EMERST/RIEE March 29,2019 32/44

Java Threads
o JavafriE S RIR IR QI NEE ST FINRE

» Java threads are managed by the JVM, not user-level library or
kernel

@ Java threads may be created by:

» Extending Thread class
» Implementing the Runnable interface Java

thead States

[xlanchen@ustc.edu.cn http://staff.u0117401: Operating System #E{ERF/RIEE March 29,2019 33/44

Outline

@ Thread Scheduling
@ OS Examples for Thread Scheduling

pFE= xlanchen@ustc.edu.cn http://staff.u0117401: Operating System #5

Thread Scheduling

@ user-level thread VS. kernel-level thread (or LWP)
@ Local Scheduling — How the threads library decides which
thread to put onto an available LWP
» many-to-one, many-to-many models
» process-contention scope, PCS
@ Global Scheduling — How the kernel decides which kernel
thread to run next

» many-to-one, many-to-many & one-to-one models
» system-contention scope, SCS

[xlanchen@ustc.edu.cn http://staff.u0117401: Operating System #E{ERF/RIEE March 29,2019 35/44

Pthread Scheduling API

@ POSIX Pthread API allows specifying either PCS or SCS
during thread creation

» PTHREAD_SCOPE_PROCESS, many-to-many
» PTHREAD SCOPE SYSTEM, one-to-one
* create and bind an LWP for each user-level thread

@ example
#include <pthread.h>
#include <stdio.h>
#define NUM THREADS 5

int main(int argc, char *argv(]) {
inti;
pthread_t tid[NUM THREADS];
pthread attr t attr;
pthread attr init(&attr); /* get the default attributes */

/* set the scheduling algorithm to PROCESS or SYSTEM */
pthread_attr setscope(&attr, PTHREAD SCOPE_SYSTEM);

[xlanchen@ustc.edu.cn http://staff.u0117401: Operating System #E{ERF/RIEE March 29,2019 36/44

Pthread Scheduling API 1l

/* set the scheduling policy - FIFO, RT, or OTHER */
pthread attr setschedpolicy(&attr, SCHED OTHER);

for (i = 0; i < NUM_THREADS; i++) /* create the threads */
pthread _create(&tid[i],&attr,runner,NULL);

for (i = 0; i < NUM THREADS; i++) /* now join on each thread */
pthread _join(tid[i], NULL);
}

/* Each thread will begin control in this function */
void *runner(void *param) {

printf(“I am a thread\n”);

pthread_exit(0);

}

[xlanchen@ustc.edu.cn http://staff.u0117401: Operating System #E{ERF/RIEE March 29,2019 37/44

Outline

@ Thread Scheduling
@ OS Examples for Thread Scheduling

pFE= xlanchen@ustc.edu.cn http://staff.u0117401: Operating System #5

Solaris scheduling |

@ Solaris: priority-based thread

scheduling
@ 4 classes of scheduling, in order of heduns. seuino
priority.Within each class there are Nohest s

different priorities and different
scheduling algorithms.

» Real time

» System (do not change the priority)

» Time sharing (default, with a
multilevel feedback queue)

» Interactive, the same as time sharing,
but higher priority

lowest

f&&= xlanchen@ustc.edu.cn http://staff.ud117401: Operating System #2{EZRS/RIE.

last

class-
specific
priorities

real time

system

interative &
time sharing

global
priority

—e

foe

—e

—e

\Cf o][o o] [o O]

March 29, 2019

run
queue

kernel
threads of
real-time

LWPs

kernel
service
threads

kernel
threads of
interactive &
time-sharing
LWPs

39/44

Solaris scheduling

I e
0 200 0 50
5 200 0 50
10 160 0 51
15 160 5 51
20 120 10 52
25 120 15 52
30 80 20 53
35 80 25 54
40 40 30 55
45 40 35 56
50 40 40 58
55 40 45 58
59 20 49 59

&= xlanchen@ustc.edu.cn http://staff.u01174

Solaris Dispatch Table

Operating System

Windows XP scheduling
@ Dispatcher: priority-based, preemptive scheduling
algorithm uses a 32-level priority scheme to determine the
order of thread execution

» 0: idle thread
» 1~15: variable classes priorities
» 16~31: real-time class
» a queue for each priority
Tme | Moh | nomel | "™l | e | roriy
time-cribical 31 15 15 15 15 15
highest 26 15 12 10 8 6
above normal 25 14 11 9 7 5
normal 24 13 10 8 6 4
below normal 23 12 9 7 5 3
lowest 22 1 8 6 4 2
idle 16 1 1 1 1 1

Windows XP Priorities (policy classes, relative priority)

p&&= xlanchen@ustc.edu.cn http://staff.ud117401: Operating System #2{EZRFt[RIEEE March 29,2019 41/44

Outline

Q &

pRE= xlanchen@ustc.edu.cn http://sta 117401: Operating System %

INGS

@ Overview

@ Multithreading Models
© Thread Libraries

e Threading Issues

© 0s Examples for Thread

@ Thread Scheduling
@ OS Examples for Thread Scheduling

Q &

pR&E= xlanchen@ustc.edu.cn http://staff.u0117401: Operating System EMERST/RIEE March 29,2019 43/44

i85 |

	Overview
	Multithreading Models
	Thread Libraries
	Threading Issues
	OS Examples for Thread
	Thread Scheduling
	OS Examples for Thread Scheduling

	小结

