0117401: Operating System
BERFIFRESRIT

Chapter 9: Virtual Memory(fE%F)

RE=
xlanchen@ustc.edu.cn
http://staff.ustc.edu.cn/~xlanchen

Computer Application Laboratory, CS, USTC @ Hefei
Embedded System Laboratory, CS, USTC @ Suzhou

April 29, 2019

ImE RN -

AT IEMEARNTIER,
ETERE EXHEERS.

AEmiRe HETRIE,

124N

Background

Demand Paging ({&ZHiER)
Copy-on-Write (SRIE#l)
Page Replacement (TAE &%)
Allocation of Frames
Thrashing (#3zh)
Memory-Mapped Files
Allocating Kernel Memory
Other Issues

Operating System Examples

IR

Outline

Background

Background

» Instructions must be loaded into memory before
execution.

» Solutions in chapter 8:

Program entire Physical memory

» Sometimes, jobs may be too big or too many.
How to expand the main memory?
> Physically? COST TOO HIGH!
> Logically? ./

Background

» Virtual memory: Why and How?
» Some code may get no, or only little, opportunity of
execution,
for example, code for error handlers
> Some data may get no opportunity of access
> Locality of reference (fZFFRIEEREIREE), 1968,
Denning
» Temporal locality (REEERHE)
> Spatial locality (ZS[EIFEBMH)
> |dea: partly loading (88933 A\). demand loading (¥%
FHEN). replacement (&if)

Background

» Virtual Memory (FEH\TFHEEE)
EERAEKERGENERINE, SENEELNAFESE
DILAT ZER9—FhiFhE =R R

> Logical size:

NERBEES: NEEE +IMFEE

NHIERESR: MIREREETEN, RFEEE +I/IMFEE
> Speed: close to main memory
> Cost per bit: close to secondary storage (disks)

» Virtual memory : separation of user logical memory
from physical memory.

> Only part of the program needs to be in memory for
execution

> Logical address space can therefore be much larger
than physical address space

> Allows address spaces to be shared by several
processes

> Allows for more efficient process creation

Background

page 0
page 1
page 2 /\
N
O OO
O OO
O OO
O OO
memory map D D D
N~
PM
page v
VM

Diagram showing vritual memory that is larger than physical memory

Background

» Virtual memory can be implemented via:
1. Demand paging
> Paging technology +
pager (i5>kiER) and page replacement
> Pager VS. swapper
the unit of swapping in/out is not the entire process but
page.
2. Demand segmentation

REPAFERRHUAHIE

1. 2R REEORHE

> — MBS BZ IR ENRTFETT
2. XdimE

> AFEHRETANIES, (89) AR
3. EE

> BB RO %

> FEMMERIASIRIEMII R ERLRY.
> SRR R RS BCRIER ERY

Virtual-address Space (EEHAEiEZS|E)

» The virtual address space of a process
refers to the logical (or virtual) view of
how a process is stored in memory.

> Typically: 0~xxx & exists in contiguous
memory

» In fact, the physical memory are organized
(partitioned) in page frames & the page
frames assigned to a process may not be
contiguous=MMU

stack

heap

data

code

Some benefits

1. Shared library using virtual memory

stack stack
]]
shared library shared pages shared library
I I
heap heap
data data
code code

2. Shared memory
3. Speeding up process creation

Outline

Demand Paging ({&&1E0R)
Basic Concepts (Hardware support)
Performance of Demand Paging

Demand Paging (Z&1ER)

» Do not load the entire program in physical memory
at program execution time.
NO NEED!

» Bring a page into memory only when it is needed
1. Less 1/0O needed
2. Less memory needed
3. Faster response
4. More users
» A page is needed < Reference to it

> Invalid reference =Abort
» Not-in-memory =-Bring to memory

Demand Paging (Z&1ER)
» Swapper VS. Pager

> A swapper manipulates the entire processes

» Lazy swapper

Never swaps a page into memory unless the page will

be needed

> Swapper that deals with individual pages is a pager

swap out

T
(.

o] 1] 2[] 3[]

program
A

program

B N3$wap in

¥ ¥ ¥ L2
4[] s e[701
8[| 9 J1wo[J1[]
12 J13[14 15[]

16[] 17Q 18Q 19Q

MainMemory

20[Ja1[J22[23]
~.

Transfer of a paged memory to contiguous disk space

Outline

Demand Paging (iREER)
Basic Concepts (Hardware support)

Hardware support

1. The modified page table mechanism
2. Page fault

3. Address translation

4. Secondary memory (as swap space)

1) The modified page table mechanism

1. Valid-Invalid Bit (PRESENT bit)

> With each page table entry a

valid-invalid bit is associated Frame# valid-invalid bit

» v = in-memory, i = not-in-memory v

> Initially valid-invalid bit is set to i on .
all entries v

i

» During address translation, if
valid-invalid bit in page table entry is i
= page fault

2. Reference bits (for pager out)
3. Modify bit (or dirty bit)
4. Secondary storage info (for pager in)

i
page table

1) The modified page table mechanism
» Page table when some pages are not in main memory

0
1
2
valid-invalie3
0 A frame bit 4 A /\
11 B 4 . N~
04|V
2| ¢ T 0 O O
2|6
I AT]
4 E 8
4 I C
5 7 5/8|v 9 F @ E
6| G 3 ' 10
i
i . 0 0O O
logical memory \/
13
14
15

PhysicalMemory

Transfer of a paged memory to contiguous disk space

2) Page Fault (FRTTE)

» First reference to a page will trap to OS:
page fault(TRTTHE/ S5/ HkT)
» Page fault trap (FREARE)
> Exact exception (trap), {&HaEE

Restart the process in exactly the same place and state.
Re-execute the instruction which triggered the trap

» Execution of one instruction may cause multiply page
faults

> Page fault may occur at every memory

@; reference
> One instruction may cause multiply page
faults while fetching instruction or r/w

1 operators

Example: One instruction and 6 page faults

N WA 1O

2) Page Fault (fRTIELPE)
» Page Fault Handling:
1. OS looks at an internal table to decide:
» Invalid reference = abort
» Just not in memory =
2. Get empty frame
3. Swap page into frame
> Pager out & pager in
4. Modify the internal tables & Set validation bit = v
5. Restart the instruction that caused the page fault

2) Page Fault (FRTIHIE)

load M

3 page is on backing store

operating system

1 referenc

!

2 trap

6 restart
instructio,

free frame

5 reset 4 bring iw
page table missing pag

physical memory

Steps in handling a page fault

3) address translation

» Address translation hardware + page fault handling

Resume the execution

» Context save ({F1ZI117)
Before OS handling the page fault, the state of the
process must be saved
» Example: record its register values, PC

» Context restore (IREiNi%H)

The saved state allows the process to be resumed
from the line where it was interrupted.

» NOTE: distinguish the following 2 situation

> lllegal reference=The process is terminated
» Page fault= Load in or pager in

Outline

Demand Paging (iREER)

Performance of Demand Paging

Performance of Demand Paging

» Let p = Page Fault Rate (0 < p < 1.0)
> If p =0, no page faults
> If p=1.0, every reference is a fault

» Effective Access Time (EAT)

EAT = (1-p)x memory access
+p x page fault time

page fault time = page fault overhead
+swap page out
+swap page in
+restart overhead

Performance of Demand Paging

» Example

> Memory access time = 200ns
> Average page-fault service time = 8ms

EAT = (1-p)x200+p x8ms
= (1—p) %200+ p x 8 000,000
= 200+ p x 7,999,800

1. If one access out of 1,000 causes a page fault, then

p = 0.001
EAT = 8,199.8ns =8.2us

This is a slowdown by a factor of 3245 — 40!!

Performance of Demand Paging

» Example

> Memory access time = 200ns
> Average page-fault service time = 8ms

EAT = (1—p)x200+p x8ms
= (1—p) x 200+ p x 8,000,000
200 + p x 7,999, 800

2. If we want performance degradation < 10%, then
EAT =200 + p x 7,999,800 < 200 (1+ 10%) = 220

P x 7,999,800 < 20
p < 20/7,999,800 ~ 0.0000025

Method for better performance

» To keep the fault time low
1. Swap space, faster then file system
2. Only dirty page is swapped out, or
3. Demand paging only from the swap space, or
4. Initially demand paging from the file system, swap out
to swap space, and all subsequent paging from swap
space

> Keep the fault rate extremely low
> Localization of program executing
» Time, space

Outline

Copy-on-Write (ERE4l)

Process Creation

» Virtual memory allows other benefits during process
creation:
1. Copy-on-Write (ERE)
2. Memory-Mapped Files (later)

Copy-on-Write (BRtE4%!)

» Copy-on-Write (COW, SRtEHl)
» allows both parent and child processes to initially
share the same pages in memory
> If either process modifies a shared page, only then is
the page copied
» COW allows more efficient process creation as only
modified pages are copied

» Free pages are allocated from a pool of zeroed-out
pages

Copy-on-Write (BRtE4%!)

» Example:

Process; physical memory Process,

| page A —L

e page B |

1 page C —]

Before Process 1 Modifies Page C

Copy-on-Write (BRtE4%!)

» Example:

Process; physical memory Process,

| page A —L

e page B |

page C —]
Copy of page C

After Process 1 Modifies Page C

Outline

Page Replacement (REE#)
Basic Page Replacement
First-In-First-Out (FIFO) Algorithm
Optimal Algorithm
Least Recently Used (LRU) Algorithm
LRU Approximation Algorithms
Counting Algorithms
Page-Buffeing Algorithms

What happens if there is no free frame?

» Page replacement (TREEHL)
Find some page in memory, but not really in use, swap
it out
> Algorithm?
» Performance?
want an algorithm which will result in minimum
number of page faults
» Same page may be brought into memory several times

Need of Page Replacement (TEE#) |

» Over-allocation: No free frames; All memory is in use.

valid-invalie
frame bit
0 H 4
0|3 |v
bC 1| load M 114 |v
2 J 2|5 v
3 M } !
. page table
Iogflgilur?:rfqow for user1
valid-invalie
frame bit
0 A
0|6 |V
1 B 1 i
2 D 212 |V
3 £ 317 |v
- page table
logical memory for user 2

for user 2

monitor

physical
memory

Y
N

What happens if there is no free frame?

Need of Page Replacement (TAE&E#E) II

» Solution:
Page replacement (AE &%)
Prevent over-allocation of memory by modifying
page-fault service routine to include page
replacement

Outline

Page Replacement (TAEIEH#R)
Basic Page Replacement

Basic Page Replacement

» Basic Page Replacement
1. Find the location of the desired page on disk
2. Find a free frame:
» If there is a free frame, use it
> If there is no free frame, use a page replacement
algorithm to select a victim frame
3. Bring the desired page into the (newly) free frame;
Update the page and frame tables
4. Restart the process

Basic Page Replacement

valid-invalie
frame# bit

e

page out
victim
P change to page
0 |i invalid @
f |v 2 f| victim T
reset page @ .
table for age in

desired

page table
new page page

Physical Memory

Page replacement

Basic Page Replacement

» NO MODIFY, NO WRITTEN(to disk/swap space)

> Use modify (dirty) bit to reduce overhead of page
transfers

> Only modified pages are written to disk
» This technique also applies to read-only pages
> For example, pages of binary code
» Page replacement completes separation between
logical memory and physical memory
» Large virtual memory can be provided on a smaller
physical memory
» Demand paging, to lowest page-fault rate, two major
problems

1. Frame-allocation algorithms
2. Page-replacement algorithms

Page Replacement Algorithms

» GOAL: to lowest page-fault rate

» Different algorithms are evaluated by running it on
a particular string of memory references (reference
string) and computing the number of page faults on
that string

1. A reference string is

a sequence of addresses referenced by a program
Example:
> An address reference string:
0100 0432 0101 0612 0102 0103 0104 0101 0611 0103
0104 0101 0610 0102 0103 0104 0101 0609 0102 0105
> Assuming page size = 100 B, then its corresponding
page reference string is:
14161616161

Page Replacement Algorithms

2. How many page faults?
> Determined by the number of page frames assigned
to the process
» For the upper example: 14161616161

> If > 3, then only 3 page faults
> If =1, 11 pages faults

Page Replacement Algorithms
2. How many page faults?

> Determined by the number of page frames assigned

to the process

» For the upper example: 14161616161

> If > 3, then only 3 page faults
> If =1, 11 pages faults

number of page faults

16

o N A

N O ®

1 i i | |
1 2 3 4 5
number of frames

Graph of Page Faults Versus The Number of Frames

Page Replacement Algorithms

» In all our examples, the reference strings are
1.1,2,3,41,25,1,2,3,45
2.7,0,1,203,0,4,23,03,21201,7,0,1

Outline

Page Replacement (TAEIEH#R)

First-In-First-Out (FIFO) Algorithm

First-In-First-Out (FIFO) Algorithm

» The simplest page-replacement algorithm: FIFO
> For each page: a time when it was brought into
memory
> For replacement: the oldest page is chosen
» Data structure: a FIFO queue

> Replace the page at the head of the queue
> Insert a new page at the end of the queue

1. Example 1: 15 page faults, 12 page replacements

Reference string
2 0 3 0 4 2 3 0 3 2

24
332

page frames

First-In-First-Out (FIFO) Algorithm

2. Example 2: Reference string:
1,2,3,41,251,2,3,4,5

Reference string
1 2 3 4 2 3 4 5

If 3 page frames: . 4 5
9 page faults
2 4

page frames

Reference string

If 4 page frames:
10 page faults

page frames

First-In-First-Out (FIFO) Algorithm

» More memory, better performance? MAY BE NOT!!
> Belady’ s anomaly (ZEHESEISR):
more frames = more page faults

16
o 14
S
& 12
S
g 10 AN
©c 8
5 AN
1S
=}
< 4

2

1 2 3 4 5 6
number of frames

FIFO illustrating Belady’ s Anomaly

u]
8
I
i
it

Outline

Page Replacement (TAEIEH#R)

Optimal Algorithm

Optimal Algorithm

» Optimal page-replacement algorithm:
Replace page that will not be used for longest
period of time

> It has the lowest page-fault rate
> It will never suffer from Belady’ s anomaly

» Examplel: 9 page faults, 6 page replacements

Reference string
2 0 3 0 4 2 3 0 3 2

page frames

Optimal Algorithm

» 4 frames example
1,2,3,41,2,51,23,45

Reference string

If 4 page frames:
6 page faults

page frames

» OPT: Difficult to implement
» How to know the future knowledge of the reference
string?
» So, it is only used for measuring how well other
algorithm performs

Outline

Page Replacement (RE&##)

Least Recently Used (LRU) Algorithm

Least Recently Used (LRU) Algorithm

» LRU: an approximation of the OPT algorighm
Use the recent past as an approximation of the near
future

> To replace the page that has not been used for the
longest period of time

> For each page: a time of its last use

> For replace: the oldest time value

1. Example1: 12 page faults; 9 page replacements

Reference string
2 0 3 0 4 2 3 0 3 2

page frames

Least Recently Used (LRU) Algorithm

» LRU: an approximation of the OPT algorighm
Use the recent past as an approximation of the near
future

> To replace the page that has not been used for the
longest period of time

> For each page: a time of its last use

> For replace: the oldest time value

2. Reference string: 1,2,3,4,1,2,5/1,2,3,4,5
Reference string

If 4 page frames:

7 page faults

page frames

Least Recently Used (LRU) Algorithm

HOW to implement LRU replacement?

1. Counter implementation
> Every page entry has a counter;
every time page is referenced through this entry, copy
the clock into the counter
» When a page needs to be changed, look at the
counters to determine which are to change

Least Recently Used (LRU) Algorithm

HOW to implement LRU replacement?

2. Stack implementation — keep a stack of page numbers
in a double link form:
» When page referenced: Move it to the top
> Requires 6 pointers to be changed
> No search for replacement
Reference string
4707101212712

stack
before
a

Outline

Page Replacement (TAEIEH#R)

LRU Approximation Algorithms

LRU Approximation Algorithms

» Reference bit
» With each page associate a bit, initially = 0
» When page is referenced bit set to 1
> Replace the one which is 0 (if one exists)
» We do not know the order, however

1. Additinal-Reference-Bits Algorithm:
Reference bits + time ordering, for example: 8 bits
» HW modifies the highest bit, only

> Periodically, right shift the 8 bits for each page
» 00000000, ..., 01110111, ..., 11000100, .., 11111111

LRU Approximation Algorithms

2. Second chance (clock) Algorithm
> Need only 1 reference bit, modified FIFO algorithm
> First, a page is selected by FIFO
> Then, the reference bit of the page is checked:
O=-replace it

1=not replace it, get a second chance with reference
bit: 1—0, and time—-current

LRU Approximation Algorithms

2. Second chance (clock) Algorithm
» Implementation: Clock replacement (Clock order)

refgli'tesnct pages refgli‘tesnct pages
(\ '/\
S 4 -
S o .
et ==>=T1] @ O @
@ 0] @
@ []| =@ []
@ @
L)
circular queue of pages circular queue of pages
(a) (b)

LRU Approximation Algorithms

3. Enhanced Second-Chance Algothm
> Reference bit + modify bit
> 4 page classes (iG[AIAL, E51)
> (0, 0) — best page to replace
> (0, 1) — not quite as good
> (1, 0) — probably be used again soon
> (1, 1) — probably be used again soon, and be dirty
> Replace the first page encountered in the lowest
nonempty class.
Step (a) — Scan for (0, 0)
Step (b) — Scan for (0, 1), & set reference bits to 0
Step (c) — Loop back to step (a)

Outline

Page Replacement (TAEIEH#R)

Counting Algorithms

Counting Algorithms

» Counting algorithms:
Keep a counter of the number of references that
have been made to each page

1. LFU Algorithm: replaces page with smallest count

2. MFU Algorithm: based on the argument that the
page with the smallest count was probably just
brought in and has yet to be used

Outline

Page Replacement (TAEIEH#R)

Page-Buffeing Algorithms

Page-Buffeing Algorithms

» System commonly keep a pool of free frames

» When replacement occurs, two frames are involved
1. A free frame from the pool is allocated to the process
> The desired page is read into the frame
2. A viction frame is chosen
> Written out later and the frame is added to the free pool

» NO NEED to write out before read in

1. An expansion
» Maintain a list of modified pages
» When a paging device is idle, select a modified page,
write it out, modify bit—0

Page-Buffeing Algorithms

2. Another modification
> Free frame with old page
» The old page can be reused
> Less write out and less read in
» VAX/VMS

» Some UNIX: + second chance
> ..

Outline

Allocation of Frames

Allocation of Frames

1. Minimum number of pages
» Each process needs minimum number of pages
» Determined by ISA (Instruction-Set Architecture)

» We must have enough frames to hold all the different
pages that any single instruction can reference

> Example: IBM 370
6 pages to handle SS MOVE instruction:

> Instruction is 6 bytes, might span 2 pages
> 2 pages to handle from
> 2 pages to handle to

2. Two major allocation schemes

> Fixed allocation; priority allocation
3. Two replacement policy

> Global vs. local

Allocation scheme 1: Fixed Allocation

1. Equal allocation
For example, if there are 100 frames and 5 processes,

give each process 20 frames.

m

frame number for any process = o

m = total memory frames
n = number of processes

Allocation scheme 1: Fixed Allocation

2. Proportional allocation
Allocate according to the size of process

> example:

i m = 64
s, = size of process p; c
S = Esi 1 = 10
m = total number of frames S2 = 1125

. S;
a; = allocation for p; = §I X m a = oo x64x5
127
dy = 64 ~ 59

— X
137

Allocation scheme 1: Priority Allocation

» Use a proportional allocation scheme using priorities
rather than size

» If process P; generates a page fault,
1. Select for replacement one of its frames
2. Select for replacement a frame from a process with
lower priority number

Replacement policy: Global vs. Local Allocation

» Global replacement
process selects a replacement frame from the set of all
frames; one process can take a frame from another
> Problem: a process cannot control its own page-fault
rate
» Local replacement
each process selects from only its own set of allocated
frames
> Problem?

Outline

Thrashing (#}zh)
Cause of trashing

Working-Set Model (T{E&t&EY)
Page-Fault Frequency (ERTTSIER)

Outline

Thrashing (#}zh)
Cause of trashing

Thrashing (#3zh)

» If a process does not have “enough” pages, the
page-fault rate is very high. This leads to:
> Low CPU utilization
> OS thinks that it needs to increase the degree of
multiprogramming
> Another process added to the system, getting worse!

» Thrashing = a process is busy swapping pages in and
out

Thrashing (#3zh)

» Cause of trashing: unreasonable degree of
multiprogramming (FSENZEIEFE)

CPU utilization

h

thrashing

degree of multiprogramming

Thrashing (#3zh)

» How to limit the effects of thrashing

> Local replacement algorithm? not entirely sloved.
» We must provide a process with as many frames as
it needs—locality
» How do we know how many frames is needed?
» working-set strategy <Locality model

» Locality model: This is the reason why demand
paging works
1. Process migrates from one locality to another
2. Localities may overlap
» Why does thrashing occur?
Ysize of locality > total memory size

Thrashing (#3zh)

34 I i 1 | ‘.‘.m

B LT et L S O L
sl

TR

ARPARRAL
3 ‘ el
bl

28

24 ‘i

i

wt st g e

2 ittt e AL

1
e b =y L A

‘THWWMMWWM TN

Locality In A Memory-Reference Pattern

Outline

Thrashing (#}5)

Working-Set Model (T {E£1&8Y)

Working-Set Model (T{EEEERY)

» The working-set model is based on the assumption
of locality.

> let _ _
A = working — set window

= a fixed number of page references
For example: 10,000 instructions

» Working set (T{EEE):
The set of pages in the most recent A page references.
> An approximation of the program’ s locality.

Working-Set Model (T{E£15EY)

» Example: A =10
page reference table
...28156777751623412344434344413234443444...
A | A |
2‘1 tE
WS(t,) = {1,2,5,6,7} WS(t,) = {3,4)

» Working set size:

WSS;(working set of Process P;)
= total number of pages referenced in the most recent A

» Varies in time, depend on the selection of A
1. if A too small will not encompass entire locality
2. if A too large will encompass several localities
3. if A = co = will encompass entire program

Working-Set Model (T{E£15EY)

» For all processes in the system, currently
D = XWSS; = total demand frames
» D > m = Thrashing

» Policy:
if D > m, then suspend one of the processes

Keeping Track of the Working Set

» Approximate with: interval timer + reference bits

» Example: A = 10,000

> Timer interrupts after every 5000 time units

> Keep in memory 2 bits for each page

» Whenever a timer interrupts, copy and sets the values

of all reference bits to 0

> If one of the bits in memory = 1 = page in working set
» Why is this not completely accurate?

> IN!! But where?

» Improvement:
» 10 bits and interrupt every 1000 time units

Outline

Thrashing (#}zh)

Page-Fault Frequency (ERTTSIER)

Page-Fault Frequency Scheme

» Page-Fault Frequency: helpful for controlling trashing
» Trashing has a high page-fault rate.
> Establish "acceptable” page-fault rate

> If actual rate too low, process loses frame
> If actual rate too high, process gains frame

K

increase number
of frames

upper bound

page-fault rate

lower bound

decrease number
of frames

number of frames

Working sets and page fault rates

working set
| i
1 | X
1 1
l 1
i 1
[
page I I
fault : :
| rate I |
b] I
I 1
| 1
0 ; '

time

Outline

Memory-Mapped Files

Memory-Mapped Files

» Memory-mapped file 1/0
allows file 1/0 to be treated as routine memory
access by mapping a disk block to a page in memory

» A file is initially read using demand paging. A
page-sized portion of the file is read from the file
system into a physical page.
Subsequent reads/writes to/from the file are treated
as ordinary memory accesses.

» Simplifies file access by treating file I/0 through
memory rather than read() write() system calls

Memory-Mapped Files

» Also allows several processes to map the same file
a”owing tha nanoc in mamanns tn ha charad

1
2
1 3
3
2 4
SN || E 5
4 6 L rd--red 6
5
6
L oo J 1 becll i
Process A b =1 Process B

phisical memory

1 B4 g6l |
disk file

Shared Memory in Windows using

Memory-Mapped I/0

process;

process;
= ~
shared ~ -
~)
memory >~ < memory-mapped file
S~ shared
~ memory

shared
memory

Memory - mapped 1/0O

» Many computer architectures provide
memory-mapped 1/0
> Ranges of memory addresses are set aside and are
mapped to the device registers.
» Directly read/write the mapped range of memory
address for transfer data from/to device registers
> Fast response times
» For example: video controler
> Displaying text on the screen is almost as easy as
writing the text into the appropriate memory-mapped
locations.

Outline

Allocating Kernel Memory

Allocating Kernel Memory

» Kernel memory
Treated differently from user memory
> Process’ s logical (virtual) address space VS. kernel
address space
> different privilege
> allow page fault or not?
» Often allocated from a free-memory pool

> Kernel requests memory for structures of varying sizes
» Some kernel memory needs to be contiguous

1. Buddy system (fkfEZ %)
2. Slab allocator (slab%>Ecgs)

1. Buddy System ({kf:Z %)

» Allocates memory from
fixed-size segment consisting of
physically-contiguous pages
» Memory allocated using power-of-2 allocator
> Satisfies requests in units sized as power of 2
> Request rounded up to next highest power of 2
» When smaller allocation needed than current size is
available, current chunk split into two buddies of
next-lower power of 2, continue until appropriate sized
chunk avallﬁble

ysically contiguous pages

‘ 256 KB
I L
[1
‘ 128 KB ‘ ‘ 128 KB ‘
AL AR
‘ 64 KB ‘ 64 KB ‘
Bg

@ Cr

Buddy System Allocator

2. Slab Allocator (slab%>Egzg) |

» Slab allocator: Alternate strategy

kernel objects

3 KB
object

7 KB
obJect5

aly

i

caches ~ slabs

Lo

~

%

~

\
T

[NRNY

physical contiguous pages

» Slab is one or more physically contiguous pages

2. Slab Allocator (slab%Egzg) I

> Cache consists of one or more slabs
» Single cache for each unique kernel data structure

> Each cache filled with objects — instantiations of the
data structure

» When cache created, filled with objects marked as free
» When structures stored, objects marked as used
> If slab is full of used objects, next object allocated from
empty slab
> If no empty slabs, new slab allocated

» Benefits: no fragmentation, fast memory request
satisfaction

Outline

Other Issues

Other Issues
1. Prepaging
> To reduce the large number of page faults that occurs
at process startup
> Prepage all or some of the pages a process will
need, before they are referenced
> But if prepaged pages are unused, /0 and memory
was wasted
> Assume s pages are prepaged and « of the pages is
used
> |s cost of s x o save pages faults > or < than the cost of
prepaging s x (1 — a) unnecessary pages?
> « near zero = prepaging loses
2. Page Size

> Page size selection must take into consideration:
2.1 Fragmentation
2.2 Table size
2.3 1/0 overhead
2.4 Locality

Other Issues
3. TLB Reach - The amount of memory accessible from
the TLB
> TLB Reach = (TLB Size) x (Page Size)

> Ideally, the working set of each process is stored in the
TLB,
Otherwise there is a high degree of page faults

> Increase the Page Size.
This may lead to an increase in fragmentation as not all
applications require a large page size

> Provide Multiple Page Sizes.
This allows applications that require larger page sizes
the opportunity to use them without an increase in
fragmentation

4. Inverted page tables

» This can reduce the memory used to store page tables.
> Need an external page table (one per process) for the
infomation of the logical address space

Other Issues
5. Program structure

int[128,128] data; // Each row is stored in one page

Program 1 Program 2
for (= 0;] <128;j++) 0 <198 |
for(i=0;i< 128 i++) for(i=0;i<128;i++)

. for(j=0;j <128;j++)
datalij] = 0; (Jdata[Ji,j] =0; .
> 128 x 128 = 16,384 page

>
faults 128 page faults

Other Issues
6. 1/0 Interlock — Pages must sometimes be locked into
memory

» Consider I/O — Pages that are used for copying a file
from a device must be locked from being selected for
eviction by a page replacement algorithm

buffer j =0
disk drive

Reason why frames used for I/0 must be in memory

Outline

Operating System Examples

Operating System Examples

» Windows XP
» Solaris

Windows XP

» Uses demand paging with clustering. Clustering
brings in pages surrounding the faulting page.

» Processes are assigned working set minimum and
working set maximum
» 50~345 pages
» Working set minimum is the minimum number of
pages the process is guaranteed to have in memory,
> A process may be assigned as many pages up to its
working set maximum
» When page fault:
> if < working set maximum, allocates a new page
> if =max, uses local page-replacement policy
» When the amount of free memory in the system falls
below a threshold, automatic working set trimming
is performed to restore the amount of free memory
» Working set trimming removes pages from processes
that have pages in excess of their working set
minimum

Solaris

» Maintains a list of free pages to assign faulting
processes
» Parameter lotsfree— threshold (amount of free
memory) to begin paging, 1/64 the size of physical
memory
» check the amount of free pages 4 times per second

» Paging is performed by pageout process using
modified second-chance algorithm (with two hands)
> Desfree- threshold parameter to increasing pagmg
> Minfree— threshold parameter to being swapping

> Scanrate is the rate at which pages are scanned. This
ranges from slowscan to fastscan

> Pageout is called more frequently depending upon the
amount of free memory available

Solaris I

8192
fastscan

scan rate

100
Islowscan

minfree

desfree

amount of free memory

Solaris 2 page scanner

lotsfree

«Or «Fr o«

DA

Outline

INEFORAE

INE
Background
Demand Paging ({&ZHiER)
Copy-on-Write (SRIE#l)
Page Replacement (TAE &%)
Allocation of Frames
Thrashing (#3zh)
Memory-Mapped Files
Allocating Kernel Memory
Other Issues
Operating System Examples

IR

"REEREER, BHMERST — Ry (F&RIEH
T RIE—)

g !

	Background
	Demand Paging (按需调页)
	Basic Concepts (Hardware support)
	Performance of Demand Paging

	Copy-on-Write (写时复制)
	Page Replacement (页面置换)
	Basic Page Replacement
	First-In-First-Out (FIFO) Algorithm
	Optimal Algorithm
	Least Recently Used (LRU) Algorithm
	LRU Approximation Algorithms
	Counting Algorithms
	Page-Buffeing Algorithms

	Allocation of Frames
	Thrashing (抖动)
	Cause of trashing
	Working-Set Model (工作集模型)
	Page-Fault Frequency (缺页频率)

	Memory-Mapped Files
	Allocating Kernel Memory
	Other Issues
	Operating System Examples
	小结和作业

