/*
* linux/arch/i386/mm/init.c
*
* Copyright (C) 1995 Linus Torvalds
*
* Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
*/
#include < linux/config.h>
#include < linux/signal.h>
#include < linux/sched.h>
#include < linux/kernel.h>
#include < linux/errno.h>
#include < linux/string.h>
#include < linux/types.h>
#include < linux/ptrace.h>
#include < linux/mman.h>
#include < linux/mm.h>
#include < linux/swap.h>
#include < linux/smp.h>
#include < linux/init.h>
#ifdef CONFIG_BLK_DEV_INITRD
#include < linux/blk.h>
#endif
#include < linux/highmem.h>
#include < linux/pagemap.h>
#include < linux/bootmem.h>
#include < linux/slab.h>
#include < asm/processor.h>
#include < asm/system.h>
#include < asm/uaccess.h>
#include < asm/pgtable.h>
#include < asm/pgalloc.h>
#include < asm/dma.h>
#include < asm/fixmap.h>
#include < asm/e820.h>
#include < asm/apic.h>
#include < asm/tlb.h>
mmu_gather_t mmu_gathers[NR_CPUS];
unsigned long highstart_pfn, highend_pfn;
static unsigned long totalram_pages;
static unsigned long totalhigh_pages;
int do_check_pgt_cache(int low, int high)
{
int freed = 0;
if(pgtable_cache_size > high) {
do {
if (pgd_quicklist) {
free_pgd_slow(get_pgd_fast());
freed++;
}
if (pmd_quicklist) {
pmd_free_slow(pmd_alloc_one_fast(NULL, 0));
freed++;
}
if (pte_quicklist) {
pte_free_slow(pte_alloc_one_fast(NULL, 0));
freed++;
}
} while(pgtable_cache_size > low);
}
return freed;
}
/*
* NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the
* physical space so we can cache the place of the first one and move
* around without checking the pgd every time.
*/
#if CONFIG_HIGHMEM
pte_t *kmap_pte;
pgprot_t kmap_prot;
#define kmap_get_fixmap_pte(vaddr) \
pte_offset(pmd_offset(pgd_offset_k(vaddr), (vaddr)), (vaddr))
void __init kmap_init(void)
{
unsigned long kmap_vstart;
/* cache the first kmap pte */
kmap_vstart = __fix_to_virt(FIX_KMAP_BEGIN);
kmap_pte = kmap_get_fixmap_pte(kmap_vstart);
kmap_prot = PAGE_KERNEL;
}
#endif /* CONFIG_HIGHMEM */
void show_mem(void)
{
int i, total = 0, reserved = 0;
int shared = 0, cached = 0;
int highmem = 0;
printk("Mem-info:\n");
show_free_areas();
printk("Free swap: %6dkB\n",nr_swap_pages<<(PAGE_SHIFT-10));
i = max_mapnr;
while (i-- > 0) {
total++;
if (PageHighMem(mem_map+i))
highmem++;
if (PageReserved(mem_map+i))
reserved++;
else if (PageSwapCache(mem_map+i))
cached++;
else if (page_count(mem_map+i))
shared += page_count(mem_map+i) - 1;
}
printk("%d pages of RAM\n", total);
printk("%d pages of HIGHMEM\n",highmem);
printk("%d reserved pages\n",reserved);
printk("%d pages shared\n",shared);
printk("%d pages swap cached\n",cached);
printk("%ld pages in page table cache\n",pgtable_cache_size);
show_buffers();
}
/* References to section boundaries */
extern char _text, _etext, _edata, __bss_start, _end;
extern char __init_begin, __init_end;
static inline void set_pte_phys (unsigned long vaddr,
unsigned long phys, pgprot_t flags)
{
pgprot_t prot;
pgd_t *pgd;
pmd_t *pmd;
pte_t *pte;
pgd = swapper_pg_dir + __pgd_offset(vaddr);
if (pgd_none(*pgd)) {
printk("PAE BUG #00!\n");
return;
}
pmd = pmd_offset(pgd, vaddr);
if (pmd_none(*pmd)) {
printk("PAE BUG #01!\n");
return;
}
pte = pte_offset(pmd, vaddr);
if (pte_val(*pte))
pte_ERROR(*pte);
pgprot_val(prot) = pgprot_val(PAGE_KERNEL) | pgprot_val(flags);
set_pte(pte, mk_pte_phys(phys, prot));
/*
* It's enough to flush this one mapping.
* (PGE mappings get flushed as well)
*/
__flush_tlb_one(vaddr);
}
void __set_fixmap (enum fixed_addresses idx, unsigned long phys, pgprot_t flags)
{
unsigned long address = __fix_to_virt(idx);
if (idx >= __end_of_fixed_addresses) {
printk("Invalid __set_fixmap\n");
return;
}
set_pte_phys(address, phys, flags);
}
static void __init fixrange_init (unsigned long start, unsigned long end, pgd_t *pgd_base)
{
pgd_t *pgd;
pmd_t *pmd;
pte_t *pte;
int i, j;
unsigned long vaddr;
vaddr = start;
i = __pgd_offset(vaddr);
j = __pmd_offset(vaddr);
pgd = pgd_base + i;
for ( ; (i < PTRS_PER_PGD) && (vaddr != end); pgd++, i++) {
#if CONFIG_X86_PAE
if (pgd_none(*pgd)) {
pmd = (pmd_t *) alloc_bootmem_low_pages(PAGE_SIZE);
set_pgd(pgd, __pgd(__pa(pmd) + 0x1));
if (pmd != pmd_offset(pgd, 0))
printk("PAE BUG #02!\n");
}
pmd = pmd_offset(pgd, vaddr);
#else
pmd = (pmd_t *)pgd;
#endif
for (; (j < PTRS_PER_PMD) && (vaddr != end); pmd++, j++) {
if (pmd_none(*pmd)) {
pte = (pte_t *) alloc_bootmem_low_pages(PAGE_SIZE);
set_pmd(pmd, __pmd(_KERNPG_TABLE + __pa(pte)));
if (pte != pte_offset(pmd, 0))
BUG();
}
vaddr += PMD_SIZE;
}
j = 0;
}
}
static void __init pagetable_init (void) //cxl: 初始化页表
{
unsigned long vaddr, end;
pgd_t *pgd, *pgd_base;
int i, j, k;
pmd_t *pmd;
pte_t *pte, *pte_base;
/*
* This can be zero as well - no problem, in that case we exit
* the loops anyway due to the PTRS_PER_* conditions.
*/
end = (unsigned long)__va(max_low_pfn*PAGE_SIZE); //cxl: 计算出最大地址
pgd_base = swapper_pg_dir; //cxl: 页目录的基地址
#if CONFIG_X86_PAE
for (i = 0; i < PTRS_PER_PGD; i++)
set_pgd(pgd_base + i, __pgd(1 + __pa(empty_zero_page)));
#endif
i = __pgd_offset(PAGE_OFFSET);
pgd = pgd_base + i; //cxl: 定位到3G以上的第一个页目录项
for (; i < PTRS_PER_PGD; pgd++, i++) { //cxl: 对每一个(768~1024)进行以下操作
vaddr = i*PGDIR_SIZE;
if (end && (vaddr >= end)) //cxl: 直到内存最大地址
break;
#if CONFIG_X86_PAE
pmd = (pmd_t *) alloc_bootmem_low_pages(PAGE_SIZE);
set_pgd(pgd, __pgd(__pa(pmd) + 0x1));
#else
pmd = (pmd_t *)pgd; //cxl: 从三级进入2级
#endif
if (pmd != pmd_offset(pgd, 0))
BUG();
for (j = 0; j < PTRS_PER_PMD; pmd++, j++) { //cxl: 第二级只有1个表项
vaddr = i*PGDIR_SIZE + j*PMD_SIZE;
if (end && (vaddr >= end))
break;
if (cpu_has_pse) {
unsigned long __pe;
set_in_cr4(X86_CR4_PSE);
boot_cpu_data.wp_works_ok = 1;
__pe = _KERNPG_TABLE + _PAGE_PSE + __pa(vaddr);
/* Make it "global" too if supported */
if (cpu_has_pge) {
set_in_cr4(X86_CR4_PGE);
__pe += _PAGE_GLOBAL;
}
set_pmd(pmd, __pmd(__pe));
continue;
}
pte_base = pte = (pte_t *) alloc_bootmem_low_pages(PAGE_SIZE);
for (k = 0; k < PTRS_PER_PTE; pte++, k++) {
vaddr = i*PGDIR_SIZE + j*PMD_SIZE + k*PAGE_SIZE;
if (end && (vaddr >= end))
break;
*pte = mk_pte_phys(__pa(vaddr), PAGE_KERNEL);
}
set_pmd(pmd, __pmd(_KERNPG_TABLE + __pa(pte_base)));
if (pte_base != pte_offset(pmd, 0))
BUG();
}
}
/*
* Fixed mappings, only the page table structure has to be
* created - mappings will be set by set_fixmap():
*/
vaddr = __fix_to_virt(__end_of_fixed_addresses - 1) & PMD_MASK;
fixrange_init(vaddr, 0, pgd_base);
#if CONFIG_HIGHMEM
/*
* Permanent kmaps:
*/
vaddr = PKMAP_BASE;
fixrange_init(vaddr, vaddr + PAGE_SIZE*LAST_PKMAP, pgd_base);
pgd = swapper_pg_dir + __pgd_offset(vaddr);
pmd = pmd_offset(pgd, vaddr);
pte = pte_offset(pmd, vaddr);
pkmap_page_table = pte;
#endif
#if CONFIG_X86_PAE
/*
* Add low memory identity-mappings - SMP needs it when
* starting up on an AP from real-mode. In the non-PAE
* case we already have these mappings through head.S.
* All user-space mappings are explicitly cleared after
* SMP startup.
*/
pgd_base[0] = pgd_base[USER_PTRS_PER_PGD];
#endif
}
void __init zap_low_mappings (void)
{
int i;
/*
* Zap initial low-memory mappings.
*
* Note that "pgd_clear()" doesn't do it for
* us, because pgd_clear() is a no-op on i386.
*/
for (i = 0; i < USER_PTRS_PER_PGD; i++)
#if CONFIG_X86_PAE
set_pgd(swapper_pg_dir+i, __pgd(1 + __pa(empty_zero_page)));
#else
set_pgd(swapper_pg_dir+i, __pgd(0));
#endif
flush_tlb_all();
}
/*
* paging_init() sets up the page tables - note that the first 8MB are
* already mapped by head.S.
*
* This routines also unmaps the page at virtual kernel address 0, so
* that we can trap those pesky NULL-reference errors in the kernel.
*/
void __init paging_init(void) //cxl: 由setup_arch调用,进一步由start_kernel调用
{
pagetable_init(); //cxl: 初始化页表
__asm__( "movl %%ecx,%%cr3\n" ::"c"(__pa(swapper_pg_dir))); //cxl: 重新装载CR3
#if CONFIG_X86_PAE
/*
* We will bail out later - printk doesnt work right now so
* the user would just see a hanging kernel.
*/
if (cpu_has_pae)
set_in_cr4(X86_CR4_PAE);
#endif
__flush_tlb_all(); //cxl: 刷新TLB
#ifdef CONFIG_HIGHMEM
kmap_init(); //cxl: 建立访问zone_highmem的线性地址窗口
#endif
{ //cxl: 划分zone
unsigned long zones_size[MAX_NR_ZONES] = {0, 0, 0}; //cxl: 初始化zone的大小
unsigned int max_dma, high, low;
max_dma = virt_to_phys((char *)MAX_DMA_ADDRESS) >> PAGE_SHIFT;
low = max_low_pfn;
high = highend_pfn;
if (low < max_dma)
zones_size[ZONE_DMA] = low; //cxl: DMA区的大小
else {
zones_size[ZONE_DMA] = max_dma;
zones_size[ZONE_NORMAL] = low - max_dma; //cxl: Normal区的大小
#ifdef CONFIG_HIGHMEM
zones_size[ZONE_HIGHMEM] = high - low; //cxl: highmem区的大小
#endif
}
free_area_init(zones_size); //cxl: 建立管理区描述符,并建立页描述符
}
return;
}
/*
* Test if the WP bit works in supervisor mode. It isn't supported on 386's
* and also on some strange 486's (NexGen etc.). All 586+'s are OK. The jumps
* before and after the test are here to work-around some nasty CPU bugs.
*/
/*
* This function cannot be __init, since exceptions don't work in that
* section.
*/
static int do_test_wp_bit(unsigned long vaddr);
void __init test_wp_bit(void)
{
/*
* Ok, all PSE-capable CPUs are definitely handling the WP bit right.
*/
const unsigned long vaddr = PAGE_OFFSET;
pgd_t *pgd;
pmd_t *pmd;
pte_t *pte, old_pte;
printk("Checking if this processor honours the WP bit even in supervisor mode... ");
pgd = swapper_pg_dir + __pgd_offset(vaddr);
pmd = pmd_offset(pgd, vaddr);
pte = pte_offset(pmd, vaddr);
old_pte = *pte;
*pte = mk_pte_phys(0, PAGE_READONLY);
local_flush_tlb();
boot_cpu_data.wp_works_ok = do_test_wp_bit(vaddr);
*pte = old_pte;
local_flush_tlb();
if (!boot_cpu_data.wp_works_ok) {
printk("No.\n");
#ifdef CONFIG_X86_WP_WORKS_OK
panic("This kernel doesn't support CPU's with broken WP. Recompile it for a 386!");
#endif
} else {
printk("Ok.\n");
}
}
static inline int page_is_ram (unsigned long pagenr)
{
int i;
for (i = 0; i < e820.nr_map; i++) {
unsigned long addr, end;
if (e820.map[i].type != E820_RAM) /* not usable memory */
continue;
/*
* !!!FIXME!!! Some BIOSen report areas as RAM that
* are not. Notably the 640->1Mb area. We need a sanity
* check here.
*/
addr = (e820.map[i].addr+PAGE_SIZE-1) >> PAGE_SHIFT;
end = (e820.map[i].addr+e820.map[i].size) >> PAGE_SHIFT;
if ((pagenr >= addr) && (pagenr < end))
return 1;
}
return 0;
}
static inline int page_kills_ppro(unsigned long pagenr)
{
if(pagenr >= 0x70000 && pagenr <= 0x7003F)
return 1;
return 0;
}
void __init mem_init(void) //cxl: 由start_kernel调用
{
extern int ppro_with_ram_bug(void);
int codesize, reservedpages, datasize, initsize;
int tmp;
int bad_ppro;
if (!mem_map)
BUG();
bad_ppro = ppro_with_ram_bug();
#ifdef CONFIG_HIGHMEM
highmem_start_page = mem_map + highstart_pfn;
max_mapnr = num_physpages = highend_pfn;
#else
max_mapnr = num_physpages = max_low_pfn; //cxl: 初始化物理页框总数
#endif
high_memory = (void *) __va(max_low_pfn * PAGE_SIZE);
/* clear the zero-page */
memset(empty_zero_page, 0, PAGE_SIZE);
/* this will put all low memory onto the freelists */ //cxl: 释放非高端的所有空闲页面
totalram_pages += free_all_bootmem();
reservedpages = 0;
for (tmp = 0; tmp < max_low_pfn; tmp++) //cxl: 对每个页框及其页描述符
/*
* Only count reserved RAM pages
*/
if (page_is_ram(tmp) && PageReserved(mem_map+tmp))
reservedpages++;
#ifdef CONFIG_HIGHMEM
for (tmp = highstart_pfn; tmp < highend_pfn; tmp++) {
struct page *page = mem_map + tmp;
if (!page_is_ram(tmp)) {
SetPageReserved(page);
continue;
}
if (bad_ppro && page_kills_ppro(tmp))
{
SetPageReserved(page);
continue;
}
ClearPageReserved(page);
set_bit(PG_highmem, &page->flags);
atomic_set(&page->count, 1);
__free_page(page);
totalhigh_pages++;
}
totalram_pages += totalhigh_pages;
#endif
codesize = (unsigned long) &_etext - (unsigned long) &_text; //cxl: 计算内核代码区长度
datasize = (unsigned long) &_edata - (unsigned long) &_etext; //cxl: 计算内核数据区长度
initsize = (unsigned long) &__init_end - (unsigned long) &__init_begin; //cxl: 计算init区的长度
printk("Memory: %luk/%luk available (%dk kernel code, %dk reserved, %dk data, %dk init, %ldk highmem)\n",
(unsigned long) nr_free_pages() << (PAGE_SHIFT-10),
max_mapnr << (PAGE_SHIFT-10),
codesize >> 10,
reservedpages << (PAGE_SHIFT-10),
datasize >> 10,
initsize >> 10,
(unsigned long) (totalhigh_pages << (PAGE_SHIFT-10))
);
#if CONFIG_X86_PAE
if (!cpu_has_pae)
panic("cannot execute a PAE-enabled kernel on a PAE-less CPU!");
#endif
if (boot_cpu_data.wp_works_ok < 0)
test_wp_bit();
/*
* Subtle. SMP is doing it's boot stuff late (because it has to
* fork idle threads) - but it also needs low mappings for the
* protected-mode entry to work. We zap these entries only after
* the WP-bit has been tested.
*/
#ifndef CONFIG_SMP
zap_low_mappings();
#endif
}
/* Put this after the callers, so that it cannot be inlined */
static int do_test_wp_bit(unsigned long vaddr)
{
char tmp_reg;
int flag;
__asm__ __volatile__(
" movb %0,%1 \n"
"1: movb %1,%0 \n"
" xorl %2,%2 \n"
"2: \n"
".section __ex_table,\"a\"\n"
" .align 4 \n"
" .long 1b,2b \n"
".previous \n"
:"=m" (*(char *) vaddr),
"=q" (tmp_reg),
"=r" (flag)
:"2" (1)
:"memory");
return flag;
}
void free_initmem(void)
{
unsigned long addr;
addr = (unsigned long)(&__init_begin);
for (; addr < (unsigned long)(&__init_end); addr += PAGE_SIZE) {
ClearPageReserved(virt_to_page(addr));
set_page_count(virt_to_page(addr), 1);
free_page(addr);
totalram_pages++;
}
printk ("Freeing unused kernel memory: %dk freed\n", (&__init_end - &__init_begin) >> 10);
}
#ifdef CONFIG_BLK_DEV_INITRD
void free_initrd_mem(unsigned long start, unsigned long end)
{
if (start < end)
printk ("Freeing initrd memory: %ldk freed\n", (end - start) >> 10);
for (; start < end; start += PAGE_SIZE) {
ClearPageReserved(virt_to_page(start));
set_page_count(virt_to_page(start), 1);
free_page(start);
totalram_pages++;
}
}
#endif
void si_meminfo(struct sysinfo *val)
{
val->totalram = totalram_pages;
val->sharedram = 0;
val->freeram = nr_free_pages();
val->bufferram = atomic_read(&buffermem_pages);
val->totalhigh = totalhigh_pages;
val->freehigh = nr_free_highpages();
val->mem_unit = PAGE_SIZE;
return;
}
#if defined(CONFIG_X86_PAE)
struct kmem_cache_s *pae_pgd_cachep;
void __init pgtable_cache_init(void)
{
/*
* PAE pgds must be 16-byte aligned:
*/
pae_pgd_cachep = kmem_cache_create("pae_pgd", 32, 0,
SLAB_HWCACHE_ALIGN | SLAB_MUST_HWCACHE_ALIGN, NULL, NULL);
if (!pae_pgd_cachep)
panic("init_pae(): Cannot alloc pae_pgd SLAB cache");
}
#endif /* CONFIG_X86_PAE */