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Summary. The propulsive performance and vortex shedding of an oscillating foil, which mimics biological

locomotion, are investigated based on a computational fluid dynamics analysis. The objectives of this study

are to investigate unsteady forces, in particular a thrust force, for the foil in pitching and plunging motion,

and to deal with the relations of the propulsive performance with leading-edge vortex structure and vortex

shedding in the near wake. The two-dimensional incompressible Navier–Stokes equations in the vorticity

and stream-function formulation are solved by fourth-order essentially compact finite difference schemes

for the space derivatives and a fourth-order Runge-Kutta scheme for the time advancement. To reveal the

mechanism of the propulsive performance, the unsteady forces and the shedding of the leading- and trailing-

edge vortices of the foil in the pitching and plunging motion are analyzed. Based on our calculated results,

three types of the leading-edge vortex shedding, which have an effective influence on the vortex structures in

the wake of the oscillating foil, are identified. The effects of some typical factors, such as the frequency and

amplitude of the oscillation, the phase difference between the pitching and plunging motions, and the

thickness ratio of the foil, on the vortex shedding and the unsteady forces are discussed.

1 Introduction

Insects and fish have experienced a billions-year process of evolution with natural selection for

their survival and have developed their superior and complete performance of flight and

swimming. Those animals act under their neural control with their muscle contraction as a

motor to transform the biochemical energy to mechanical energy and then implement their

wing-flapping or body-undulating propulsion. We are interested in understanding the design

concepts of these living machines, which include the neural science, muscle mechanics, mor-

phology diversity and locomotion patterns (kinematics), propulsion and its control studies

(dynamics), energy costs and efficiency (energetics), biological material properties, etc. All these

are involved in a discipline of flying and swimming biomechanics. Pioneering work in the

biomechanics of animal locomotion in the quasi-steady limit was done by Weis-Fogh et al. [1]

and Lighthill [2] among others. Comprehensive reviews of much previous work can be found in

the literature [3]–[7].

Usually, flapping motion is a basic mode of locomotion in insects, birds, and fish. Thrust

and lift are generated when the flapping wings or tails interact with the surrounding fluids.

Because of the highly unsteady nature of viscous flow around a flapping wing, it is needed

to understand the physical mechanism and vortex shedding in unsteady viscous flow, which

is crucial to the locomotion performance. In particular, an oscillating foil has often been
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employed as a typical model to deal with the flapping motion to mimic biological loco-

motion.

Some work on this subject has been theoretically, experimentally and computationally car-

ried out. Theoretical analyses including the vortex panel method and the unsteady lifting-line

theory have been performed for bird flight [8] and fish swimming [3], [9], [10]. A detailed review

of various theoretical methods has been given by Smith et al. [11]. Experiments on oscillating

foils have exhibited the existence of optimal parameters for the generation of an effective thrust.

Triantafyllou et al. [12] studied experimentally the wake mechanics for thrust generation in

oscillation foils. Anderson et al. [13] and Gursul and Ho [14] examined the high propulsive

efficiency of oscillating foils at a certain frequency. Some recent experimental work has been

performed to investigate the leading-edge vortices in insect flight by Ellington et al. [15], as well

as the wing rotation and the aerodynamic basis of insect flight by Dickenson et al. [16]. In

particular, extensive works [15]–[19] have explored the mechanism of the leading-edge vortices

which plays an important role to generate unconventional forces in insect flight.

By use of computational fluid dynamics methods, a two-dimensional hovering flight was

numerically computed by Gustafson et al. [20], and their calculated results were in qualitative

agreement with some available experimental data. Liu et al. [21], [22] applied a method of

pseudo-compressibility to compute viscous flow around a three-dimensional rigid wing, and

examined the axial flows associated with the leading-edge vortex as observed in the experiments

by Ellington et al. [15]. Wang [23] performed a two-dimensional computation of a foil in

flapping motion to reveal the frequency selection in forward insect flapping flight. Hall et al.

[24] examined the power requirements for flapping flight. Recently, Sun et al. [25], [26] inves-

tigated numerically the unsteady aerodynamics of a model fruit fly wing in flapping motion,

and the lift and power requirements for hovering flight.

In this work, the goals of our study are to investigate the unsteady forces of the foil in

pitching and plunging motion, as well as to deal with the relation of the propulsive performance

with the vortex structure evolution near the foil and vortex shedding in the near wake. In this

study, viscous flow past a foil in pitching and plunging motion, that is capable of mimicing

biological locomotion, is numerically investigated for a wide range of the computational

parameters. The two-dimensional incompressible Navier–Stokes equations in the vorticity and

stream-function formulation are solved by a fourth-order essentially compact finite difference

scheme, developed by E and Liu [27], for the space derivatives, and a fourth-order Runge-Kutta

scheme for the time advancement. To explore the mechanism of the propulsive performance,

the unsteady forces and the shedding of the leading- and trailing-edge vortices are analyzed for

the foil in the pitching and plunging motion.

This paper is organized as follows. The mathematical formulations are described in Sect. 2.

The numerical method is briefly given in Sect. 3. In Sect. 4, some typical results for unsteady

force and vortex shedding are discussed. Finally, concluding remarks are summarized in

Sect. 5.

2 Governing equations

A sketch of a foil in pitching and plunging motion to mimic biological locomotion is illustrated

in Fig. 1. In this study, the frame is fixed with the foil motion, and the two-dimensional

incompressible Navier–Stokes equations in the vorticity and stream-function formulation are

employed. To nondimensionalize the governing equations, the chord length of the foil c is used
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as the length scale, the free-stream velocity U as the velocity scale. The nondimensional gov-

erning equations are thus given by

@x
@t
þ @w
@y

@x
@x
� @w
@x

@x
@y
¼ 1

Re
r2x� 2

dX
dt
; ð1Þ

r2w ¼ �x; ð2Þ
where x and w represent the vorticity and stream-function, respectively. X is the rotation speed

of the pitching oscillation. Re is the Reynolds number, defined as Re ¼ Uc=m, and m is the

kinematic viscosity. Based on the stream-function, the velocity is obtained by

u ¼ @w
@y

; v ¼ � @w
@x

; ð3Þ

where u and v represent the velocity components in x- and y-directions, as shown in Fig. 1,

respectively.

When the Navier-Stokes equations (1), (2) in the frame fixed with the foil motion are solved,

an additional term due to the Coriolis force occurs in Eq. (1) for the pitching motion, and no

fictitious force appears in the vorticity equation (1) for the plunging motion considered here.

The no-slip and no-penetration boundary conditions at the foil are enforced explicitly through

the vorticity and stream-function boundary condition, respectively. In the far field, the

boundary condition on the stream-function is given by the potential flow [23].

The motion of the foil consists of pitching and plunging oscillation. The plunging oscillation

is described by

h ¼ Am sinð2pftþ hÞ; ð4Þ

and the pitching oscillation by

a ¼ am sinð2pftþ hþ /Þ; ð5Þ

where Am and am are the nondimensional plunging and pitching amplitudes, respectively, f

represents the nondimensional oscillation frequency, and h and / denote the initial phase and

the phase difference between the pitching and plunging oscillations. To simplify the present

calculation, the same frequency f is used in both the pitching and plunging oscillations.

3 Numerical methods

In this study, a fourth-order essentially compact finite difference scheme, developed by E and

Liu [27], is employed to solve the incompressible Navier-Stokes equations. To achieve a fourth-

y

x

Am

am

Fig. 1. Sketch of a foil in plunging and
pitching motion
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order spatial accuracy, an advantage of the scheme is that two Poisson equations only need to

be solved by use of the FFT technique at each time step [27]. By using the Navier-Stokes

equations in the vorticity-stream function formulation, the vorticity boundary condition is

explicitly enforced to satisfy the no-slip boundary condition. To discretize the time derivative in

Eq. (1), a fourth-order Runge-Kutta scheme is employed for the time advancement. The dis-

cretization formulations have been described in detail in [27].

4 Results and discussion

In this study, an elliptic foil is used, and a conformal map is employed for grid generation with

a grid number 256� 256 in the radial and circumferential directions, respectively. The com-

putational domain is about 10c in the radial direction, and the time step is 0:0002 based on the

computation stability condition. Extensive convergence checks with different grid sizes and

time steps have been undertaken. It has been determined that the computed results are inde-

pendent of the time steps and the grid sizes used in the present calculation. Some typical results

are shown in the following discussion.

To deal systematically with the mechanism of propulsive performance and vortex shedding

of a foil in the pitching and plunging motion, the computation parameters are chosen as

follows. The Reynolds number is Re ¼ 103, the thickness ratio of the foil k ¼ 0:0625 � 0.5. In

Eqs. (4) and (5), the plunging amplitude Am ¼ 0:08 � 0.32, the pitching amplitude

am ¼ 5� � 20�, the frequency of the oscillation f ¼ 0:5 � 4, the phase difference

/ ¼ 45� � 225�, and the initial phase h ¼ 180�. To demonstrate the effects of those compu-

tational parameters, e.g., k, Am, am, f and /, on the vortex shedding and the corresponding

time-dependent forces, some typical results are mainly discussed.

Here, we first depict the sketch of three types of the leading-edge vortex shedding based on

the present calculated results, as shown in Fig. 2, where the leading-edge vortex evolution is

only shown in half-cycle of the oscillation. In Fig. 2a, denoted as the mode-1, the leading-edge

vortex pairs with another vortex and passes over the leading-edge of the foil from one side to

another side of the foil. The vortex evolution is helpful to generate a thrust force due to the

formation of the lower-pressure distribution along the leading-edge region induced by the

a b c

Fig. 2. Sketch of three types of the leading-edge vortex shedding evolution: a Mode-1; b Mode-2;

c Mode-3
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vortex. In the mode-2 (Fig. 2b), the leading-edge vortex pairs with another vortex to form a

vortex-pair, which is shedding downstream along the foil. In Fig. 2c (i.e., the mode-3), a single

of the leading-edge vortex is shedding downstream. The evolution of the leading-edge vortex

has an effective influence on the vortex structures in the wake of the foil. In our previous work

to investigate the vortex control of an airfoil by using small perturbation near the leading-edge

region of the airfoil [28], the leading-edge vortex evolution has an effective influence on the

vortex shedding and vortex structures in the wake of the airfoil. According to our extensive

calculations for different parameters, if the leading-edge vortex development behaves as the

mode-1 (Fig. 2a) or mode-2 (Fig. 2b), a reverse Karman vortex-street is formed in the wake of

the foil due to the interaction of the leading-edge vortex with the trailing-edge shedding vortex.

However, if the leading-edge vortex evolution behaves as the mode-3 (Fig. 2c), a classic Kar-

man vortex wake is generated.

Figure 3 shows the time-dependent drag and lift coefficients for the plunging oscillation at

Am ¼ 0:16, f ¼ 1, k ¼ 0:125. The lift coefficient CL varies symmetrically about zero, thus the

time-averaged lift force is zero as expected from the symmetric flapping. The frequency of CD is

twice that of CL, because the drag is generated in both the up and down oscillations. The drag

coefficient CD variation is asymmetric about the zero value, because the fore-and-aft symmetry

is broken due to the free-stream velocity. The time-averaged drag coefficient �CCD is ) 0:39

approximately. Here, we define that a negative value of �CCD corresponds to a thrust in the mean
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Fig. 3. Time-dependent lift and drag

coefficients for the plunging oscillation
at Am ¼ 0:16, f ¼ 1 and k ¼ 0:125:

a lift coefficient CL; b drag coefficient
CD. Condition-1: grid number

256� 256, time step 0:0002; Condi-
tion-2: grid number 512� 512, time

step 0:0001
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forward direction. Thus, the mean thrust coefficient in this case is 0:39. To demonstrate that the

computed results are independent of the time steps and the grid sizes, the results calculated by

different grid numbers and time steps are also shown in Fig. 3.

To analyse the mechanism of the thrust generation, the qualitative feature of the associated

vortex shedding is examined. From instantaneous vorticity contours in Fig. 4, a reverse Kar-

man vortex-street is formed in the wake of the foil, where the vortices in the wake rotate in the

opposite direction compared to a classic Karman vortex wake. Hence, the induced flow has a

component moving backward with respect to the foil to generate the thrust [2], [3]. To

understand vortex evolution more clearly near the foil, Fig. 5 shows the vorticity contours at

different phases in one cycle. During the first-half cycle, the foil is moving downward. A

negative leading-vortex LVN1 is formed (Fig. 5a) and paired with another positive leading-

vortex LVP0 to form a vortex pair (i.e., LVP0 þ LVN1) in Fig. 5b, here, the positive vortex

represents a counter-clockwise vortex and the negative one is a clockwise vortex. Meanwhile, a

negative vortex (LVN0) formed in the previous cycle moves downstream along the lower-side of

the foil, and a positive trailing-vortex TVP1 is generated. Note that the vortex pair

(LVP0 þ LVN1) rotates in Fig. 5c and separates again in Fig. 5d. Then, it is interesting to find

that the vortex LVP0 moves downstream along the upper-side of the foil, and the vortex LVN1 is

passing over the leading-edge of the foil from the upper-side to the lower-side of the foil. The

vortex (LVN1) evolution is helpful to generate a thrust force due to the formation of the lower-

pressure distribution induced by the vortex. In Fig. 5d, when a positive leading-vortex LVP1 is

generated, the positive trailing-vortex TVP1 is shedding downstream, and a negative trailing-

vortex TVN1 is formed. In the following half-cycle, the foil is oscillating upward. As expected,

b

a

Fig. 4. Instantaneous vorticity con-

tours at Am ¼ 0:16, f ¼ 1 and k ¼
0:125: a T=4; b 3T=4. Here, solid lines

represent positive values and dashed
lines negative values. The increment

of the contours is 5

Fig. 5. Instantaneous vorticity contours at Am ¼ 0:16, f ¼ 1 and k ¼ 0:125: a T=8; b 2T=8; c 3T=8;
d 4T=8; e 5T=8; f 6T=8; g 7T=8; h 8T=8. Solid lines represent positive values and dashed lines negative

values. The increment of the contours is 5

c
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the vortex evolution is repeated in the opposite direction. In Figs. 5e and 5f, the leading-vortex

LVN0 coalesces with the trailing-vortex TVN1 to shed downstream. Meanwhile, the negative

vortex LVN1 formed in the upper-side of the foil is paired with the vortex LVP1 to form a vortex

pair (i.e., LVP1 þ LVN1) in Figs. 5f and 5g. When the trailing-vortex TVN1 is shedding down-

stream in Fig. 5g, another positive vortex TVP2 is gradually generated. Then, the vortex pair

(LVP1 þ LVN1) is separated in Fig. 5h. The vortex LVN1 moves downstream along the lower-

side of the foil and corresponds to the vortex LVN0 in Fig. 5a. The vortex LVP1 moves over the

leading-edge from the lower-side to the upper-side of the foil and corresponds to the vortex

LVP0 in Fig. 5a. Based on the above description, it is a typical Mode-1 evolution of the leading-

edge vortex. In the near wake of the foil, as shown in Fig. 4, a reverse Karman vortex-street is

formed when the vortices generated from the foil shed into the downstream. In the following

oscillation cycle, the vortex evolution is repeated as described above.

Further, to deal with the effect of the amplitude of plunging oscillation on the force and

vortex shedding, Fig. 6 shows the time-dependent drag and lift coefficients for the plunging

oscillation at Am ¼ 0:08, f ¼ 1, k ¼ 0:125. As expected, the time-averaged lift coefficient �CCL is

zero approximately. The time-averaged drag coefficient �CCD is 0:12 approximately, and a classic

Karman vortex-street is observed in the wake. To demonstrate the vortex patterns near the foil,

the vorticity contours at several phases in one cycle are shown in Fig. 7. When the foil is

oscillating downward, a negative leading-vortex LVN1 is generated in Fig. 7a, and a positive

leading-vortex LVP0 formed in the previous cycle is moving downstream along the lower-side of
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Fig. 6. Time-dependent lift and drag

coefficients for the plunging oscillation
at Am ¼ 0:08, f ¼ 1 and k ¼ 0:125: a

lift coefficient CL; b drag coefficient CD
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the foil, as shown in Fig. 7a and b. Meanwhile, a positive trailing-vortex TVP1 is shedding into

the wake, and another negative TVN1 is gradually generated. When the foil is oscillating up-

ward, a positive leading-vortex LVP1 is formed and moves downstream in Fig. 7c and d. When

the trailing-vortex TVN1 is shedding, a positive trailing-vortex TVP2 is formed again. As dem-

onstrated, the evolution of the leading-edge vortex belongs to the Mode-3 (Fig. 2c). Finally, the

vortices shed from the foil form a Karman vortex-street in the near wake of the foil.

Based on the calculated results, Fig. 8 exhibits the time-averaged drag coefficient �CCD versus

the amplitude of plunging oscillation at f ¼ 1, k ¼ 0:125. It can be found that an effective

thrust force is generated at the amplitude Am ¼ 0:15 � 0:25 approximately. Figure 8 reason-

ably depicts the character of �CCD with Am. In a limiting case with Am ! 0, the foil is stationary

and always undergoes a drag force. Thus, as shown in Fig. 8, when Am decreases from

Am ¼ 0:16, �CCD increases from negative to positive value. However, when Am increases further

from Am ¼ 0:2, the flow structure becomes more complicated and hardly to form a well-

organized reverse Karman vortex-street in the near wake of the foil; �CCD thus increases grad-

ually, or the corresponding thrust decreases. This behavior is consistent with the results by

Wang [23] and the data of forward dragonfly flight by Norberg [29].

Although frequency selection in forward flapping flight was investigated numerically by

Wang [23], an analysis is briefly given to illustrate the effect of the frequency of plunging

oscillation on the vortex shedding near the foil and the corresponding time-dependent forces.

Figures 9 and 10 show the time-dependent lift and drag coefficients for f ¼ 0:5 and 2 at
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Fig. 7. Instantaneous vorticity contours at Am ¼ 0:08, f ¼ 1 and k ¼ 0:125: a T=4; b 2T=4; c 3T=4;
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Am ¼ 0:16 and k ¼ 0:125, respectively. The lift coefficients CL vary about the zero mean value.

The amplitude of CL at f ¼ 2 is higher than that at f ¼ 0:5 due to the inertial effect of plunging

oscillation. Both for f ¼ 0:5 and 2, thrust force is generated because the time-averaged drag

coefficient ( �CCD) is negative. From the instantaneous vorticity contours (not shown here), it is

also found that the leading-edge vortex development behaves as the Mode-1 (Fig. 2a), and the

reverse Karman vortex-street is observed in the wake of the foil for the corresponding condi-

tions in Figs. 9 and 10.
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k ¼ 0:125
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The frequency of the oscillation is usually a key parameter and has an effective influence on

the vortex shedding and vortex structure in the wake of the foil for flapping flight [23] and

unsteady vortex control [28]. To demonstrate the effect of frequency on the force, Fig. 11

depicts the time-averaged drag coefficient �CCD versus the frequency of plunging oscillation at

Am ¼ 0:16, k ¼ 0:125. The character of �CCD varying with the frequency is consistent with the

results by Wang [23]. From Fig. 11, it is found that an effective thrust force is generated in a

region of f ¼ 1 � 2 approximately.

To illustrate the effect of the thickness ratio of the foil (k) on the force and vortex shedding,

several different thickness ratios are calculated. As shown in Fig. 3, the time-averaged drag

coefficient �CCD is )0.39 approximately at k ¼ 0:125. Further, Fig. 12 shows the time-dependent

drag coefficient for k ¼ 0:25 and 0.3, respectively. At k ¼ 0:25 (Fig. 12a), �CCD is 0.065

approximately, where a vortex-street ranking near as one line is formed. With increasing k, such
as at k ¼ 0:3 (Fig. 12b), �CCD is 0.25 approximately, where a classic Karman vortex-street is

observed in the wake of the foil, and the leading-edge vortex development behaves as the

Mode-3 (Fig. 2c). If k increases further, as a typical case with k ¼ 1, i.e., a transversely oscil-

lating circular cylinder in a uniform flow, it is well known that a drag force is always formed

[30]. Based on the present calculated results, Fig. 13 shows the time-averaged drag coefficient
�CCD versus the thickness ratio of the foil at f ¼ 1 and Am ¼ 0:16. When the thickness ratio of the

foil lays in a region of k ¼ 0:1 � 0.15, an effective thrust force is generated.
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Further, a foil in a pitching oscillation around its mid-chord is considered. Figure 14 exhibits

the lift and drag coefficients versus time at am ¼ 10�, k ¼ 0:125 and f ¼ 1. The lift coefficient CL

varies symmetrically about zero from the symmetric pitching oscillation foil. The frequency of

CD is twice that of CL, because the drag is generated in both the up and down oscillations. It is

found that the time-averaged drag coefficient �CCD is positive, correspondingly the leading-edge

vortex development behaves as the Mode-3 (Fig. 2c), and a classic Karman vortex-street is

formed in the wake of the pitching foil. Several cases for am ¼ 5� � 20� are calculated, and the
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Fig. 11. Time-averaged drag coefficient versus the

frequency of plunging oscillation at Am ¼ 0:16

and k ¼ 0:125
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force behaviors are similar to Fig. 14 with an observation of the classic Karman vortex-street in

the wake of the foil.

Finally, the viscous flow past an oscillating foil with coupled pitching and plunging motions

is investigated. As a typical case, we first analyse the force behavior and vortex structures near

the foil for Am ¼ 0:16, am ¼ 5�, / ¼ 180�, f ¼ 1, k ¼ 0:125. Figure 15 shows the time-

dependent lift and drag coefficients. The time-averaged lift coefficient �CCL is approximately zero,

and the time-averaged drag coefficient �CCD is negative to form a thrust force. To examine the

feature of vortex shedding, the instantaneous vorticity contours, as shown in Fig. 16, exhibit
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Fig. 13. Time-averaged drag coefficient versus the
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a reverse Karman vortex-street in the wake. It is also interesting to depict the vortex structures

near the foil. Figure 17 shows the vorticity contours at several phases in one cycle. In Fig. 17a,

when a negative leading-vortex LVN1 is generating, two vortex-pairs, i.e., LVN0 þ PLVN0 and

LVP0 þ PLVP0, which are formed in the previous cycle, are moving downstream along the

upper-side and lower-side of the foil, respectively. Then, the leading-vortex LVN1 induces an

opposite sign vortex PLVN1 to form a vortex-pair (i.e., LVN1 þ PLVN1) in Fig. 17b. Meanwhile,

a negative trailing-vortex TVN1 is generated and interacted with the vortex pair LVN0 þ PLVN0.

In the following half-cycle, when the trailing-vortex TVN1 is shedding downstream, a positive

leading-vortex LVP1 is generated in Fig. 17c. Then, the vortex LVP1 induces an opposite sign

vortex PLVP1 to form a vortex-pair LVP1 þ PLVP1, which moves downstream along the lower-

side of the foil (Fig. 17d). Meanwhile, when the vortex-pair LVN1 þ PLVN1 moves downstream

along the upper-side of the foil, a positive trailing-vortex TVP1 is formed and interacted with the

vortex-pair LVP0 þ PLVP0 in Fig. 17d. In this case, the leading-edge vortex evolution is a typical

Mode-2 (Fig. 2b), and the reverse Karman vortex-street is formed in the near wake of the foil

as shown in Fig. 16.

To deal with the effects of pitching and plunging amplitudes (i.e., am, Am) and phase differ-

ence / on the drag force (or thrust force), Fig. 18 shows the drag coefficient versus time for

am ¼ 5� and 10�, Am ¼ 0:08 and 0.16, and / ¼ 90�, 135� and 180�. At / ¼ 135�, as shown in

Figs. 18a and c, an effective thrust force is generated, which is consistent with the previous

experimental work [13]. However, at the plunging oscillation amplitude Am ¼ 0:08 (Fig. 18d),
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Fig. 16. Instantaneous vorticity con-
tours at Am ¼ 0:16, am ¼ 5�, / ¼
180�, f ¼ 1 and k ¼ 0:125: a T=4;
b 3T=4. Solid lines represent positive

values and dashed lines negative
values. The increment of the contours

is 5
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the time-averaged drag coefficient is positive. In a limiting case, when Am ! 0, the foil motion

is only the pitching oscillation, and a drag force is always generated as discussed in the above.

According to the evolution of the vortex shedding (not shown here), the leading-edge vortex

development in Fig. 18a–c behaves as the Mode-2 (Fig. 2b), and the reverse Karman vortex-

street is formed in the near wake. However, the leading-edge vortex evolution in Fig. 18d

behaves as the Mode-3 (Fig. 2c), and the Karman vortex-street is formed in the near wake.

As is well known, the phase difference / is an important parameter for the generation of the

drag force (or thrust force). To investigate the effect of the phase difference on the force, other

parameters are chosen as f ¼ 1, k ¼ 0:125, Am ¼ 0:16 based on possibly optimal parameter
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selection from Figs. 8, 11 and 13. Then, Fig. 19 shows the time-averaged drag coefficient versus

the phase difference at f ¼ 1, k ¼ 0:125, Am ¼ 0:16 and am ¼ 10�. It is found that an effective

thrust force is generated when the phase difference is / ¼ 75� � 150�.

Finally, according to the present calculated results, as typically shown in Figs. 8, 11, 13 and

19, an optimal parameter combination to generate a high propulsive efficiency may be proposed

as follows: the thickness ratio of the foil k ¼ 0:1 � 0.15, the plunging amplitude

Am ¼ 0:15 � 0.25, the pitching amplitude am ¼ 5� � 15�, the frequency of the oscillation

f ¼ 1 � 2, and the phase difference / ¼ 75� � 150�.

5 Concluding remarks

The propulsive performance and vortex shedding of a foil with the pitching and plunging

oscillation are investigated by solving the two-dimensional incompressible Navier-Stokes

equations in the vorticity and stream-function formulation. To accurately predict the force and

vortex evolution, the fourth-order essentially compact finite difference schemes are employed to

discretize the space derivatives and the fourth-order Runge-Kutta scheme to approximate the

time advancement. Based on the present extensive calculation for a wide range of parameters,

three types of the leading-edge vortex shedding evolution are identified and have an effective

influence on the vortex shedding and vortex structures in the wake of the foil. The time-

dependent drag and lift forces, in particular thrust force, and the relation of the force behavior

with vortex structures near the foil and vortex shedding in the near wake are discussed. The

effects of some typical factors, such as the frequency and amplitude of the oscillation, the phase

difference, and the thickness ratio of the foil, on the vortex shedding and the corresponding

time-dependent forces are analyzed. Based on the present calculated results, a possibly optimal

parameter combination to generate a high propulsive efficiency is proposed. On the other hand,

animal locomotion is certainly far more complex and diverse than the simple model considered

here. Ideally, three-dimensional computation around an elastically flexible wing is desirable and

is a target in our further work.
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