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Summary. A numerical simulation is performed to investigate the viscous flow over a smooth wavy wall

undergoing transverse motion in the form of a streamwise travelling wave, which is similar to the backbone

undulation of swimming fish. The objective of this study is to elucidate hydrodynamic features of the flow

structure over the travelling wavy wall and to get physical insights to the understanding of fish-like

swimming mechanisms in terms of drag reduction and optimal propulsive efficiency. The effect of phase

speed, amplitude and Reynolds number on the flow structure over the wavy wall, the drag force acting on

the wall, and the power consumption required for the propulsive motion of the wall is investigated. The

phase speed and the amplitude, which are two important parameters in this problem, predicted based on

the optimal propulsive efficiency agree well with the available data obtained for the wave-like swimming

motion of live fish in nature.

1 Introduction

A biofluiddynamics of fish locomotion was founded by Lighthill with a theory for evaluating

reactive forces between an undulating fish body and the water surrounding it [1], [2]. Further

development of the subject was carried out and comprehensive reviews of relevant work can be

found in [3]–[5]. To better explore the swimming ability of these live, the interactions between

the swimming body and fluid need to be studied to understand the physical mechanisms. Both

the wave-like swimming and flapping motions of the body are essential to the propulsion of

fish. Previously researchers have shown the ability of the caudal fin of a fish to produce a jet-

like wake similar to that of a flapping foil [6]–[10]. While the undulating body motions produce

the locomotion, it is not yet clear exactly how the body undulating motion effects the flow very

near a fish or a travelling wave wall.

As is well known, fish use predominantly oscillatory movements [11]. Gray noted that fish

swimming movement is mainly described as a combination of two wave-like phenomena [12].

One is cyclic change of the curved shape of the body showing a lateral wave of curvature

running in the caudal direction, and the other is every single point of the body performing, in

consequence of the wave of lateral curvature on the body, a sinusoidal track in a horizontal

plane. Thus, a travelling wavy wall problem is of interest parallel to the swimming fish, since the

backbone motion of fish species is essentially that of the travelling wave. Actually, the model is

appropriate for anguilliform, subcarangiform, and carangiform swimmers [13]–[15].

Fish swimming can be very instructive in disclosing mechanisms of unsteady flow control,

which was raised first in the relation to swimming of live fish. Gray [16] observed that an
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actively swimming dolphin only consumes one seventh of the energy needed to tow a rigid body

at the same speed, and suggested that substantial drag reduction must occur in the live dolphin.

Then, much work has been performed to explore this problem. Important contributions by

Lighthill [2] and Wu [17], [18] have shed light on the inviscid hydrodynamics of fish-like

propulsion. Cheng et al. [19] analyzed the swimming propulsion mechanism of a three-

dimensional plate moving in an inviscid fluid. Based on experimental investigation, Aleyev [20]

and Harper and Blake [21] reported the outstanding performance by fish and led to interest in

fish-like vehicles capable of emulating the high performance of fish propulsion and maneu-

vering. Barrett et al. [22] found that the power required to propel a swimming body may be

smaller than that needed to tow a straight-rigid body.

It has been proposed that the travelling wave motion contributes to reducing drag force and

increasing propulsive efficiency by restraining separation [23], [24]. Viscous flow past a travelling

wavy wall, in which the wall wavy displacements propagate in the streamwise direction, differs

from the flow near a fixed wavy wall. The flow over the wavy wall is strongly affected by surface

normal pressure gradient and centrifugal force due to alternating convex and concave curvatures.

The effects of a surface normal pressure gradient are evident as the flow over a rotationally

oscillating cylinder, in which flow separation can be reduced as observed experimentally by

Tokumaru and Dimotakis [25], and numerically by Lu and Sato [26] and Lu [27]. Experiments

were undertaken to investigate viscous flow past a travelling wavy wall. Taneda and Tomonari

[28] observed that the boundary layer separates at the backof thewave crest for the travellingwave

phase speedbeing smaller than the external flowvelocity, but the boundary layer does not separate

for the wave phase speed being larger than the external flow velocity. Kendall [29] investigated the

effect of a travellingwavywall on flowbehavior.Meanwhile, numerical simulations [30], [31] have

been performed for viscous flow over a fixed wavy surface and confirmed the previous experi-

mental measurements.

To understand fish swimming propulsion, it is needed to study two typical problems including

the nature of the force resisting themotion and themechanisms that lead to the thrust force [24]. In

this study, computational fluid dynamics is applied to investigate viscous flow over a travelling

wavywall.We recognize the limitation of thismodel formodeling fish swimming, inwhich fish are

of finite length, shed vortices unsteadily in their wake, and experience force on both sides of its

body. However, we still feel that the results will be of fundamental use in exploring the hydro-

dynamic feature of the flow near the travelling wavy wall and in getting into physical under-

standing of fish-like swimming mechanisms.

This paper is organized as follows. The physical problem and mathematical formulations are

described in Sect. 2. The numerical method and its validation are briefly given in Sect. 3. In

Sect. 4, the flow structure, the drag force and the power consumption are analyzed and dis-

cussed.

2 Physical problem and mathematical formulation

As shown schematically in Fig. 1, viscous flow over a moving wall undergoing a travelling wave

motion is considered. Two-dimensional incompressible Navier-Stokes equations are employed

as governing equations. To nondimensionalize the equations, the wavelength k is used as the

length scale, and the mean velocity of the external flow U as the velocity scale. Then, the

nondimensional equations are given by

@ui

@xi

¼ 0; ð1Þ

198 X.-Y. Lu and X.-Z. Yin



@ui

@t
þ @

@xj

ðuiujÞ ¼ �
@p

@xi

þ 1

Re
r2ui; ð2Þ

where Re is the Reynolds number defined as Re ¼ Uk=m with m the kinematic viscosity. The

pressure p is normalized by qU2 where q is the fluid density.

The wall is taking a vertical oscillation in the form of a wave travelling in the streamwise

direction, and the position of the wall is described by

yw ¼ A sin kðx� CtÞ; ð3Þ

where A and C are the amplitude and the phase speed of the travelling wave, k ¼ 2p=k is the

wave number, and the subscript w denotes the quantity on the wall. Here, the steepness of the

travelling wave is represented as r ¼ 2pA=k. The moving wall possesses an up-down oscillation

with velocity components shown as

uw ¼ 0; vw ¼ �kCA cos kðx� CtÞ; ð4Þ

where u and v represent the velocity component in the x- and y-direction, respectively.

In this study, the frame is chosen as moving with the phase velocity of the travelling wave.

This approach can simplify the numerical scheme by eliminating the time-derivative terms in

grid generation, at the expense of modifying the velocity boundary conditions according to the

phase speed of the wave. Then, the wavy surface becomes stationary and fluid elements on

the wall have a nonzero horizontal velocity �C. The corresponding boundary conditions at the

upper boundary (i.e., at y ¼ H ) are u ¼ 1� C, v ¼ 0, and @p=@y ¼ 0. Periodic boundary

conditions are employed in the streamwise direction. The height of the upper boundary is

chosen as H=k ¼ 2. It will be confirmed that, in the following section, the domain size is large

enough to have little influence on the calculated results.

3 Numerical method and validation

A frictional step method is used to solve Eqs. (1) and (2). The time advancement is approxi-

mated with the Adams-Bashforth method for the convective terms and the Crank-Nicholson

for the viscous terms. The convective terms are discretized using a variation of QUICK [32].

The pressure is obtained by solving the pressure Poisson equation with a multigrid method [33].

Detailed discretizations were described by Zang et al. [32].

 x 

 y 

Boundary motion in the form of a travelling wave

HWave motion phase velocity C 

External flow velocity U

l

Fig. 1. Sketch of the physical problem
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The computational domain in Fig. 1 is chosen as 0 � x=k � 1 in the x-direction and the

height of the upper boundary H=k ¼ 2 in the y-direction, with the grid number 256� 256. A

time step is determined as 0.0002 based on the computation stability condition. The grid is

uniform along the x-direction. To increase the grid resolution near the wavy wall boundary, the

mesh is stretched in the y-direction following the transformation used by Lu [34], [35].

Extensive convergence checks with different grid sizes, time steps and computational

domains have been carried out. As a typical case, Fig. 2 shows the distribution of the

streamwise component of friction force acting on the wavy wall at r ¼ 0:25, C ¼ 1.0 and

Re ¼ 2000. Four cases are considered, and these results agree well with each other. It means

that the calculated result converges as the grid, time step and computation domain are varied

independently. The present computational code was also verified by our previous work [34]–

[36]. Thus, it can be confirmed that our calculation is reliable for the prediction of the behaviors

of flow and force for the flow over a travelling wavy wall.

4 Results and discussion

The computational parameters are chosen as follows: the phase speed C ranges from –1.0 to 2.0

with 0.2 interval, the wave steepness r is 0.125, 0.25, and 0.5, and the Reynolds number Re is

400, 2000 and 5000, respectively.

4.1 Flow structures

Flow structures are based on the streamline patterns and the vorticity contours. The streamline

topology pattern provides an overall picture of the flow near the wavy wall, and the vorticity

contours clearly depict the character of the shear layer over the travelling wall boundary. Some

typical results for Re ¼ 2000 and r ¼ 0:25 with different phase speeds are analyzed.
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Fig. 2. Computation validation based on the distribution of the streamwise component of friction force

acting on the wavy wall at r ¼ 0:25, C ¼ 1:0 and Re ¼ 2000. Case 1: grid number N ¼ 256� 256, time
step Dt ¼ 0:0002, computational domain 0 � x=k � 1 and H=k ¼ 2; Case 2: phase-averaged value by

use of 4-wavelength data with N ¼ ð4� 256Þ � 256, Dt ¼ 0:0002, 0 � x=k � 4 and H=k ¼ 2; Case 3:
N ¼ 512� 512, Dt ¼ 0:0001, 0 � x=k � 1 and H=k ¼ 2; Case 4: N ¼ 256� 512, Dt ¼ 0:0002,

0 � x=k � 1 and H=k ¼ 4
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Figure 3 shows the streamline patterns with different phase speeds in the non-moving frame.

When flow passes the crest if the wave is sufficiently steep for a stationary wall (i.e., C ¼ 0), a

separation bubble is formed near the trough (Fig. 3a). When the wavy wall is travelling in the

x-direction, the wall boundary is no longer a streamline and there are streamlines that emanate

from the surface and end on the surface. For C > 0, the right side of the crest rises and the left

side descends. The vertical flow induced by the wall waving motion increases with the increase

of C. The streamlines above the trough become convex for C ¼ 0:4 and 1.2 in Figs. 3b and 3c,

while they are concave for C ¼ 0 in Fig. 3a. The streamlines at C ¼ �0:4 are shown in Fig. 3d,

and a flow reversal region with concave streamlines appears above the trough.

In the moving frame, the horizontal velocity component equals �C at the wall and 1� C far

away. Therefore, when 0 < C < 1, the horizontal velocity must change its sign along the ver-

tical direction from the wall to the external region. The streamlines for C ¼ 0.4 and 0.8 exhibit a

trapped vortex located over the trough in Fig. 4a and b. Note that the pattern for C ¼ 0 is

identical to Fig. 3a. If C exceeds the external flow velocity (i.e., C > 1 ), both �C and 1� C are

negative. The streamline pattern at C ¼ 1:2 is shown in Fig. 4c; all the streamlines point in the

negative x-direction and there is no trapped vortex. As shown in Fig. 4d for the streamlines at

C ¼ �0:4, no trapped vortex exists for C < 0, because both the wall speed �C and the external

flow velocity 1� C are moving in the positive x-direction.

Figure 5 shows the vorticity contours in the near wall region. The vorticity contours exhibit

the free shear layer behind the crest for C ¼ 0 in Fig. 5a, and are rolling-up over the trough for

C ¼ 0:8 in Fig. 5b, where a trapped vortex occurs. With the increase of C, as shown in Fig. 5c,

the separation is suppressed for C ¼ 1:2. The shear layers are generated along the wall over the

crest with positive vorticity and over the trough with negative vorticity. For C < 0, the vorticity

contours at C ¼ �0:4 are shown in Fig. 5d. It can be noted that the shear layers are formed

over the crest with negative vorticity and over the trough with positive vorticity.

4.2 Drag force and power consumption

The drag force acting on the wavy surface and the power needed for it to be propelled are

directly relevant to the study of fish locomotion. The total drag force on the wavy wall consists
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Fig. 3. Streamline pattern in the non-moving frame at Re ¼ 2000 and r ¼ 0:25: a C ¼ 0; b C ¼ 0:4;
c C ¼ 1:2; d C ¼ �0:4
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of a friction drag and a form drag due to pressure distribution. In Fig. 1, for an element of the

wall surface ds ¼ ½1þ ðdyw=dxÞ2�1=2, its tangential direction is ~t ¼ ð1; dyw=dxÞ=ds and

the wall-normal direction is ~n ¼ ð�dyw=dx; 1Þ=ds. Then, the friction force and the pressure

force per unit length along the wall can be accurately expressed as [24], [37]

f x
f ¼

1

Re

h
� 2

@u

@x

dyw

dx
þ ð@u

@y
þ @v

@x
Þ
i

on y ¼ yw; ð5:1Þ

f x
p ¼ p

dyw

dx
on y ¼ yw: ð5:2Þ

By performing integration of f x
f and f x

p over the wavy surface, the friction force Ff , the pressure

force Fp, and the total drag force Fd ¼ Ff þ Fp can be obtained.
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Fig. 5. Vorticity contours at Re ¼ 2000 and r ¼ 0:25: a C ¼ 0; b C ¼ 0:8; c C ¼ 1:2; d C ¼ �0:4 . Solid

lines represent positive values and dashed lines negative values with an increment 1.0
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Fig. 4. Streamline pattern in the moving frame at Re ¼ 2000 and r ¼ 0:25: a C ¼ 0:4; b C ¼ 0:8;
c C ¼ 1:2; d C ¼ �0:4
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Based on the definition [24], the total power (PT ) required for the propulsive motion of the

wall consists of two parts. One is the swimming power Ps ¼
R

pðdyw=dtÞdx required to produce

the vertical oscillation of travelling wave motion, and the other is the power, Pd ¼ UFd, needed

to overcome the drag force. Thus, the total power PT ¼ Ps þ Pd is calculated.

Figure 6 shows the variations of drag force and power versus C at Re ¼ 2000 and r ¼ 0:25.

In Fig. 6a, as C increases, the friction force Ff increases, the pressure force Fp decreases

monotonically, and the total drag force Fd decreases. When C > 1:6 approximately, Fd

becomes negative and acts as thrust force.

The distributions of PT , Ps and Pd versus C are shown in Fig. 6b. As C increases, Ps first

decreases, then reaches a minimum for C between 0 and 1, finally increases. For C < 0, the sign

of dyw=dt is reversed but the pressure distribution difference persists, so that Ps is still positive.

At C ¼ 0, Ps ¼ 0 because dyw=dt ¼ 0. When C (for C > 0 ) increases, flow separation is

suppressed and the pressure gradient is mainly influenced by the wavy wall motion. The neg-

ative value of Ps means that the wall motion can be actuated by the flow and no power input is

needed for 0:2 < C < 0:8, approximately. Ps becomes positive for C � 1. As C increases fur-

ther, flow separation eventually occurs upstream of the crest and Ps increases rapidly. The

power to overcome the drag force, Pd, decreases monotonically with the increase of C, because

of the similar decrease of Fd, as shown in Fig. 6a. When Pd is negative, it means that the wavy
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surface is propelled by the thrust; however, the thrust is at the expense of the swimming power

Ps required to produce the wavy wall motion. Both Pd and Ps present the competing mecha-

nisms. As shown in Fig. 6b, the distribution of the total power PT versus C is concave upwards

with a minimum around C ¼ 1:2, which is consistent with the value used for travelling wave-

like swimming motion of live fish in nature [38], [39].

To demonstrate the propulsive efficiency, the total power ratio of the optimal propulsion

with the minimal power (PT jC opt) and the stationary wavy wall with the power PT jC¼0 is defined

as g ¼ ðPT jC optÞ=ðPT jC¼0Þ. As listed in Table 1, the power ratio g is 52% approximately for the

phase speed with the optimal propulsion corresponding to C ¼ 1:2 at Re ¼ 2000 and r ¼ 0:25,

so that there is a significant gain in net efficiency as a result of the travelling wave motion.

To explain the effects of C on the drag force and the power, Fig. 7 shows the distributions of

f x
f and f x

p along the wavy surface. The distributions exhibit substantial variation for f x
f and f x

p .

The friction force appears with negative value for C � �0:6, approximately. Typically, at

C ¼ �0:8, it is noted that the negative friction force is mainly distributed over the trough

region. At C ¼ 0, f x
f increases somewhat over the region of 0 < x < 0:25 and decreases

thereafter. As C increases, e.g., C ¼ 0:8 and 1.2, f x
f is mainly distributed in the regions of the

trough and the upstream of the crest. The form drag due to the pressure distribution is shown in

Fig. 7b. At C ¼ 0, the pressure force shows mainly a small positive value, and consequently the

net form drag is formed. The contributions on both the sides of the crests (and trough) are

obvious and almost cancel. The net form drag is positive at C ¼ �0:8 and �0:4, and negative at

C ¼ 0:8 and 1.2.

4.3 Effect of the steepness on the flow structure, drag force and power consumption

Figure 8 shows the streamline patterns for r ¼ 0:125 and 0.5 with Re ¼ 2000 in the non-

moving frame. The corresponding streamline pattern for r ¼ 0:25 is exhibited in Fig. 3. When

C > 0, e.g., C ¼ 0:4 and 1.2 in Fig. 8, as r increases, the vertical flow induced by the wall

waving motion increases and the convex shape of the streamlines becomes more obvious. When

C < 0, e.g., C ¼ �0:4 in Fig. 8, a flow reversal region appears above the trough, and the

streamlines over the reversal region are concave. The concave shape of the streamlines becomes

more obvious with the increase of r.
The streamline patterns for r ¼ 0:125 and 0.5 with Re ¼ 2000 in the moving frame are

shown in Fig. 9. For stationary wall (i.e., C ¼ 0), if the wave is sufficiently steep, a separation

bubble is formed near the trough. The separation bubble is formed at r ¼ 0:25 (Fig. 3a) and

0.5, however, no separation bubble occurs at r ¼ 0:125. When 0 < C < 1, the streamlines, e.g.,

at C ¼ 0:4 in Fig. 9, exhibit a trapped vortex located over the trough. By comparing with

Fig. 4a for r ¼ 0:25, the scale of the trapped vortex increases as r increases. When C > 1, both

�C and 1� C are negative. All the streamlines point in the opposite x-direction for C ¼ 1:2,

Table 1. Total power ratio between C ¼ Copt and C ¼ 0

Re r PT at C ¼ 0 PT at C ¼ Copt g ¼ PT jCopt=PT jC¼0

400 0.25 3.561�10�3 2.433�10�3 68 %

2000 0.25 1.691�10�3 8.774�10�4 52 %

5000 0.25 1.263�10�3 6.045�10�4 48 %

2000 0.125 1.351�10�3 1.155�10�3 85 %

2000 0.50 1.788�10�3 3.521�10�4 20 %
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and there is no trapped vortex. When C < 0, e.g., C ¼ �0:4 in Fig. 9, no vortex does exist, too,

as both the wall speed �C and the external flow velocity 1� C are moving in the x-direction.

Figure 10 shows the profiles of the friction force Ff , the pressure force Fp and the total

drag force Fd ¼ Ff þ Fp. As C increases for different r, Ff increases, but Fp decreases

monotonically. In Fig. 10a, it is found that Ff at C ¼ �1:0 is positive for r ¼ 0:125 and

negative for r ¼ 0:25 and 0.5. Meanwhile, Ff increases quickly with the increase of r. Thus,
Ff changes from negative to positive value around C ¼ �0:4 for r ¼ 0:25 and around C ¼ 0

for r ¼ 0:5. The profiles of Ff intersect at C ¼ 0:4 approximately. At C ¼ 2:0, Ff increases

with the increase of r.
To analyze the form drag due to the pressure distribution on the wall, as shown in Fig. 10b,

the profiles of Fp intersect and change from positive to negative value at C ¼ 0:4, approxi-

mately. The negative value of Fp means that the pressure force contributes a thrust force for the

travelling wavy wall. At C ¼ 2:0, Fp has lower negative value for higher r; it means that Fp can

provider higher propulsive force for larger amplitude of the travelling wavy wall. The behavior

is qualitatively consistent with our visualization of fish swimming [40]. As shown in Fig. 10c for

the total drag force, Fd is nearly a positive constant at r ¼ 0:125; however, when r increases, Fd

becomes negative (or thrust force) for C � 1:6 approximately at r ¼ 0:25 and for C � 1 at

r ¼ 0:5. Note that a certain amplitude of the undulating wave motion is needed to generate an

efficient locomotion.
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Figure 11 shows the distributions of PT and Ps. As C increases, Ps first decreases smoothly,

reaches a minimum for C between 0 and 1.0, and then increases quickly, in particular for

r ¼ 0:5. When C < 0, the sign of dyw=dt is reversed but the pressure distribution difference

persists, so that Ps is still positive. Ps is negative for 0:2 � C � 0:8 approximately and becomes

positive for C � 1. As C increases further, flow separation eventually occurs upstream of the

crest and Ps increases rapidly, in particular for r ¼ 0:5. The profiles of the power to overcome

the drag force, i.e., Pd, are shown in Fig. 10c for different r. Pd decreases monotonically with

the increase of C. Similar to the behavior of the total drag Fd, Pd is nearly a positive constant at

r ¼ 0:125, and Pd becomes negative for C � 1:6 approximately at r ¼ 0:25 and for C � 1 at

r ¼ 0:5. Even though Pd is negative for large C, the thrust is at the expense of the swimming

power Ps required to produce the wavy wall motion, and needs more cost of Ps at higher r.
The distributions of the total power PT versus C are shown in Fig. 11b and are concave

upwards with a minimum around C ¼ 1:2, which corresponds to the optimal phase speed

approximately. As listed in Table 1, the total power ratio g is 85% approximately for r ¼ 0:125,

and only 20% for r ¼ 0:5.

To examine the effect of the steepness r on the total power ratio g, as a typical case,

Fig. 12 shows the variation of g versus r at C ¼ 1:2 and Re ¼ 2000. Note that a significant

efficiency, corresponding to lower g, for the travelling wave motion exists in the range of

0:4 < r < 0:7, approximately. Thus, it can reasonably be proposed that there is a possibly

optimal steepness (or amplitude) to generate a high propulsive efficiency for the travelling

wavy wall.
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4.4 Effect of the Reynolds number on the flow structure, drag force and power consumption

The effect of the Reynolds number on the flow structure, the drag force and the power con-

sumption is analyzed for Re ¼ 400, 2000 and 5000 with r ¼ 0:25. It is needed to indicate that

the present calculations are two-dimensional for Re ¼ 5000 based on the observations [28], [29]

that the near wall structure was essentially two-dimensional due to the forced wavy wall

motion. Meanwhile, it is noted that the flow is still steady for Re ¼ 5000 and r ¼ 0:25 at

different phase speeds by examining our calculated results.

Figure 13 shows the streamline pattern for Re ¼ 400 and 5000 with r ¼ 0:25 in the non-

moving frame. The corresponding streamline pattern at Re ¼ 2000 is exhibited in Fig. 3. For

C > 0, e.g., C ¼ 0:4 and 1.2 in Fig. 13, because the vertical flow is induced by the wall waving

motion, the convex shape of the streamlines becomes more obvious when Re decreases. It can

be explained by the fact that viscous diffusive effect induces some differences in the streamline

patterns. For C < 0, e.g., C ¼ �0:4 in Fig. 13, a flow reversal region with concave streamlines

above the trough occurs, and the concave shape of the streamlines becomes more pronounced

as Re decreases.
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The streamline patterns for Re ¼ 400 and 5000 with r ¼ 0:25 in the moving frame are

shown in Fig. 14. For a stationary wall (i.e., C ¼ 0), the separation bubble is formed at

Re ¼ 2000 (Fig. 3a) and 5000, however, no separation bubble occurs at Re ¼ 400. In the

moving frame, the streamlines exhibit a trapped vortex located over the trough for Re ¼ 400

and 5000 at C ¼ 0:4. By comparing with Fig. 4a for Re ¼ 2000, the scale of the trapped
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vortex increases reasonably as Re decreases. Further, if C > 1, both �C and 1� C are

negative. All the streamlines (e.g., for C ¼ 1:2 in Fig. 14) point in the opposite x-direction

and there is no trapped vortex. Also, when C < 0, e.g., C ¼ �0:4 in Fig. 14, all the
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streamlines point in the x-direction, because both the wall speed �C and the external flow

velocity 1� C are positive.

Figure 15 shows the profiles of the friction force Ff , the pressure force Fp and the total drag

force Fd ¼ Ff þ Fp. As C increases, Ff increases and changes from negative to positive value

during �0:8 < C < 0, but Fp decreases and varies from positive to negative value during

0:2 < C < 0:8. As shown in Fig. 15c for the total drag force, Fd decreases monotonically with

the increase of C, and becomes negative (or thrust force) for C � 1:6, approximately.

The distributions of PT and Ps are shown in Fig. 16. As C increases, Ps first decreases

smoothly, reaches a minimum for C between 0 and 0.8, and then increases in Fig. 16a. The

distributions of Ps coincide closely for those Reynolds numbers during 0 � C � 0:6. Then Ps

becomes positive for C � 1. The profiles of the power to overcome the drag force (i.e., Pd )

are shown in Fig. 15c. The distributions of the total power PT versus C for different Re are

concave upwards with a minimum around C ¼ 1:2 in Fig. 16b. As listed in Table 1, it is

reasonable to predict that the total power ratio g is 68% approximately for Re ¼ 400 and

48% for Re ¼ 5000.

4.5 Comparison between the travelling wavy wall and fish swimming

To clarify the wavy motions characterizing steady undulatory swimming in fish, Videler [11]

proposed some simple models to analyze the fish-like swimming motions. As an extension of

the kinematics analysis, by using computational fluid dynamics to solve the incompressible

Navier-Stokes equations, the undulating wave motion, similar to the backbone undulation of

x

y

0 0.25 0.5 0.75 1

0

0.1

0.2

0.3

x

y

0 0.25 0.5 0.75 1

0

0.1

0.2

0.3

x

y

0 0.25 0.5 0.75 1

0

0.1

0.2

0.3

x

y

0 0.25 0.5 0.75 1

0

0.1

0.2

0.3

x

y

0 0.25 0.5 0.75 1

0

0.1

0.2

0.3

x

y

0 0.25 0.5 0.75 1

0

0.1

0.2

0.3

a b

Fig. 13. Streamline pattern in the non-moving frame for different Reynolds numbers at r ¼ 0:25: a left
column with Re ¼ 400, C ¼ 0:4, 1.2, and �0:4 from top to bottom; b right column with Re ¼ 5000,

C ¼ 0.4, 1.2, and �0:4 from top to bottom

210 X.-Y. Lu and X.-Z. Yin



swimming fish, is modeled simply as a travelling sinusoidal wave. Based on the results above, it

is found that the travelling wavy wall can be optimized to achieve separation suppression, to

create thrust, and to minimize net power input.

It is necessary to compare the results of the travelling wavy wall obtained in this study with

some typical live fish swimming. Based on measurement of steadily swimming saithe and eel,

the movements of saithe and eel were observed as digitized outlines from film frames [38]. The

kinematic and morphometric quantities for saithe and eel are listed in Table 2.

The overall flow pattern and dynamics depend strongly on the phase speed C. For upstream

travelling wave motion (i.e., C < 0), the flow feature is qualitatively similar to that for C ¼ 0.

The attached shear flow near the travelling wavy wall persists and strengthens with decreasing

C, resulting in an increasingly greater drag force and net energy needed for propulsion. For

downstream travelling wave motion (i.e., C > 0), the flow is significantly altered. As C

increases, the separation bubble moves away from the wall, and the separation eddy is weak-

ened and eventually leads to its disappearance at C about 1.0. Based on the understanding of

fish-like locomotion, the mean force and power are of primary concern and are analyzed above.
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Of ultimate interest is the net power required for the locomotion, which is the sum of the

swimming power and the power required to overcome the total drag. This total power yields a

minimum for the net power required at C ¼ 1:2, approximately. As listed in Table 2, the ratio

of the travelling wave speed and the swimming speed CS=US is 1.21 and 1.26 approximately

for steadily swimming saithe and eel. Thus, it is noteworthy that C around 1.2 predicted
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numerically is the value adopted for travelling wave-like swimming motion of live fish in nature

[38], [39].

To explore effective propulsion for the travelling wavy wall, the other important

parameter is the amplitude of the travelling wave. Although the wave amplitude used in this

study is constant, the results are still reasonable to understand the mechanism of the

propulsion for the travelling wavy wall. To clarify the variation of g with r, as shown in

Fig. 12, it is noted that the power ratio g for 0:4 < r < 0:7 is less than 30%, corresponding

to the high propulsive efficiency for a travelling wavy wall. Compared to the data in

Table 2 for steadily swimming saithe and eel, the maximum tail amplitudes

rS ¼ 2pA=L � 0:522 and 0.641 are consistent with the present numerical prediction for

0:4 < r < 0:7.
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Table 2. Kinematic and morphometric quantities for saithe and eel

Length (L) Maximum tail

amplitude (A=L)

rS ¼ 2pA=L CS=US

Saithe 0.37m 0.083 0.522 1.21

Eel 0.14m 0.102 0.641 1.26

Here, CS=US represents the ratio of the travelling wave speed and the swimming speed.

Propulsive performance of a fish-like travelling wavy wall 213



Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 10332040,

10125210), the Innovation Project of the Chinese Academy of Sciences (Nos. KJCX-SW-L04,

KJCX2-SW-L2), and the Programme of Hundred Talent of the Chinese Academy of Sciences.

References

[1] Weis-Fogh, T., Jensen, M.: Biology and physics of locust flight. Proc. Roy. Soc. B. 239, 415–585

(1956).
[2] Lighthill, M. J.: Aquatic animal propulsion of high hydromechanical efficiency. J. Fluid Mech. 44,

265–301 (1970).
[3] Lighthill, M. J.: Mathematical biofluiddynamics. Philadelphia: SIAM 1975.

[4] Maxworthy, T.: The fluid dynamics of insect flight. Ann. Rev. Fluid Mech. 13, 329–354 (1981).
[5] Wu. T. Y.: On theoretical modeling of aquatic and aerial animal locomotion. Adv. Appl. Mech.

38, 291–353 (2001).
[6] Phlips, P. J., East, R. A., Pratt, N. H.: An unsteady lifting line theory of flapping wings with

application to the forward flight of birds. J. Fluid Mech. 112, 97–125 (1981).
[7] Triantafyllou, M. S., Triantafyllou, G. S., Gopalkrishnan, R.: Wake mechanics for thrust

generation in oscillation foils. Phys. Fluids 3, 12–26 (1991).
[8] Smith, M. J. C., Wilkin, P. J., Williams, M. H.: The advances of an unsteady method in modeling

the aerodynamic forces on rigid flapping wings. J. Exp. Biol. 199, 1073–1083 (1996).
[9] Anderson, J. M., Streitlien, K., Barrett, D. S., Triantafyllou, M. S.: Oscillating foils of high

propulsive efficiency. J. Fluid Mech. 360, 41–72 (1998).
[10] Birch, J. M., Dickinson, M. H.: The influence of wing–wake interactions on the production of

aerodynamic forces in flapping flight. J. Exp. Biol. 206, 2257–2272 (2003).
[11] Videler, J. J.: Swimming movements, body structure and propulsion in cod Gadus morhua.

In: Vertebrate locomotion (Day, M. H., ed.), pp. 1–27. London: Academic Press 1981.
[12] Gray, J.: Studies in animal locomotion: I. The movement of fish with special reference to the eel.

J. Exp. Biol. 10, 88–104 (1933).
[13] Carling, J., Williams, T.L., Bowtell, G.: Self-propelled anguilliform swimming: simultaneous

solution of the two-dimensional Navier-Stokes equations and Newton’s laws of motion. J. Exp.
Biol. 201, 3143–3166 (1998).

[14] Anderson, E. J., McGillis, W. R., Grosenbaugh, M. A.: The boundary layer of swimming fish.
J. Exp. Biol. 204, 81–102 (2001).

[15] Liao, J. C., Beal, D. N., Lauder, G. V., Triantafyllou, M. S.: The Karman gait: novel body
kinematics of rainbow trout swimming in a vortex sheet. J. Exp. Biol. 206, 1059–1073 (2003).

[16] Gray, J.: Studies in animal locomotion. J. Exp. Biol. 13, 192–199 (1936).
[17] Wu. T. Y.: Swimming of a waving plate. J. Fluid Mech. 10, 321–344 (1961).

[18] Wu, T. Y.: Hydromechanics of swimming propulsion. Part 1. Swimming of a two-dimensional
flexible plate at variable forward speeds in an inviscid fluid. J. Fluid Mech. 46, 337–355 (1971).

[19] Cheng, J. Y., Zhuang, L. X., Tong, B. G.: Analysis of swimming 3-D waving plate. J. Fluid Mech.
232, 341–355 (1991).

[20] Abrams, J., Hanratty, T. J.: Relaxation effects observed for turbulent flow over a wavy surface.
J. Fluid Mech. 151, 443–455 (1985).

[21] Harper, D. G., Blake, R. W.: Fast-start performance of rainbow trout (Salmo gairdneri) and
Northern Pike (Esox Lucius). J. Exp. Biol. 150, 321–342 (1990).

[22] Barrett, D. S., Triantafyllou, M. S., Yue, D. K. P., Grosenbaugh, M. A., Wolfgang, M. J.: Drag
reduction in fish-like locomotion. J. Fluid Mech. 392, 183–212 (1999).

[23] Triantafyllou, M. S., Triantafyllou, G. S., Yue, D. K. P.: Hydrodynamics of fishlike swimming.
Ann. Rev. Fluid. Mech. 32, 33–53 (2000).

[24] Shen, L., Zhang, X., Yue, D. K. P., Triantafyllou, M. S.: Turbulent flow over a flexible wall
undergoing a streamwise travelling wave motion. J. Fluid Mech. 484, 197–221 (2003).

214 X.-Y. Lu and X.-Z. Yin



[25] Tokumaru, P. T., Dimotakis, P. E.: Rotary oscillation control of a cylinder wake. J. Fluid Mech.

224, 77–90 (1991).
[26] Lu, X. Y., Sato J.: A numerical study of flow past a rotationally oscillating circular cylinder.

J. Fluids Structs. 10, 829–849 (1996).
[27] Lu, X. Y.: Numerical study of the flow behind a rotary oscillating circular cylinder. Int. J. Comp.

Fluid Dyn. 16, 65–82 (2002).
[28] Taneda, S., Tomonari, Y.: An experiment on the flow around a waving plate. J. Phys. Soc. Japan

36, 1683–1689 (1974).
[29] Kendall, J. M.: The turbulent boundary layer over a wall with progressive surface waves. J. Fluid

Mech. 41, 259–281 (1970).
[30] De Angelis, V., Lombardi, P., Banerjee, S.: Direct numerical simulation of turbulent flow over a

wavy wall. Phys. Fluids 9, 2429–2442 (1997).
[31] Calhoun, R. J., Street, R. L.: Turbulent flow over a wavy surface: neutral case. J. Geophys. Res.

106, 9277–9293 (2001).
[32] Zang, Y., Street, R. L., Koseff, J. R.: A non-staggered grid, fractional step method for time-

dependent incompressible Navier-Stokes equations in curvilinear coordinates. J. Comp. Phys. 114,
18–33 (1994).

[33] Perng, C. -Y., Street, R. L.: Three-dimensional unsteady flow simulations: alternative strategies for
a volume-averaged calculation. Int. J. Numer. Meth. Fluids 9, 341–362 (1989).

[34] Lu, X. Y.: A study of oscillating flows over propagating ripples: Part I. Steady streaming.
J. Hydrodyn., Ser. B, 11, 15–22 (1999).

[35] Lu, X. Y.: A study of oscillating flows over propagating ripples: Part II. Vorticity dynamics.
J. Hydrodyn., Ser. B, 12, 8–15 (2000).

[36] Hsu, C. T., Lu, X. Y., Kwan, M.K.: LES and RANS studies of oscillating flows over a flat plate.
ASCE J. Engng Mech. 126, 186–193 (2000).

[37] Batchelor, G. K.: An introduction to fluid dynamics. Cambridge: Cambridge Press 1970.
[38] Videler, J. J.: Fish swimming. London: Chapman & Hall 1993.

[39] Videler, J. J., Hess, F.: Fast continuous swimming of two pelagic predators, saithe (pollachius
virens) and mackerel (scomber scombrus): a kinematic analysis. J. Exp. Biol. 109, 209–228 (1984).

[40] Li, X. M., Lu, X. Y., Yin, X. Z.: Visualization on fish’s wake. Proc. SPIE 4537, 473–476 (2002).

Authors’ address: X.-Y. Lu and X.-Z. Yin, Department of Modern Mechanics, University of Science
and Technology of China, Hefei, Anhui 230026, P.R. China (E-mail: xlu@ustc.edu.cn)

Propulsive performance of a fish-like travelling wavy wall 215


