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A multiple-relaxation-time (MRT) Rothman and Keller (R–K) lattice Boltzmann model is presented for
two phase flows with kinematic viscosity contrast. For two-phase flows in porous media, the numerical
stability may be reduced due to the presence of complex wall boundaries. The MRT R–K model is shown
to be able to ensure better numerical stability and reduce spurious currents significantly. The non-equi-
librium bounce back scheme is extended to handle the pressure and velocity boundary condition in two-
phase flow simulations. Immiscible displacement in complex heterogeneous media is investigated and
three typical flow patterns are obtained, stable displacement, viscous fingering and capillary fingering.
Cases with both capillary number Ca and viscosity ratio M ranging from 10�3 to 103 are simulated. The
three typical flow patterns correspond to the three domains in the M–Ca phase-diagram. The boundaries
that separate the three domains in the model results are qualitatively consistent with previous experi-
mental studies. The MRT R–K model coupled with the developed boundary condition is a good tool for
the study of two-phase flows in porous media.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Numerous macroscopic numerical methods have been devel-
oped for solving the two-phase Navier–Stokes (N–S) equations
[1], such as the front-tracking method, volume-of-fluid (VOF)
method, level set method, and so on. The former three methods
are the most popular ones. However, the front-tracking method
is usually not able to simulate interface coalescence or break-up
[1,2]. In the VOF and level set methods, usually the interface recon-
struction step or interface reinitialization is required, which may
be non-physical or complex to implement [2]. Besides, numerical
instability may appear when the VOF and level set methods are
applied to simulate surface-tension-dominated flows in complex
geometries [1].

In the last twenty years, the Lattice Boltzmann method (LBM)
has been developed into a good tool to solve two-phase flow in
porous media [3–8]. The LBM is a mesoscopic method and easily
handles complex wall geometries. It is also an explicit method,
which makes the code easy to parallelize. In the LBM, solving the
Poisson equation is not required, hence it is more efficient than
common macroscopic schemes.
There are many multiphase LBMs available in the literature,
such as the Shan–Chen model [9], free energy model [10], Roth-
man–Keller model [11], and so on. The Shan–Chen multiphase
model is the simplest one [4]. However, quantitative numerical
study shows the existing model is not accurate [12] due to the
inaccurate forcing term used in the model [13].

The first multi-component lattice gas model was proposed by
Rothman and Keller [11]. The model was further developed by
Gunstensen et al. [14] and an extra binary fluid collision was intro-
duced into the Lattice Boltzmann equation. Latva-Kokko and Roth-
man [15] improved the recoloring step in the R–K model, reduced
the lattice pinning effect and decreased the spurious currents
[2,16]. Now that recoloring step is widely used in applications of
the R–K model [2,12,17]. Recently, Reis and Phillips developed a
two-dimensional nine-velocity R–K model [18]. In the model, a
revised binary fluid collision is proposed and is shown to be able
to recover the additional term which accounts for surface tension
in the N–S equations [18].

Swift et al. analyzed the possible similarity between the free
energy model and the R–K model [10]. However, the recoloring
step in the R–K model prevented further theoretical comparative
analysis between the two models. Numerical study shows that
the numerical accuracy and efficiency of the free energy model
and the R–K model are comparable [12], which suggests some
potential similarity between the models.
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On the other hand, the ways of imposing wetting boundary con-
ditions for the two models are very different [12]. For the free-en-
ergy model, the gradient of the density near the wall should be
imposed and the normal derivative has to be calculated. To apply
the condition, the densities of the surrounding lattice nodes near
the wall are involved [19]. For example, using the free-energy
model, Liu et al. achieved density ratio as high as Oð100Þ in their
simulations [19], and they identified three typical flow patterns
in the immiscible displacements in porous media. However, in
their simulations, to get the surface normal derivative in an arbi-
trary inclined direction is not easy and hence, only simple squares
are used to represent the solid grains [19].

For the R–K model, specifying the wetting condition is much
simpler because only the densities of the two fluids in the solid
nodes should be specified. Due to this simplicity, the R–K model
has advantages over the free-energy model for two-phase flows
in porous media. Hence, this model has been applied to simula-
tions of multiphase flows in porous media [5,20]. However, most
previous LBM studies are confined to only a narrow range of
parameters [5,20,21]; for example, the maximum viscosity ratio
in Ref. [5] is approximately 10.

Later, by introducing two free parameters in the rest equilib-
rium distribution function (DF), Grunau et al. [22] claimed the im-
proved R–K model was able to simulate flows with different
densities. However, it has been proved theoretically and numeri-
cally that this is not true for general two-phase flows [23,24].
The improvement proposed by Huang et al. [24] for the model is
valid for cases with lower density ratios. Here, we focus on the
model with identical densities but different viscosities.

Applying a more sophisticated finite difference method could
make the color gradient more isotropic and eliminate the spurious
currents around the bubble or droplet [25]. However, the more
sophisticated finite difference has to include many surrounding
points. For example, usually the color gradient can be obtained
from the information on the surrounding 8 points in 2D simula-
tions when the D2Q9 velocity model is used. However, the sophis-
ticated finite difference requires information of the surrounding 25
points. Hence, it is not convenient to perform this sophisticated fi-
nite difference on the simulations of flow in porous media because
the densities of the solid nodes inside the first layer of the wall,
which may be used in the computation, are not specified and
unknown.

As we know, reducing spurious currents is an important issue
for multiphase models. In almost all of the lattice Boltzmann mul-
tiphase models, when surface tension increases, the magnitude of
spurious current would increase to some extent [12,13]. In simula-
tions of two phase flows with low capillary number (Ca ¼ lu

r , where
l; u, r are fluid dynamic viscosity, characteristic flow velocity, and
surface tension, respectively) in porous media, a large surface ten-
sion coupled with small spurious currents is preferred, otherwise
the spurious current would affect the main flow (velocity is small)
in the pore space.

It is also noted in the study of Liu et al. [19], the kinematic vis-
cosity ratio of liquid and gas is kept unity and the dynamic viscos-
ity ratio is equal to the density ratio. The minimum viscosity ratio
seems limited to 10�2. Here in the R–K method, the multiple-relax-
ation-time (MRT) collision model [26] is adopted. The present
method is able to reduce spurious currents and improve numerical
stability significantly. The multiphase flows with viscosity ratios
ranging from 10�3 to 103 can be simulated. Those are good ranges
for reproducing the capillary fingering phenomena for two phase
flows in porous media. That will be discussed in Section 5 in detail.

The paper is arranged in the following way. First the present
MRT R–K model is introduced. Then the properties of surface ten-
sion calculation, isotropy, spurious currents, and contact angle of
this model are investigated. The MRT R–K LBM is shown to be more
stable and able to reduce the spurious current further than the BGK
model. Two dynamic multiphase flow problems are simulated to
validate our numerical method. Finally, displacements in porous
media with capillary numbers and viscosity ratios ranging from
10�3 to 103 are simulated. The simulated flow patterns are consis-
tent with experimental studies [27].

2. Method

2.1. R–K model

In the R–K model, the particle distribution function (PDF) for
fluid k is defined to be f k

i . For two-phase flows, two distribution
functions are defined, i.e., f b

i , and f r
i , where b and r denote ‘blue’

or ‘red’ component. The total PDF at (x, t) is fiðx; tÞ ¼
P

kf k
i ðx; tÞ.

Usually there are two steps implemented in the LBM, collision
and streaming. In the R–K model, there are three steps for each
component: streaming, collision, and recoloring. Suppose an itera-
tion begins from the streaming step. We illustrate how the three
steps construct a loop. The streaming step is [18]

f k
i ðxþ eidt; t þ dtÞ ¼ f kþ

i ðx; tÞ; ð1Þ

where f kþ
i is the PDF after the recoloring step. In the above equation,

ei; i ¼ 0;1; . . . ; b are the discrete velocities of the velocity models.
For the D2Q9 velocity model (b ¼ 8), eix

c ;
eiy

c are illustrated in the
4th and 6th row vectors, respectively in Appendix. Here c is the lat-
tice speed defined to be c ¼ dx

dt. We use the lattice units of
1 l.u. = 1dx, 1 t.s. = 1dt, and the mass unit is m.u. in our study.

The collision step can be written as [15]

f k�
i ðx; tÞ ¼ f k

i ðx; tÞ þ ðX
k
i Þ

1
þ ðXk

i Þ
2
; ð2Þ

where f k�
i ðx; tÞ is the post-collision state. There are two collision

terms in the equation, i.e., ðXk
i Þ

1
and ðXk

i Þ
2
. If the lattice BGK scheme

is adopted, the first collision term is

ðXk
i Þ

1
¼ � dt

s
f k
i ðx; tÞ � f k;eq

i ðx; tÞ
� �

; ð3Þ

where s is the relaxation time.
The equilibrium distribution function f k;eq

i x; tð Þ can be calculated
using [18]

f k;eq
i ðx; tÞ ¼ qk Ci þwi

ei � u
c2

s
þ ðei � uÞ2

2c4
s
� ðuÞ

2

2c2
s

" # !
; ð4Þ

where the density of the kth component is

qk ¼
X

i

f k
i ; ð5Þ

and the total density is q ¼
P

kqk. The momentum is

qu ¼
X

k

X
i

f k
i ei: ð6Þ

In the above formula, the coefficients are [18]
C0 ¼ ak; Ci ¼ 1�ak

5 ; i ¼ 1; 2; 3; 4 and Ci ¼ 1�ak
20 ; i ¼ 5; 6; 7; 8,

where ak is a parameter that is assumed able to adjust the density
of fluids [18,22] but this is not true [24]. The other parameters are
w0 ¼ 4

9 ; wi ¼ 1
9 ; i ¼ 1; 2; 3; 4, and wi ¼ 1

36 ; i ¼ 5; 6; 7; 8.
When the relaxation time parameters for the two fluids are very

different, for example, sr ¼ 0:501 and sb ¼ 1:0; sðxÞ at the inter-

face can be determined by a simple way: wðxÞ ¼ qr ðxÞ�qbðxÞ
qr ðxÞþqbðxÞ

> 0;

sðxÞ ¼ sr and otherwise sðxÞ ¼ sb. To make the relaxation parame-
ter (sðxÞ) change smoothly at the interfaces between two fluids,
here we adopt the interpolation scheme constructed by Grunau
et al. [18,22].



166 H. Huang et al. / Computers & Fluids 93 (2014) 164–172
s ¼

sr w > d;

grðwÞ d P w > 0;
grðwÞ 0 P w P �d;

sb w < �d;

8>>><>>>:
where grðwÞ ¼ s1 þ s2wþ s3w

2; gbðwÞ ¼ t1 þ t2wþ t3w
2, and s1 ¼ t1

¼ 2 srsb
srþsb

, s2 ¼ 2 sr�a
d ; s3 ¼ � b

2d, t2 ¼ 2 a�sb
d , and t3 ¼ g

2d. Here d 6 1 is

a free positive parameter. The viscosity of each component is
mk ¼ c2

s ðsk � 0:5Þ, where c2
s ¼ 1

3 c2. The viscosity ratio is defined as
M ¼ mnw

mw
, where the subscript ‘‘nw’’, ‘‘w’’ denote the non-wetting fluid

and wetting fluid, respectively.
The second collision term is more complex and there are some

different forms found in the literature [8,18]. An example is [8]:

ðXk
i Þ

2
¼ A

2
jfjð2 � cos2ðkiÞ � 1Þ; ð7Þ

where ki is the angle between the color gradient f and the direction

ei, and we have cosðkiÞ ¼ ei �f
jei j�jfj

[15].

The color-gradient fðx; tÞ is calculated as [15]:

fðx; tÞ ¼
X

i

ei

X
j

f r
j ðxþ eidt; tÞ � f b

j ðxþ eidt; tÞ
h i

: ð8Þ

However, according to the study of Reis and Phillips [18], the
correct collision operator should be

ðXk
i Þ

2
¼ A

2
jfj wi

ðei � fÞ2

jfj2
� Bi

" #
; ð9Þ

where B0 ¼ � 4
27 ; Bi ¼ 2

27 ; i ¼ 1; 2; 3; 4, Bi ¼ 5
108 ; i ¼ 5; 6; 7; 8.

Using these parameters, the correct term due to surface tension in
the N–S equations can be recovered [18].

Then the recoloring step is implemented to achieve separation
of the two fluids [15],

f r;þ
i ¼ qr

q
f �i þ b

qrqb

q2 f ðeqÞ
i ðq;0ÞcosðkiÞ; ð10Þ

f b;þ
i ¼ qb

q
f �i � b

qrqb

q2 f ðeqÞ
i ðq;0ÞcosðkiÞ; ð11Þ

where f �i ¼
P

kf k�
i .

After f r
i ðx; tÞ, and f b

i ðx; tÞ are updated, the streaming steps (i.e.,
Eq. (1)) should be implemented for each component. Through iter-
ation of the procedure illustrated above, two-phase flows can be
simulated.

In the model, A, and b are the two most important parameters
that adjust interfacial properties. The interfacial thickness can be
adjusted by b but the surface tension is independent of b and only
determined by A and sr ; sb [15]. The pressure in the flow field
can be obtained from the density via the equation of state
p ¼ c2

s q.
In our study, only components with identical densities are con-

sidered and the corresponding equilibrium DF is Eq. (4) with
Ci ¼ wi. That is the common equilibrium DF usually used in the
LBM [28]. Hence, for two components with identical densities,
the equilibrium DF has the same formula. It is not necessary to cal-
culate both collision step Eqs. (3) and (9) separately for each com-
ponent. The two collision steps become,

ðXiÞ1 ¼ �
dt
s

fiðx; tÞ � f eq
i ðx; tÞ

� �
; ð12Þ

and

ðXiÞ2 ¼ Ajfj wi
ðei � fÞ2

jfj2
� Bi

" #
; ð13Þ
where fi ¼
P

kf k
i .

2.2. MRT R–K model

The difference between the MRT and BGK R–K model is the col-
lision term. The collision term ðXiÞ1 in Eq. (12) should be replaced
by the MRT collision model [26]. That is,

ðXiÞ1 ¼ �M�1bS jmðx; tÞi � jmðeqÞðx; tÞi
� �

; ð14Þ

where the Dirac notation of ket j�i vectors symbolize column vec-

tors. The collision matrix bS ¼ M � S �M�1 is diagonal with bS ¼
diagðs0; s1; . . . ; sbÞ. jmðeqÞi is the equilibrium value of the moment
jmi. The matrix M illustrated in the Appendix is a linear transforma-
tion which is used to map a vector jf i in discrete velocity space to a
vector jmi in moment space, i.e., jmi ¼ M � jf i; jf i ¼ M�1 � jmi.

The momenta jf ¼ quf are obtained from

jf ¼
X

i

fieif; ð15Þ

where f denotes x or y coordinates. The collision process is executed
in moment space [26]. For the D2Q9 model, jmi ¼ ðq; e; �; jx; qx; jy;

qy; pxx; pxyÞ
T , where e; �, and qf are the energy, the energy square,

and the heat flux, respectively. jmðeqÞi ¼ ðq; eeq; �eq; jeq
x ; q

eq
x ; j

eq
y ; q

eq
y ;

peq
xx ;p

eq
xyÞT , where eeq ¼ �2qþ 3ðj2

x þ j2
yÞ=q, �eq ¼ q� 3ðj2

x þ j2
yÞ=q;

qeq
x ¼ �jx, qeq

y ¼ �jy; peq
xx ¼ ðj2

x � j2
yÞ=q; peq

xy ¼ jxjy=q. The diagonal col-

lision matrix bS is given by [26].bS � diagðs0; s1; s2; s3; s4; s5; s6; s7; s8Þ. The parameters are chosen
as: s0 ¼ s3 ¼ s5 ¼ 1:0 s1 ¼ 1:64; s2 ¼ 1:54; s4 ¼ s6 ¼ 1:2, and
s7 ¼ s8 ¼ 1

s.

2.3. Boundary conditions

To simulate immiscible displacements, the velocity inlet bound-
ary condition and constant pressure (or density) boundary condi-
tions are set for the upper and lower boundary, respectively. In
our simulations, only non-wetting fluid displacing wetting fluid
is considered.

In the upper boundary the DF f4; f 7; f 8 are unknown after the
streaming step for the non-wetting fluid (majority component).
Through non-equilibrium bounce back assumption [29], one gets
the density of the majority component is

qn ¼
f n
0 þ f n

1 þ f n
3 þ 2ðf n

2 þ f n
5 þ f n

6 Þ
1þ ui

; ð16Þ

and the unknowns can be obtained through [29]

f n
4 ¼ f n

2 �
2
3
qnui;

f n
7 ¼ f n

5 þ
1
2
ðf n

1 � f n
3 Þ �

1
6
qnui;

f n
8 ¼ f n

6 þ
1
2
ðf n

3 � f n
1 Þ �

1
6
qnui;

ð17Þ

where ui is the specified inlet velocity of the non-wetting fluid.
The pressure boundary conditions for the lower boundary can

be handled similarly [29]. Suppose qs is the density of the wetting
component (majority component) that is specified on the lower
outlet boundary node. One can get the outlet velocity of wetting
fluid

uy ¼ 1� f w
0 þ f w

1 þ f w
3 þ 2ðf w

4 þ f w
7 þ f w

8 Þ
qs

; ð18Þ

and the unknowns are



H. Huang et al. / Computers & Fluids 93 (2014) 164–172 167
f w
2 ¼ f w

4 þ
2
3
qsuy;

f w
5 ¼ f w

7 þ
1
2
ðf w

3 � f w
1 Þ þ

1
6
qsuy;

f w
6 ¼ f w

8 þ
1
2
ðf w

1 � f w
3 Þ þ

1
6
qsuy:

ð19Þ

We note that maintaining the density (or pressure) of the minority
component, which is usually set to be a very small value, say
10�8 m:u:=l:u:3, on both the upper and lower boundaries is also
important.
3. Surface tension, isotropy, contact angle and spurious
currents

3.1. Surface tension

In the Sections 3.1 and 3.2, the cases of a droplet immersed in
another fluid are simulated.

The surface tension r as a function of A for the R–K simulations
with viscosity ratio M ¼ 1 can be determined analytically [18].
However, how to analytically determine the surface tension for
M – 1 is an open question. Here r is determined through numeri-
cal simulations of a droplet using the Laplace law. r as a function of
A for different M is illustrated in Table 1. Here we can see that over
a wide range, if M is fixed, r

A is almost a constant, which means r
changes linearly with the parameter A.

3.2. Isotropy

In the study of Hou et al. [30], the isotropy of R–K model was
investigated. However, in their work the ‘‘recolor’’ step utilized
an outdated approach [11,14] and the parameters in their study
[30] are fixed to a narrow range. Because the combination of the
MRT and ‘‘recolor’’ step proposed by Latva-Kokko and Rothman
Table 1
Surface tension as a function of A for different viscosity ratios (MRT R–K model).

A sr sb
r
A

10�6 � 10�2 1.0 1.0 2.69

10�6 � 10�2 1.5 0.55 2.79

10�6 � 10�2 1.5 0.51 2.72

10�6 � 10�2 1.5 0.502 2.74

10�6 � 10�2 1.0 0.505 2.05

10�6 � 10�2 1.0 0.501 1.96

10�6 � 10�2 0.501 1.0 1.96

(a)

Fig. 1. (a) Isotropy and the magnitude of maximum spurious current as functions of b
functions of A with b ¼ 0:5.
[15], which is developed here has never been applied to isotropy,
it is necessary to re-evaluate the isotropy.

Fig. 1 shows the isotropy which is defined as e ¼ rmax�rmin
rmin

and the

magnitude of the maximum spurious current jujmax as functions of

b when A ¼ 10�4. rmax and rmin are the maximum and minimum
radii in eight directions, which are consistent with the vectors
ei; i ¼ 1; . . . ;8. We can see that both e and jujmax increase with b.
However, smaller b is not a good choice because when b is small,
the interface becomes thick. For example, the interfacial thick-
nesses are approximately 7 l.u., 5 l.u., 4 l.u., and 3 l.u. for b = 0.3,
0.4, 0.5, and 0.7, respectively. Thick interfaces are not desirable
in simulations of two-phase flow in porous media. Usually
b ¼ 0:5 or 0.4 is used in our simulations. Note that b does not
change the surface tension but affects the interface thickness,
isotropy, and the magnitude of spurious current.

Note that in Table 1, when A is small, for example, A ¼ 10�5, the
isotropy of the droplet may be not good if b ¼ 0:5; using smaller b
is helpful to achieve better isotropy of the droplet.

3.3. Contact angle

Using the MRT R–K model, wetting phenomena are simulated.
In our 2D simulations, the computational domain is 200� 100,
the top and bottom of the domain are bounded by two walls and
periodic boundary conditions are applied on the left and right
boundaries. It is noted that both the densities of the majority and
minority components should be specified at each lattice node
inside the computational domain. In our simulations, a circle with
radius r ¼ 25 l:u. just above the bottom wall is initialized as red
fluid (the majority component qr ¼ qi and the minority component
qb ¼ 0) and the remaining area is initialized as blue fluid (the
minority component qr ¼ 0 and the majority component qb ¼ qi),
where qi ¼ 1:0 m:u:=l:u:3 is an initial density.

The contact angles obtained from the present MRT R–K model
are illustrated in Fig. 2. Through setting qr and qb values on the
wall nodes, i.e., qwr and qwb, different contact angles can be
obtained. The simulated angles can be measured via the scheme
in Ref. [28], for example.

In Fig. 2, the spurious currents are also shown. The maximum
magnitudes of the current are also given in the caption. In this
figure, we can also see there are small circular flow patterns near
the three-phase contact point, which may be induced by the
uncompensated stress at that point [17].

The contact angle h can be analytically determined by [15]

h ¼ arccos
qwr � qwb

qi

� 	
; ð20Þ
(b)

with A ¼ 10�4. (b) Isotropy and the magnitude of maximum spurious current as



Fig. 2. Contact angles and the equilibrium spurious current for present MRT R–K model. (a) qwr ¼ �0:7; qwb ¼ 0:0; sr ¼ 1; sb ¼ 0:6; jujmax ¼ 6:77� 10�5, (b)
qwr ¼ qwb ¼ 0:0; sr ¼ 0:501; sb ¼ 1; jujmax ¼ 9:97� 10�5, (c) qwr ¼ 0:7; qwb ¼ 0:0; sr ¼ 1; sb ¼ 0:501; jujmax ¼ 2:09� 10�4.

Fig. 3. Contact angles obtained from present MRT R–K model compared with the
analytical solution. Viscosity ratios M ¼ 1; M ¼ 25; M ¼ 1

500, and M ¼ 500 are
simulated.

Table 2
Spurious current in the MRT and BGK R–K simulations (cases of contact angle with
different viscosity ratios (A ¼ 10�4 ; b ¼ 0:5).

BGK or MRT sr sb qwr � qwb jujmax

BGK 1.0 1.0 0.0 5:75� 10�5

MRT 1.0 1.0 0.0 5:46� 10�5

BGK 1.0 0.6 �0.7 8:15� 10�5

MRT 1.0 0.6 �0.7 6:77� 10�5

BGK 0.501 1.0 0.0 2:28� 10�3

MRT 0.501 1.0 0.0 9:97� 10�5

BGK 0.501 1.0 �0.9 1:43� 10�3

MRT 0.501 1.0 �0.9 7:03� 10�5

BGK 1.0 0.501 �1.0 9:49� 10�4

MRT 1.0 0.501 �1.0 1:85� 10�4

BGK 1.0 0.501 0.7 2:01� 10�3

MRT 1.0 0.501 0.7 2:09� 10�4

BGK 1.0 0.501 0.9 1:42� 10�3

MRT 1.0 0.501 0.9 1:75� 10�4
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where h is measured from the red component. From the above
equation, we can see that the difference between qwr and qwb deter-
mines the wetting property. The possible reason is that qwr and qwb

affect the wetting property of the wall through the color gradient
illustrated in Eq. (8).

In Fig. 3, the simulated angles are compared with Eq. (20). From
the figure, we can see that for M ¼ 1; 25; 1

500 ; 500, the contact
angles obtained from present MRT R–K model agree well with
those obtained from Eq. (20). Hence, the validity of Eq. (20) is
independent of the viscosity contrast.
3.4. Spurious currents

The spurious currents in the simulations are investigated so as
to compare the performance of the MRT and BGK models. The sim-
ulations of different contact angles with various viscosity ratios
were carried out. The magnitudes of the spurious current are
shown in Table 2. We can see that when M ¼ 0:002 or M ¼ 500,
the spurious current (MRT) is approximately one order of magni-
tude less than that obtained from the BGK model. Hence, compared
to the BGK R–K model, the MRT R–K model decreases the spurious
current significantly at high viscosity contrast.
4. Further numerical validation

In this section, two dynamic multiphase flows are simulated to
validate our numerical method. One case is the injection of a non-
wetting gas into two parallel capillary tubes [19]. The other is the
capillary filling dynamic [31], i.e., liquid filling a capillary tube that
initially contains gas. Here the component with smaller dynamic
viscosity is regarded as gas [31]. The schematic illustrations of
the above two cases are shown in Fig. 4(a) and (b), respectively.

For the first validation, as shown in Fig. 4(a), the computational
domain is 80� 160. The upper and lower boundaries are the inlet
and outlet boundaries, respectively. Initially the red fluid (non-
wetting fluid) is put in the upper section of the domain and does
not enter the tubes. The widths of the left and right tubes are
rL ¼ 24 l:u: and rR ¼ 32 l:u:, respectively. In our simulations,
heq ¼ 45�. The contact angle is set through the scheme mentioned
in Section 3.3. Hence the corresponding capillary pressures for
the left and right tubes are

PcL ¼
2rcosheq

rL
¼ 1:59� 10�5; PcR ¼

2rcosheq

rR
¼ 1:19� 10�5;

ð21Þ

respectively. The other important parameters in our simulations are
A ¼ 10�4, b ¼ 0:5; sr ¼ 0:51; sb ¼ 1:5. That means the kinematic
viscosity ratio between the non-wetting and wetting fluid is
sr�0:5
sb�0:5 ¼ 1

100. According to Table 1, the surface tension in these simu-

lations is r ¼ 2:7� 10�4.
From Fig. 5(a), we can see that for the smallest pressure differ-

ence between the inlet and outlet, DP ¼ 1:0� 10�5 < PcR, the non-
wetting fluid is not able to enter into either tube even t is large
enough. In Fig. 5(b), when PcR < DP < PcL, the non-wetting fluid
enters into the wider tube (the right one) but it is unable to perco-
late into the narrower tube. In Fig. 5(c), when DP ¼ 3:3� 10�5,
which is larger than PcL, the non-wetting fluid would pass through
both tubes. The result is very consistent with the basic principle of
pore-network simulations.



H

l
θ

(b)(a)
Fig. 4. (a) Injection of a non-wetting gas into two parallel capillary tubes, (b) liquid
filling a capillary tube that initially contains gas. H is the width of the capillary tube
and l is the length of the liquid column that has penetrated the capillary. The red
and black are non-wetting component (gas) and the solid, respectively. (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

Fig. 5. Snapshots of the injection of a non-wetting fluid into two parallel capillary
tubes with different DP, which is the pressure difference between the inlet and
outlet. The widths of the left and right tubes are 24 l.u. and 32 l.u. respectively. (a)
DP ¼ 1:0� 10�5 < PcR ; t ¼ 4� 106 t:s:, (b) DP ¼ 1:4� 10�5, i.e.,
PcR < DP < PcL; t ¼ 3:6� 106 t:s:, (c) DP ¼ 3:3� 10�5 > PcL ; t ¼ 106 t:s: The black,
red and green represent the solid, the non-wetting and wetting fluid respectively,
heq ¼ 45� . (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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Fig. 6. The the length of the liquid column (l.u.) that has penetrated the capillary as
a function of time, the initial penetration is about 15 l.u. at t ¼ 0.
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For the simulations of capillary filling dynamic, the computa-
tional domain is 12� 400, as shown in Fig. 4(b), the left and right
boundaries in the middle of the computational domain are solid
nodes. The periodic boundary condition is applied on both the
upper and lower boundaries, as well as on the upper and lower left
and right boundaries without solid nodes. In the simulation,
sr ¼ 0:51, sb ¼ 1:5, the kinematic viscosities of the gas (non-wet-
ting component) and liquid are mG ¼ c2

s ðsr � 0:5Þdt ¼ 0:01
3 , and

mL ¼ 1
3. The dynamic viscosity ratio is mL

mG
¼ 100, which is sufficiently

high that viscous dissipation in the gas phase can be ignored [31].
Ignoring the viscous dissipation is a basic assumption in the deri-
vation of the following analytical solution Eq. (22). Here the gas
(red component) is non-wetting and the equilibrium contact angle
is set to be h ¼ 45�. In the simulation, A ¼ 10�3, and r ¼ 2:7� 10�3,
width of the capillary tube H ¼ 10 l:u. The analytical solution for
the length of tube filled with liquid l as a function of time is [31]

l ¼ rHcosh
3qmL

� 	1
2 ffiffi

t
p
; ð22Þ

where q ¼ 1 m:u:=l:u:2.
According to the parameters in our simulation, the analytical

solution is l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:01909
p ffiffi

t
p

. From Fig. 6, it is seen the our numerical
simulation is very consistent with the analytical solution.
5. Immiscible displacements in porous media

In the study of Lenormand et al. [27], it was found that in por-
ous media, the capillary number and dynamic viscosity ratio are
the two most important factors that affect the displacement
behaviors. Generally speaking, there are three typical displacement
patterns: capillary fingering, viscous fingering, and stable displace-
ment [27]. For stable displacement, the front between the two flu-
ids is almost flat with some irregularities at the scale of a few
pores. Very little of the displaced fluid is trapped behind the front.
For viscous fingering, tree-like fingers spread across the whole por-
ous medium and present no loops [27]. For capillary fingering, ‘‘the
fingers grow in all directions, even backward (toward the en-
trance)’’ [27]. The displaced fluid may be trapped due to the loops
developed by the fingers. The size of the trapped cluster varies
from the pore size to the whole porous medium [27].

In our simulations, the porous medium is generated by placing
circles with different radii in a 900 l:u:� 900 l:u: domain. Any two
circles are not allowed to overlap and the minimum gap between
any two circles is set to be 4 l.u. The radii of the randomly distrib-
uted circles range from 24 l.u. to 5 l.u. The porosity of the domain is
0.661 and the intrinsic permeability of the porous medium is
15.3 l.u.2, which is determined by single-phase lattice Boltzmann
simulations. The left and right sides of the domain are periodic.
In the displacement simulations, the domain was originally occu-
pied by the wetting fluid (‘blue’ component, which is white in fig-
ures, qb ¼ 1:0 m:u:=l:u:3; for the ‘red’ component, which is the
minority component, qr ¼ 10�8 m:u:=l:u:3). The wetting fluid is dis-
placed vertically by the non-wetting fluid (red in figure, contact
angle = 180� and qr ¼ 1:0 m:u:=l:u:3, for the minority component



Table 3
Numerical stability comparison between the BGK and MRT R–K models.

Case ui A logðCaÞ sr sb BGK applicable? MRT applicable?

a 1 � e�2 1 � e�2 �2.92 1.5 0.51 No Yes
b 1 � e�2 1 � e�3 �1.92 1.5 0.51 No Yes

Table 4
Cases with different viscosity ratio M and capillary number Ca.

Case ui A logðCaÞ sb sr logðMÞ Saturation
(Snw)

1 1 � e�2 1 � e�6 2.79 1 1 0 0.433
2 5 � e�3 1 � e�3 �0.51 1 1 0 0.451
3 5 � e�4 5 � e�3 �2.21 1 1 0 0.461
4 1 � e�2 1 � e�3 �1.92 1.5 0.51 �2 0.310
5 1 � e�2 1 � e�2 �2.92 1.5 0.51 �2 0.321
6 1 � e�3 1 � e�2 �2.92 1.5 0.6 �1 0.330

7 1 � e�3 1 � e�6 2.08 0.502 1.5 2.7 0.862
8 1 � e�3 1 � e�5 1.08 0.502 1.5 2.7 0.862
9 1 � e�3 1 � e�4 0.08 0.502 1.5 2.7 0.832

10 5 � e�3 1 � e�6 2.78 0.55 1.5 1.3 0.815
11 1 � e�2 1 � e�3 0.08 0.55 1.5 1.3 0.813
12 2.5e�3 1 � e�3 �0.519 0.52 1.5 1.7 0.833

13 5 � e�4 5 � e�3 �1.92 0.502 1.5 2.7 0.721
14 5 � e�4 5 � e�3 �1.92 0.51 1.5 2 0.680
15 5 � e�4 5 � e�3 �1.92 0.6 1.5 1 0.677
16 6 � e�4 2 � e�2 �2.44 0.51 1.5 2 0.637
17 6 � e�4 2 � e�2 �2.44 0.8 1.5 0.5 0.563
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qb ¼ 10�8 m:u:=l:u:3). In our study, the densities of the two fluids in
the solid nodes are set to be qwr ¼ 0:0 and qwb ¼ 1:0 m:u:=l:u:3.

Our simulations are run until ‘breakthrough’ occurs, which
means the injected fluid reaches the lower boundary. The non-
wetting saturations (Snw) are measured when breakthrough occurs.
From the above definitions of the three patterns, we can see that
Snw of stable displacement is the highest and Snw for viscous finger-
ing is the lowest.

The capillary number is defined as Ca ¼ qnwmnwui
r , where qnw is the

initial density of the non-wetting component and ui is the inlet
velocity of non-wetting component with unit ‘l.u./t.s’.

We investigated the numerical stability of our simulations. Two
cases with low capillary number were simulated using both the
MRT and BGK R–K models. Table 3 shows that the two cases which
can be simulated using the MRT R–K model are not stable with the
BGK R–K model. In the following MRT studies we also find a similar
situation, i.e., some cases that can be simulated by the MRT model
are not applicable using the BGK model. Hence, the MRT model has
better numerical stability than the BGK model.

Seventeen cases with different viscosity ratios and capillary
numbers are simulated and the parameters are shown in Table 4.
The non-wetting saturations (Snw) are listed in the last column.
Fig. 7 showsflow pattern transitions from stable displacement to
capillary fingering when M is fixed to be 500. When the capillary
number is large (logðCaÞ ¼ 2:08, case 7), the flow pattern is stable
displacement and it has a large non-wetting saturation
(Snw 	 0:83). When logðCaÞ ¼ �1:92, the flow pattern becomes cap-
illary fingering and Snw ¼ 0:721 (case 13). Fig. 7(b) shows an inter-
mediate case and the non-wetting saturation is about 0.78.

From Fig. 8(a) we can see that for case 2 with logM ¼ 0 and an
intermediate Ca, the displacement pattern is viscous fingering.
When M is fixed and Ca increases to logðCaÞ ¼ 2:79 (Fig. 8(b)),
the flow pattern does not change. When both M and Ca decrease,
the flow pattern still remains unchanged but the fingers become
thicker and Snw slightly decreases. Here we can see in this flow pat-
tern, Snw approximately ranges from 0.31 to 0.46 in Fig. 8(a)–(c).

According to the flow patterns, the seventeen cases illustrated
in Table 4 are classified into three groups. The first six cases are vis-
cous fingering, which approximately have a saturation
Snw 2 ½0:31;0:46
. The 7th case to the 12th case are stable displace-
Fig. 7. From stable displacement to capillary fingering (M ¼ 500). (a) case 7 (logðCaÞ ¼ 2:
(c) case 13 (logðCaÞ ¼ �1:92). The red and black represent the non-wetting fluid and solid
references to color in this figure legend, the reader is referred to the web version of thi
ment, which have the highest saturations Snw 	 0:83 among the
three patterns. The last five cases are capillary fingering with
Snw 2 ½0:56;0:72
. From Table 4, we can see that the saturations
in each group are slightly different. In the following discussion,
the saturation inside each group is regarded as ‘constant’.

Fig. 9 shows pattern distributions in the M–Ca plane. The above
three groups roughly form three domains and cases in each domain
have similar flow patterns. The boundaries that separate the do-
mains are approximately drawn and are represented by the thick
gray dashed lines. Our phase-diagram for the 900� 900 porous
medium is consistent with that obtained through experiments
[27]. The general shape of the boundaries of the three domains is
almost the same as that illustrated in Ref. [27]. The difference
between our results and those of Ref. [27] is some translation of
the boundaries of the domains. This translation might be attributed
to differences in pore size distributions [27] and the overall size of
the porous medium between our simulations and the results in Ref.
[27].
08), (b) a case of uin ¼ 5:� 10�4; A ¼ 10�3; logðCaÞ ¼ �1:217; s1 ¼ 0:502; s2 ¼ 1:5,
, respectively. The white area is occupied by wetting fluid. (For interpretation of the

s article.)



Fig. 8. Viscous fingering obtained from typical combination of different M and Ca, (a) case 2 (M ¼ 1; logðCaÞ ¼ �0:51), (b) case 1 (M ¼ 1; logðCaÞ ¼ 2:79), (c) case 6
(M ¼ �1; logðCaÞ ¼ �2:92). The red and black represent the non-wetting fluid and solid, respectively. The white area is occupied by wetting fluid. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 9. Plot of the constant-saturation domains for the simulations of the 900� 900
porous medium with different viscosity ratios and capillary numbers. The thick gray
dashed lines represent the boundaries approximately drawn to separate the three
domains.
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6. Conclusion

In this paper, pressure and velocity boundary conditions for sin-
gle phase flow are extended to simulate multiphase flows. The
boundary condition is not only limited to the R–K model, it is also
applicable to the other popular multiphase lattice Boltzmann mod-
els. The MRT R–K model presented is applied to study two-phase
flow in porous media. Two advantages of the MRT R–K model are
demonstrated. One is the significantly reduced spurious current,
and the other is better numerical stability. With these advantages,
two-component flows in porous media with both Ca and M ranging
from 10�3 to 103 are simulated. All three typical flow patterns are
reproduced and three domains in the M–Ca phase-diagram are
obtained. The boundaries that separate the three domains are
qualitatively consistent with the experimental study presented in
Ref. [27].
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Appendix A

The transformation matrix M for 2D is [26]:
1 1 1 1 1 1 1 1 1
�4 �1 �1 �1 �1 2 2 2 2
4 �2 �2 �2 �2 1 1 1 1
0 1 0 �1 0 1 �1 �1 1
0 �2 0 2 0 1 �1 �1 1
0 0 1 0 �1 1 1 �1 �1
0 0 �2 0 2 1 1 �1 �1
0 1 �1 1 �1 0 0 0 0
0 0 0 0 0 1 �1 1 �1
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