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Numerical analysis of the rotating viscous �ow approaching
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SUMMARY

A numerical simulation is performed to investigate the �ow induced by a sphere moving along the
axis of a rotating cylindrical container �lled with the viscous �uid. Three-dimensional incompressible
Navier–Stokes equations are solved using a �nite element method. The objective of this study is to
examine the feature of waves generated by the Coriolis force at moderate Rossby numbers and that
to what extent the Taylor–Proudman theorem is valid for the viscous rotating �ow at small Rossby
number and large Reynolds number. Calculations have been undertaken at the Rossby numbers (Ro)
of 1 and 0.02 and the Reynolds numbers (Re) of 200 and 500. When Ro=O(1), inertia waves are
exhibited in the rotating �ow past a sphere. The e�ects of the Reynolds number and the ratio of the
radius of the sphere and that of the rotating cylinder on the �ow structure are examined. When Ro � 1,
as predicted by the Taylor–Proudman theorem for inviscid �ow, the so-called ‘Taylor column’ is also
generated in the viscous �uid �ow after an evolutionary course of vortical �ow structures. The initial
evolution and �nal formation of the ‘Taylor column’ are exhibited. According to the present calculation,
it has been veri�ed that major theoretical statement about the rotating �ow of the inviscid �uid may
still approximately predict the rotating �ow structure of the viscous �uid in a certain regime of the
Reynolds number. Copyright ? 2004 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Viscous �ow past a sphere may be considered as a simple and typical case of the three-
dimensional �ow past blu�-bodies, which is signi�cant in many engineering applications
and in theoretical investigations [1]. The behaviour of the �ow around a moving sphere
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at various Reynolds numbers has been investigated previously by researchers [2–9]. Taneda
[2] performed experiments to visualize the wake downstream of a sting-mounted sphere for
5¡Re¡300, where Re is the Reynolds number based on the sphere diameter D and the free
stream velocity U . From the �ow visualization, it was found that the �ow separation from
the rear part of the sphere surface appeared at Re=24 approximately and formed an axisym-
metric vortex ring thereby. Magarvey and Bishop [3] observed experimentally the wake of a
free-falling drop of immiscible liquid through the water. The wakes of the liquid spheres ex-
hibited a similar vortex ring structure to that reported by Taneda [2]. The vortex ring remained
stable and axisymmetric up to Re=210. In the range 210¡Re¡270, the �ow structure be-
came non-axisymmetric and the vortex ring shifted o� the plane perpendicular to the axis. By
Re=270, a double-thread wake was observed, which was unstable and eventually resulted in
vortex shedding from the sphere, forming the so-called hairpin vortices. Those observations
have also been demonstrated by Nakamura [5] for free-falling, �uid-�lled spherical shells.
The phenomenon of unsteady vortex shedding from a sphere has received great attention for
290¡Re¡400. Some researchers [7–10] took measurements of the frequency about the un-
steady wake and visualizations of the hairpin vortices shed from spheres. In the aspect of
numerical computation, Tomboulides et al. [6, 11] performed a spectral element solution of
viscous �ow over a sphere for 25¡Re¡103. They found that the initial separation appears
at Re=20, steady axisymmetric �ow exists up to Re=212, and a regular bifurcation, i.e. a
transition from steady axisymmetric wake to the steady non-axisymmetric double-thread wake,
occurs at Re=212. Natarajan and Acrivos [12] studied the stability of the axisymmetric �ow
past a sphere using a �nite element method and found the regular bifurcation at Re=210.
Shirayama [13] solved the �ow past a sphere accelerating from rest up to Re=500. Recently,
Johnson and Patel [9] performed a numerical investigation of the �ow past a sphere up to
Re=300 and claimed that steady axisymmetric �ow should be observed at Re¡200; steady
non-axisymmetric regime be presented at 210¡Re¡270; and the unsteady �ow with vortex
shedding would appear at Re=270 and higher.
Viscous �ow over a rotating sphere has also received much attention in order to understand

the e�ect of rotation on the �ow. The characteristics of �ow over the rotating sphere depend
signi�cantly on the direction of the rotation relative to the direction of the approaching �ow.
Two special directions of sphere rotating are usually taken to be representative ones, which
are the streamwise rotation and the transverse rotation. Some work has been carried out to
investigate the relation between the rotational speed and the force exerted on the sphere both
for the cases of transverse rotation [14–18] and streamwise rotation [19–21] of the sphere.
Schlichting [19] has summarized the previous results of �ow over a streamwisely rotating
sphere. The present authors have also performed a �nite element analysis of the viscous �ow
past a sphere rotating in the streamwise direction [20]. To elucidate the character of this �ow,
the �ow structures in the near wake at di�erent Reynolds numbers and rotating speeds were
examined. It was found that as the rotating speed of the sphere increased, the rotating e�ects
got stronger and the vortex shedding under the e�ect of body rotation resulted in a swirling
vortex structure in the near wake. Recently, another numerical simulation of viscous �ow past
a sphere rotating in the streamwise direction was conducted by Kim and Choi [21].
Flow induced by a sphere moving along the axis of a rotating �uid is a typical case of

three-dimensional rotating �ows past a rigid body of arbitrary shape. In this problem, the
Rossby number is de�ned as Ro=U=(�D), where U is the moving velocity of the sphere
along the axis of the rotating �uid, � represents the angular velocity of the rotating �uid, and
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D is the diameter of the sphere. As indicated by Batchelor [22], ‘determination of the �ow
due to a rigid body in steady translatory motion parallel to the axis of rotation is a di�cult
problem, and a clear picture of all aspects of the �ow �eld is not yet available’. Taylor [23]
�rstly performed a famous experimental observation of the �ow due to sphere moving in a
rotating �uid at di�erent Rossby numbers. Then, Long [24] carried out similar experimental
visualization of the �ow due to a moving body with spherical nose and conical tail in a rotating
�uid and found that a column of �uid in front of the moving body was pushed ahead when
the Rossby number is less than about 0.2–0.3. When the Rossby number is of order unity, the
experimental observations showed, clearly, the existence of waves that were stationary relative
to the body [24]. Yet, the �ow structures in the wake of the moving body were ambiguous
and unclear. Since then, the �ow characters induced by a rigid body moving along the axis
of a rotating �uid have been investigated theoretically and experimentally [25–33]. However,
to the best of our knowledge, very little work was conducted numerically to depict the �ow
behaviour in detail.
The objective of this work is to reproduce numerically the inertia wave generated by the

sphere moving in a rotating �uid at moderate Rossby numbers and to observe how the ‘Taylor
column’ is evolved and eventually formed at a small Rossby number and large Reynolds
number. A �nite element method is employed to solve unsteady three-dimensional Navier–
Stokes equations, which describe the evolution of the �ow induced by a sphere moving along
the axis of a rotating cylindrical container �lled with the �uid. The Rossby number de�ned
above is chosen to be of order O(1), in one case, where the generation of inertial wave is
examined for the viscous �uid �ow at moderate-to-high Reynolds numbers. Another case is
that Ro � 1, where the Taylor–Proudman theorem is re-examined for the viscous rotating
�ow. In particular, the evolution and formation of the ‘Taylor column’ are investigated.
This paper is organized as follows. Physical problem and mathematical formulation are

given in Section 2. The numerical method and its validation are brie�y described in Section 3.
In Section 4, calculated results at Ro � 1 and of order unity are exhibited and discussed,
respectively. Finally, concluding remarks are summarized in Section 5.

2. PHYSICAL PROBLEM AND MATHEMATICAL FORMULATION

As shown schematically in Figure 1, a cylindrical container without end-walls �lled with the
�uid rotates around its axis at a constant angular velocity � in an inertial frame. In the
cylinder, a rigid sphere moves at a constant velocity U along the axis of the cylinder and
rotates about the axis of the cylinder at another constant angular velocity �S parallel to �.
Then, the �ows past the sphere at various Re and Ro numbers are numerically investigated.

z 
B

Ω U Ωs y     x

Figure 1. Sketch of a moving sphere in a rotating cylindrical container
without end-walls �lled by �uids.
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The rotating cylinder surface is the outer boundary of the �uid �ow, which simulates the
experimental visualizations [23, 24]. On the other hand, the sphere may be in�uenced by the
viscous �uid �ow and rotates around the axis of the cylinder. The magnitude of rotating
angular velocity of a free sphere depends on some �ow and geometry parameters, which
should be between zero and |�|, i.e. 06|�S|6|�|. An accurate value of the rotation velocity
of the sphere can only be obtained by solving coupled equations of the �uid �ow and the
sphere motion simultaneously. In this study, however, our attention is paid to the �ow structure
rather than the coupling e�ect of the �uid �ow and the sphere motion. So, we simply assume
that the sphere rotates around the axis of the cylinder at some prescribed angular velocities
|�S|.
In the present calculation, a reference frame, which moves with the sphere and rotates

with the rotating cylindrical container as a whole, is employed. Three-dimensional Navier–
Stokes equations for the incompressible �uid of uniform density are non-dimensionalized by
the diameter D and the moving velocity U of the sphere as the length and velocity scales,
respectively. Then, the non-dimensional equations are written as

@u
@t
+ u · ∇u + 2

Ro
ex × u=−∇p+

1
Re

∇2u (1)

∇ · u=0 (2)

where ex=�=|�| represents the unit vector in the axial direction, Re is the Reynolds num-
ber de�ned as Re=UD=� and Ro is the Rossby number de�ned as Ro=U=(|�|D) with �
representing the kinematic viscosity. The centrifugal force is incorporated into the pressure
term.
The initial conditions used in the present calculation are u= ex, p=0 at t=0. The bound-

ary conditions are as follows: u= ex, @p=@x=0 on the inlet boundary of the cylindrical
container (x→ −∞); @u=@x=0 and p=0 for the downstream condition (x→ ∞); u= ex
and @p=@r=(1=Re)@2ur=@r2 on the cylinder’s wall, i.e. r=(y2 + z2)1=2 =B and −∞¡x¡∞,
where ur represents the radial velocity component; and u=−(�−�S)× r on the sphere sur-
face, i.e., |r|= 1

2 , where B is constant and represents the radius of the cylinder, as shown in
Figure 1.

3. NUMERICAL METHODS

In this calculation, a �nite element method is employed to solve Equations (1) and (2). The
velocity correction method is used to perform the time integration. Spatial discretization is
carried out by the Galerkin weighted residual method. Upon the velocity correction method
proposed by Kovacs and Kawahara [34], the computational loop in the present calculation is
brie�y described as follows:
Step 1: Calculation of the ‘intermediate-velocity’ �eld by applying the explicit �rst-order

Euler scheme to Equation (1) at the �rst step,

û= un −�t
[
− 1
Re

∇2un + (un · ∇)un + 2
Ro
ex × un

]
= un −�tF(un) (3a)
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Then, a second-order Adams–Bashforth scheme is employed in the following time step:

û= un − 1
2 �t[3F(un)− F(un−1)] (3b)

Step 2: Solution to the pressure Poisson equation obtained by setting un+1 = û−�t ·∇pn+1,
then performing a divergence operation on it and forcing un+1 to satisfy the incompressible
constraint,

∇2pn+1 =
1
�t

∇ · û (4)

Step 3: Correction of the ‘intermediate-velocity’ �eld by adding the pressure term neglected
in Equation (3) to the ‘intermediate-velocity’ �eld,

un+1 = û −�t∇pn+1 (5)

where the superscript n indicates the number of the time step, and �t is the time step
increment.
The �nite element discretization of Equations (3)–(5) is taken by using the Galerkin

weighted residual method via the following expansions in the piecewise polynomial basis
functions:

u(x; y; z; t) =
N∑
i=1
ui(t)’i(x; y; z) (6a)

p(x; y; z; t) =
N∑
i=1

pi(t)’i(x; y; z) (6b)

where N represents the node number for the velocity and pressure. The weak solution form
of (3)–(5) permits ’i to be discontinuous in the �rst-order derivatives and subjected to the
natural boundary conditions. Thus ’i(x; y; z) is chosen to be a C0 piecewise bilinear basis
function de�ned on iso-parametric rectangular elements. Substituting Equation (6) into the
weak solution form of Equations (3)–(5), we can reach the discretized system of algebraic
equations to be numerically solved. The details of relevant discretized formulation for the
solution of the time-dependent incompressible Navier–Stokes equations were described by
Kovacs and Kawahara [34]. In our previous study, some validations by using the �nite element
approach have already been carried out [20, 35].
To further validate and verify the computational method and code to be used, two problems

are considered here. One is the viscous �ow around a stationary sphere, and another the
viscous �ow past a sphere rotating in the streamwise direction. According to calculated results
for the viscous �ow over a stationary sphere, Table I lists the drag coe�cient of the present
calculation together with previous data [9, 21, 36, 37], where the time-averaged values of the
drag coe�cient are obtained only for Re=300 (i.e. unsteady �ow) and other values correspond
to the asymptotic constant values of the drag coe�cient for Re=100 and 250 (i.e. steady
�ow). It is found that the present results agree very well with the previous data. As the typical
criteria, the separation angle �s that is measured from the front stagnation point of the sphere
and the separation bubble length xs that is taken from the centre of the sphere to the point
where the axis is crossed by the bubble are shown in Figure 2. It can be seen that the present
calculated results are also in good agreement with the previous computational and experimental
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Table I. Drag coe�cient for viscous �ow over a stationary sphere.

Present Fornberg Johnson and Constantinescu and Kim and Choi
[37] Patel [9] Squires [36] [21]

Re 100 250 300 100 250 300 250 300 100 250 300
�CD 1.086 0.701 0.656 1.085 0.70 0.656 0.70 0.655 1.087 0.702 0.657
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Figure 2. Flow geometry versus Reynolds number: (a) Polar separation angle �s.
(b) Separation bubble length xs.
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Figure 3. Iso-surface of vorticity magnitude (|!|=0:2) for viscous �ow past a sphere rotating in the
streamwise direction at Re=250: (a) |�S|=0:1; (b) |�S|=0:5; (c) |�S|=1; (d) |�S|=2.

data [2, 6, 38, 39]. Furthermore, we have found that steady axisymmetric �ow is observed at
Re¡200, steady non-axisymmetric �ow and unsteady �ow with vortex shedding are predicted
at 210¡Re¡270 and 270¡Re¡300, respectively, which con�rm that the present calculations
agree well with the previous numerical results [6, 38, 39] and experimental measurements [2].
Validations were also performed for the viscous �ow past a sphere rotating in the streamwise

direction. Figure 3 shows the vortical structure with di�erent rotating speeds at Re=250. The
streamwise vorticity in the wake was strengthened with the increase of the rotating speed
of the sphere (i.e. |�S|). If the rotating speed increases further as shown in Figure 3(d),
the vortical structure is twisted into a complex pattern. Those vortical structures in the wake
shown in Figure 3 are in good agreement with the patterns predicted by Kim and Choi [21].
To elucidate the detailed characters of this �ow in the near wake, the �ow structures at
di�erent Reynolds numbers and rotating speeds were shown in our previous paper [20].
In this study, to investigate the �ow induced by a sphere moving along the axis of a rotating

cylindrical container �lled with the �uids (Figure 1), the size of computational domain in the
axial direction is 20D ahead and behind the sphere, which is veri�ed to be big enough
according to the computational test. The time step is 0.001. The grid size is 150× 120 in
the axial and azimuthal directions, respectively. In the radial direction, the grid size is 60
for B=5 and 7.5, and 120 for B=11, 12.5, and 15. To increase the grid resolution near
the solid boundaries, stretching transformations are employed. The grid size and time step
independence of the present calculation has been ensured for every simulation and is exhibited
in the following section for some typical case. Based on our validation and veri�cation, it
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can be con�rmed that our calculation is reliable for the prediction of the �ow induced by a
sphere moving along the axis in a rotating �uid.

4. RESULTS AND DISCUSSION

4.1. Preliminary remarks

When the �ow is induced in a �uid rotating as a whole, the �ctitious Coriolis force acts
as an elastic force and provides a restoring mechanism, which enables the waves to occur
in the rotating �uid and propagate along the direction of the rotation axis. These waves are
sometimes referred to as inertia waves (or Rossby waves). Usually, the ratio of the magnitude
of the inertia and Coriolis forces, known as the Rossby number, is taken to be a convenient
measurement of the importance of the Coriolis force.
A simple and typical case for the rotating �uid �ow is the rotating pipe �ow in a straight

circular tube with contractive cross-sections. An elegant mathematical expression has been
found for the description of a wave-like inviscid �ow possibly occurring far downstream to
the contraction of this tube at some suitable range of Rossby number, which is (Batchelor [22])

 =ArJ1{(k2 − �2)1=2r} sin{�(x +Ut)} (7)

where  is the Stokes stream function, k=2�=U , �=2�=� is the wavelength, J1(x) denotes the
�rst-order Bessel function of the �rst kind. The frame of reference used is �xed to the rigidly
rotating �uid far upstream, so there is a travelling-wave propagating relative to the approaching
�uid at the speed U . Using the boundary condition  =0 on the wall of downstream tube,
one obtains,

J1{(k2 − �2)1=2B}=0 (8a)

or

B(k2 − �2)1=2 =Ro−1
p (1− �−2)1=2 = xn (8b)

where xn is the nth zero of the Bessel function J1(x), n denotes the number of wave train,
RoP =U=(2�B), and �= k=� is the non-dimensional wave length and usually is determined
by Ro and xn.
In the present study, a rotating viscous �ow in a cylindrical container is induced by a

sphere moving upstream at a constant velocity U . The example analysed above may throw
some light on the understanding of the present numerical results at moderate Rossby numbers,
which do exhibit obviously the wave pattern in the rotating �ow past a sphere. When Re � 1,
the �uid �ow behaves like an inviscid �ow except in the boundary layer and the wake of the
sphere. This explains that, if Ro is in a proper range, in particular, not too large, the inertia
wave may appear in the rotating �ow past a rigid body. According to the above analysis, the
condition for the inertia wave to appear in our case can be supposed as

2�B
U

=
�D
U
2B
D

¿
2B
D

Ro−1
c (9a)

i.e.

Ro=U=(�D)¡Roc (9b)
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Figure 4. Instantaneous streamlines at Ro=1, Re=200, B=5 and |�S|= |�|: (a) in the reference frame
S1; (b) in the reference frame S2; (c) three-dimensional swirling streamline in the reference frame S2.

where Roc is some critical Rossby number that is similar to the critical value of RoP in
the convergent pipe �ow discussed above. Based on this argument, it is expected that if the
rotating angular velocity � of the far upstream �ow is large enough, the inertia wave may
indeed be generated. In the present study, we tentatively choose the Rossby number Ro=1
to examine if the wave motion can occur in the rotating �ow past a sphere, and then the
e�ect of the ratio between the radii of the cylinder and of the sphere on the wave patterns is
investigated.

4.2. Flow structures at moderate Rossby number

For completeness, our calculations for validation shown in Section 3 on the non-rotating �ow
past a solid sphere will be taken as the case of rotating �ow at extremely large Rossby
numbers and not repeatedly discussed here. In the present study, we mainly investigate the
�ow structure at moderate Rossby numbers of Ro∼O(1) and small Rossby numbers of Ro �
1, and the Reynolds numbers are taken to be 200 and 500. To demonstrate the e�ect of the
radius of the cylindrical container on �ow patterns, a series of radii of the rotating cylinder
are chosen to be B=5, 7.5, 11, 12.5, and 15. Here, we will not deal with the coupled
problem of the viscous �ow and the rotating sphere motion but simply prescribe the rotating
angular velocity of the sphere separately to be |�S|= |�|, |�|=2 and 0, instead. The e�ect
of the angular velocity of the rotating sphere on the �ow structure will be examined later in
Section 4.4.
Instantaneous streamlines at Ro=1, Re=200, B=5, and |�S|= |�| are shown in Figure 4.

According to our calculated results, the �ow is axisymmetric and then the �ow pattern in a
meridian plane (i.e. �=0◦) is illustrated. Figure 4(a) shows the streamlines in a reference
frame (denoted by S1) �xed to the rotating cylinder, in which the sphere is moving through
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(a)

(b) 

Figure 5. Instantaneous streamlines in the transverse plane at Ro=1, Re=200, B=5 and
|�S|= |�|: (a) x=25; (b) x=30.

the �uid at a constant velocity U along the axis of the cylinder (as shown in Figure 1). It is
seen that there are two rows of inertia wave cells, moving together with the sphere toward
the left direction along the axis of the cylinder. The streamlines of the same �ow observed in
another reference frame (denoted by S2) �xed to the rotating sphere, are shown in Figure 4(b)
and a steady wavy �ow pattern is exhibited. The steadiness of the �ow in S2 indicates that
the wave propagates at a constant speed U relative to the ambient �uids. As the velocity
of the incoming �ow in S2 is much larger than the transverse oscillating speed of the �uid
particle, the amplitude of wavy streamlines is very small, so that the wave looks quite di�erent
from that shown in Figure 4(a), where the axial velocity of �uid particles is as small as the
transverse velocity and results in the well-organized cell patterns. It is noted that the azimuthal
velocity of the �ow is not zero although the inertia waves exhibit axisymmetric behaviour.
The three-dimensional swirling streamline in the reference frame S2 is shown in Figure 4(c).
To demonstrate the streamlines in the transverse plane, Figure 5 shows the streamline patterns
at x=25 and 30. As the azimuthal velocity is not zero, a swirl structure appears in the wake.
In the central region of the wake, the azimuthal velocity is high and a strong vortex roll
induced by stretching the streamwise vortex tube occurs. In the outer region of the wake,
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Figure 6. Vorticity magnitude contours at Ro=1, Re=200, B=5 and |�S|= |�|: (a) Contours in
meridian plane. (b) Three-dimensional reconstruction of the vorticity iso-surface.
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Figure 7. Instantaneous streamlines at Ro=1, Re=500, B=5 and |�S|= |�|: (a) in the reference frame
S1 in two meridian planes perpendicular to each other; (b) in the reference frame S2.

however, the azimuthal velocity is rather small and the �ow is only slightly swirled. Figure 6
shows contours of the azimuthal component of vorticity in meridian plane (Figure 6(a)) and
a three-dimensional reconstruction of the vorticity iso-surface (Figure 6(b)).
To illustrate the e�ect of Reynolds number on the �ow �eld, Figure 7 shows streamlines

in two meridian planes (i.e. �=0◦, �=2) at Ro=1, Re=500, B=5, and |�S|= |�|. The
streamline pattern in the reference frame S1 also exhibits two columns of wave cells. This
indicates that the number of the radial cell is independent of the Reynolds number. However,
�ow structures at Re=200 and 500 are obviously di�erent. In the case of Re=500, these wave
cells are set in a staggered arrangement, and the �ow �eld is no longer axisymmetric. This is
because the periodic vortex shedding from the sphere results in a swirling vortex structure in
the near wake of the sphere at this Reynolds number. The corresponding streamlines observed
in the reference frame S2 are shown in Figure 7(b). The azimuthal vorticity contours in the
longitudinal plane are shown in Figure 8 at four di�erent phases in one cycle, and the unsteady
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(a) 

(b) 

(c) 

(d) 

Figure 8. Vorticity contours in the longitudinal plane at four phases in one period for Ro=1, Re=500,
B=5 and |�S|= |�|: (a) 0; (b) T=4; (c) T=2; (d) 3T=4.

vortex shedding is clearly illustrated. To depict the swirling vortex shedding structures in the
wake of the sphere, the corresponding patterns of three-dimensional vorticity iso-surface are
shown in Figure 9. The swirling vortex structure is shed from the sphere to the wake at larger
Reynolds number and changes the wave cells in the outer region of the wake to a staggered
arrangement. Furthermore, Figure 10 shows the variation of the radial velocity with time at
two di�erent radial locations in the core and outer regions of the wake. In the outer wake
of the sphere (at r=3:22), the radial velocity component has small oscillatory amplitude
due to the slight in�uence of the vortex shedding on the inertia wave. However, in the core
region of the wake (at r=0:87), the radial velocity component exhibits much larger amplitude
because of the vortex shedding. To verify that the computed results in the present calculation
are independent of the time step and the grid size, the results calculated by two di�erent grid
sizes and time steps have been shown in Figure 10.
It should be indicated that an upper critical Rossby number has been de�ned in Equation

(9). For Ro¿Roc, the Coriolis force is too small to form the inertia wave. Meanwhile, there
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Figure 9. Vorticity iso-surface at four phases in one period for Ro=1, Re=500, B=5,
and |�S|= |�|: (a) 0; (b) T=4; (c) T=2; (d) 3T=4.

is also a lower critical Rossby number for the existence of the inertia wave. When the Rossby
number gets smaller and smaller, the rotating inertia gets stronger and stronger and makes the
streamlines to be sti�er and sti�er. In this circumstance, it is also impossible for the inertia
wave to be generated. Actually, we have calculated the �ow at a smaller Rossby number of
Ro=0:5 (not shown here because of the scope limitation) and have not found the formation
of the inertia wave.

4.3. E�ect of the radius of the cylinder on �ow �eld

The wavelength of the inertia wave �=2�=� depends on several parameters, such as �, U ,
B and D. For a rotating �uid motion in a convergent tube, � (or �) depends on �, U and
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Figure 10. Variation of the radial velocity with time at two radial locations for Ro=1, Re=500, B=5
and |�S|= |�|: Condition—1: grid size 150× 120× 60 and time step 0.001; Condition—2: grid size

300× 240× 120 and time step 0.0005.

B, cf. Equation 8(b). Although the relation given by Equation 8(b) is not exactly applicable
to the present problem, it will certainly be helpful to the understanding of the �ow described
here.
Now, N (N =1; 2; : : :) denotes the column number of the wave cells. We can write an

expression similar to (8b) in the form of

{
Ro−2 −

(
�D
�

)2} (
2B
D

)2
= xN

(
D
B

)
(10)

when Ro and (D=B) are given, xN , N =1; 2; : : :, can be regarded as some eigenvalues in the
present problem. The number of wave train N and the wave length (�=D) are then determined
by Ro and (B=D).
According to the above analysis, the �ow patterns will change with the cylinder radius at

moderate Rossby numbers. To illustrate the e�ect of the cylinder radius on the �ow �eld,
Figure 11 shows streamlines plotted in the reference frame S1 in two mutually perpendicular
meridian planes (i.e. �=0◦, �=2) at B=7:5, 11, 12.5, and 15, Ro=1, Re=500 and |�S|= |�|.
The �ow structure at B=5, as shown in Figure 6(a), exhibits two columns of wave cells.
At B=7:5, three columns of wave cells are exhibited. The inner column of cells in the near
wake evolves with time because of the in�uence of the vortex shedding on the near wake
of the sphere. However, the outer two-column cells have almost steady wave character in
the reference frame S2. If the radius of the cylinder increases further, e.g. B=11, 12.5, and
15, as shown in Figure 11, the column number of the inertia wave cells may increase with
the increase of the cylinder radius. Like the case of B=7:5, the inertia wave cells of outer
columns at larger B behave as steady waves in S2 while unsteadiness appears in the inner
column near the wake of the sphere.
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Figure 11. Instantaneous streamlines in the reference frame S2 at Ro=1, Re=500 and |�S|= |�|:
(a) B=7:5; (b) B=11; (c) B=12:5; (d) B=15.
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Figure 12. Instantaneous streamlines in the reference frame S2 at Ro=1, Re=500
and B=5: (a) |�S|= |�|=2; (b) |�S|=0.

4.4. E�ect of the rotating angular velocity of the sphere on �ow �eld

When a sphere moves along the axis of a rotating �uid, as that visualized experimentally
[23, 24], the sphere may be driven to rotate about the axis due to the viscous force acting on
the sphere. The rotating velocity of the sphere depends on some parameters in the physical
problem, such as the rotating angular velocity of the cylinder, the translation velocity of the
sphere, the �uid viscosity, the size and density of the sphere and so on. In the present study,
the rotating angular velocity of the sphere is given in advance without solving the coupled
equations of the �uid �ow and the sphere motion. Yet, we need to check how the �ow is
a�ected by the rotating speed of the sphere.
To depict the e�ect of the rotating angular velocity (�S) of the sphere on inertia wave cells,

Figure 12 shows the streamlines in the reference frame S1 in two perpendicular meridian planes
(i.e. �=0◦, �=2) at Re=500, B=5, and |�S|= |�|=2 and 0, respectively. By comparing with
the �ow pattern in Figure 7(a) for |�S|= |�|, the structures of wave cells in the outer region
of the wake are almost the same for di�erent �S’s. The �ow �elds in the core wake of the
sphere, however, do behave di�erently due to the rotating e�ect on the vortex shedding. It can
be con�rmed that the sphere rotating angular velocity |�S| only in�uences the �ow picture
in the central region of the wake remarkably but little on the inertia wave cells in the region
out of the wake.

4.5. Evolution and formation of ‘Taylor column’ at small Rossby number

When the Rossby number is small enough, the dominance of Coriolis force in a rotating �ow
results in a �ow distinctly di�erent from the wave pattern. In this circumstance, the motion
in the transverse plane is decoupled with the motion parallel to the axis of the rotation and
reduces to a two-dimensional motion. According to the Taylor–Proudman theorem for the
inviscid �ow, a column of �uid is pushed ahead of the body that moves parallel to the
rotating axis at small Rossby number, and a so-called ‘Taylor column’ of �uid parallel to
the axis forms. At the edge of the column there exists a sharp shear layer. Naturally, it is
expected that the approximation of the inviscid �ow theory may be applicable to the �ow at
large Re and small Ro. Here, we will numerically examine that to what extent the Taylor–
Proudman theorem is valid for the rotating viscous �ow past a rigid body at large Reynolds
numbers.
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Figure 13. Flow patterns in the reference frame S2 in the meridian plane at Ro=0:02, Re=500, B=5
and |�S|= |�|: (a) gray picture of the axial velocity component, (b) velocity vectors.

Figure 14. Pro�les of the axial velocity component in the reference frame S2
at several di�erent axial locations.

Figure 13 shows the �ow patterns at Ro=0:02, Re=500, B=5, and |�S|= |�|. The gray
picture of the axial velocity component and the velocity vector in the meridian plane are
given in Figures 13(a) and 13(b), respectively. It is seen that the ‘Taylor column’ is indeed
formed before and behind the sphere. At the edge of the ‘Taylor column’, the axial velocity
component has a sharp change where the vorticity is very large. On the lateral sides of the
sphere, high-speed stripes (white colour) appear, a character of the �ow past a solid body at
large Reynolds number. In addition, a thin boundary layer is presented in the proximity of
the spherical surface and slightly curved streamlines are exhibited in outer regions lateral to
the sphere, which deviate the prediction by the Taylor–Proudman theorem.
To illustrate the velocity variation near the edge of the ‘Taylor column’, Figure 14 shows

the axial velocity pro�les in the reference frame S2 at several axial locations. Toward the
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Figure 15. Gray picture of the azimuthal vorticity component in the meridian plane.

outer side of the ‘Taylor column’, the velocity increases quickly to form a peak and gradually
changes to a uniform velocity pro�le with nearly the same magnitude of the incoming �ow.
Inside the ‘Taylor column’, a ‘dead water’ region is formed immediately behind the sphere
and small but non-zero velocity is seen before the sphere. As the �ow approaches the sphere,
the velocity before the sphere gets smaller and smaller. From the velocity pro�le, it can be
seen that a strong shear layer appears near the edge of the ‘Taylor column’. Figure 15 shows
gray picture of the azimuthal relative vorticity component in the meridian plane, which also
indicates that strong vorticity is formed at the edge of the ‘Taylor column’.
What is more interesting is the evolutional process of the Taylor column after the sphere

starts to move. As a matter of fact, the so-called ‘Taylor column’ at small Ro and large Re
is not immediately formed at the beginning of the sphere’s movement. The time trajectory of
the formation of the Taylor column is traced by using our calculated results, which is hardly
observed by experiments. Figure 16 shows instantaneous streamlines in the reference frame
S2 at several instants during the initial stage of the formation of the ‘Taylor column’. One
can imagine that when the sphere suddenly moves at a �nite velocity U , a pressure impulse
occurs immediately in response to the action of the sphere, which is very large in the near
�eld and decays rapidly in the far �eld. Momentarily, the rotating �uid behaves as an inviscid
�ow and the viscous di�usion does not yet play a signi�cant role. Then a cylindrical vortex
sheet forms before and behind the sphere. Later, the vortex sheet oscillates and rolls up due to
the Kelvin instability and to the centrifugal instability in the presence of such strong rotation.
Then, for example, at t=0:1, two vortex rings are formed behind and before the sphere.
Because of the motion of the sphere, the vortex rings are not fore-and-aft symmetric about
the sphere. As the sphere moves ahead, the vortex pair generated at the early stage gradually
breaks up into smaller vortices, meanwhile, new vortex rings occur at the distant locations
from the sphere. This process of evolution goes on with time, accompanying the generation
of a series of vortices. As time moves on, all vortices produced in this way are dissipated,
and the Taylor column consisting of nearly ‘dead’ �ow zone is formed eventually.

5. CONCLUSIONS

Rotating viscous �ows induced by a sphere moving along the axis of a rotating cylindrical
container �lled with the �uid are investigated by solving the three-dimensional Navier–Stokes
equations using a �nite element method. Numerical simulations are carried out at Ro=1
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 16. Instantaneous streamlines in the reference frame S2 at several instants during the
initial stage of the formation of the ‘Taylor column’: (a) t=0:1; (b) t=0:2; (c) t=0:3;

(d) t=0:4; (e) t=0:5; (f) t=0:6.

and 0.02, and Re=200 and 500, respectively. Our purpose is to examine the possibility
of the generation of inertia wave and its �ow characters at moderate Rossby numbers (here,
Ro=1), and the applicability of the Taylor–Proudman theorem to viscous �ow at small Rossby
numbers (here, Ro=0:02), in particular, the process of generation of the Taylor column. Based
on this investigation, we can reach the following conclusions.
At moderate Rossby number, the inertia wave may possibly be generated for the rotating

�ow past a sphere at large Reynolds number. The number of the wave train increases with
the increase of the ratio of the rotating cylinder radius to that of the sphere. The wave pattern
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in the region out of the wake has a similar structure for di�erent rotating angular velocities
of the sphere and is almost steady relative to the frame �xed to the sphere. However, in the
core region of the wake, the strong rotation of the sphere will change signi�cantly the vortex
shedding and the �ow behaves unsteadily. At small Rossby number, the so-called ‘Taylor
column’ is also found in the rotating viscous �ow and strong shear layers are formed at
the edges of the column where the vorticity is very large. In the initial stage of the ‘Taylor
column’ generation, two vortex rings of di�erent sizes are generated before and behind the
sphere, respectively, and then pushed to further upstream and left to further downstream.
After a dissipation course of the vortex rings during a su�cient time interval, ‘dead �ow’
zones before and behind the sphere are formed and the ‘Taylor column’ appears eventually.
It should be remarked that the results given in the present paper are only some typical �ow
pictures at a few Reynolds and Rossby numbers. The characters and mechanisms of the
rotating �ow past a solid body in a full range of Reynolds and Rossby numbers are still
far from clearly understood and need to be investigated further by numerical analyses and
experimental observations.
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