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SUMMARY

In this paper, the 3D Navier–Stokes (N–S) equation and Cahn–Hilliard (C–H) equations were solved using
a free-energy-based lattice Boltzmann (LB) model. In this model, a LB equation with a D3Q19 velocity
model is used to recover continuity and N–S equations while another LB equation with D3Q7 velocity
model for solving C–H equation (Int. J. Numer. Meth. Fluids, 2008; 56:1653–1671) is applied to solve
the 3D C–H equation.

To avoid the excessive use of computational resources, a moving reference frame is adopted to allow
long-time simulation of a bubble rising. How to handle the inlet/outlet and moving-wall boundary
conditions are suggested. These boundary conditions are simple and easy for implementation.

This model’s performance on two-phase flows was investigated and the mass conservation of this model
was evaluated. The model is validated by its application to simulate the 3D air bubble rising in viscous
liquid (density ratio is 1000). Good agreement was obtained between the present numerical results and
experimental results when Re is small. However, for high-Re cases, the mass conservation seems not so
good as the low-Re case. Copyright q 2009 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Multiphase and multi-component flows occur in many natural and industrial processes. Conven-
tionally, the multiphase and multi-component flows are simulated by solving a set of Navier–Stokes
(N-S) equations coupled with an equation to track or capture the interface. Among the approaches,
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volume of fluid (VOF) [1, 2] and level set method [3] are applied extensively. However, it is
well known that they may encounter some numerical difficulties in the treatment of topological
deformation of interface breaking and coalescing. In addition to that, VOF may also be hard to
extend to the 3D case due to the difficulty in interface-reconstruction from the values of volume
fraction. For the level set method, a re-initialization procedure is required to keep the distance
property when large topological changes occur around the interface. This may violate the mass
conservation.

The lattice Boltzmann method (LBM), which is based on mesoscopic kinetic equations, has
become a promising numerically robust technique for simulating multiphase fluids [4–9]. It has
been successfully applied to study wetting and spreading phenomena [10–12], bubble collision and
bubble rising phenomena [6, 7], displacement of immiscible fluids in porous media [5, 13, 14], etc.

There are several popular multiphase models in LBM. The first type is the color-gradient-based
LBM proposed by Gunstensen et al. [15], which is based on Rothman–Keller lattice gas model
[16]. The second type is the Shan–Chen-type model [4], in which the nonlocal interaction is
incorporated into the lattice Boltzmann (LB) equation and the nonideal-gas’s equation of state is
constructed through adding the potential form of the interaction into the ideal-gas’s equation of
state. The third type is free-energy-based LBM [17]. The fourth type is the model of He et al.’s
[18], in the model, to eliminate the numerical instability caused by large intermolecular force near
the interface, two sets of particle distribution function (PDF) and the concept of the index function
are used.

For the aspect of the evolution of interface, the first, second and the fourth models do not
explicitly describe the evolution of the interface and the physics of the interface capturing equation
is unclear. While in the free-energy-based LBM method, a set of PDF is designed to solve
the convection-diffusion equation, i.e. a modified Cahn–Hilliard (C–H) equation, which is an
evolution equation for the interface. This equation evolves the order parameter (for example,
density difference), which is used to distinguish different phases or components. In this sense, the
order parameter is quite similar to the indicator of the traditional volume tracking method such
as VOF.

Although LBM has made great progress in multiphase flow modeling, most of the above LBMs
are limited to small density ratios less than ten because numerical instability may appear in cases
of large density ratio. Inamuro et al. [6] and Lee and Lin [19] achieve a high density ratio through
improving Swift’s free-energy model [17] and model of He et al. [18], respectively.

In the model of Inamuro et al. [6], the pressure correction is applied to enforce the continuity
condition after every collision-streaming step, which is similar to VOF method [1] and level set
method [3]. The projection step would reduce the efficiency of the method greatly. A small drawback
is that the cut-off value of the order parameter and the surface tension coefficient are not analytically
given in the model. It is also found that the model may not be accurate for some incompressible
flows although the projection procedure is employed to secure the incompressible condition [9].

Lee and Lin [19] developed an LBM for multiphase flows with large density ratio. It is based
on the model of He et al. [18], hence it still does not completely recover the C-H equation.
Besides, at different steps, the discretization forms are different, which make the implementa-
tion quite complex.

Based on free-energy-based LBM [17, 20], the LB model of Zheng et al. [9] is able to recover
the C-H equation without any additional terms and it is able to keep the Galilean invariance
property. This model is also found more efficient than other LB models because it is D2Q5 while
not D2Q9 particle velocity model is incorporated to recover the C–H equation.
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In this paper, an LB equation with a D3Q7 velocity model for solving C-H equation [21] is
applied to solve the 3D C–H equation. Another LB equation with a set of D3Q19 PDF is used to
solve N–S equations. This 3D free-energy-based LB model is applied to study the air bubble rising
in viscous fluid so as to test this model’s performance on large-density-ratio two-phase flows.

2. MODEL AND THEORY

In this study, a flow with two immiscible fluids or phases has large density ratio is considered.
The liquid density and gas density are represented by �l and �g , respectively. The N–S equation
and the following C–H equation are used to describe the two-phase flows [22–24]:

�t n+��(nu�)=0 (1)

�t (nu�)+��(nu�u�)=−��(p��)+����(��u�+��u�)+F� (2)

�t�+��(�u�)=�M��(����) (3)

In this paper, subscripts �,�, . . . will be used to represent Cartesian coordinates and �t , �� denote
differentiation with respect to t and x�, respectively. A summation over repeated indices is assumed.
In above equations, �� is the chemical potential, �M is the mobility, p�� is the pressure tensor, F�
is the body force in the x� direction and n,� are defined as [24]:

n= �A+�B

2
, �= �A−�B

2

where �A and �B are the density of fluids A and B, respectively. They may be �l or �g , depending
on the initial conditions.

2.1. The interface capturing equation

In this section we briefly describe how an LB equation with a set of D3Q7 PDFs is able to recover
the interface capturing equation, i.e. the C–H equation. To recover the Equation (3), the following
slightly modified LB equation is adopted [25]:

gi (x+ei	t, t+	t)−gi (x, t)=(1−q)[gi (x+ei	t, t)−gi (x, t)]+ 1


�
[geqi (x, t)−gi (x, t)] (4)

where 
� is a dimensionless single relaxation time, q is a constant. If q is set to be one, the above
Equation (4) is the conventional LB equation. In the equation, gi is the set of D3Q7 PDF used
here to recover the C–H equation and ei is the lattice velocity illustrated as follows:

[e0,e1,e2,e3,e4,e5,e6]=c ·
⎡
⎢⎣
0 1 −1 0 0 0 0

0 0 0 1 −1 0 0

0 0 0 0 0 1 −1

⎤
⎥⎦

where c=	x/	t is the lattice speed, which defined as the ratio of lattice spacing 	x and time step
	t . In our study, we define one lattice unit 	x as 1 l.u. and 	t as 1 t.s.
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The macroscopic variables are evaluated by

�=∑
i
gi (5)

Applying Chapman–Enskog expansion and Taylor expansion [20, 26] on Equation (4) and retaining
terms to O(	t2), we obtain

(�t +qei���)g
(0)
i +	t

[(
1

2
−
�

)
�t (�t +qei���)g

(0)
i

+
(
2−q

2
−
�q

)
�t (ei���)g

(0)
i +

(q
2

−
�q2

)
(ei���ei���)g

(0)
i

]
+O(	t2)

=− 1


�	t
(gi −g(0)

i ) (6)

The first and second terms of the above equation in brackets is of higher order and can be neglected
[20]. To recover the C–H equation, there are three constraints on the zeroth, first and second
moments of the equilibrium distribution function,

∑
i
g(0)
i =�,

∑
i
g(0)
i ei� = �

q
u�,

∑
i
g(0)
i ei�ei� =E�� (7)

Here it should notice that
∑

i g
(1)
i =0 can be derived from Equation (5) and the above equation.

However, it is assumed that
∑

i g
(1)
i ei� �=0 since

∑
i gi ei� =(�/q)u� is never used or defined.

Summing both sides of Equation (6) over i and using these constraints gives,

�t�+��(�u�)+	t

(
2−q

2q
−
�

)
�t [��(�u�)]+	t

(q
2

−
�q
2
)
����(E��)+O(	t2)=0 (8)

Comparing the above equation with Equation (3), it is found that the following two equations
should be satisfied:

2−q

2q
−
� =0 (9)

−	t
(q
2

−
�q
2
)
E�� =�M��	�� (10)

If we defined the mobility as,

�M =−
(q
2

−
�q
2
)
	t� (11)

Equation (10) would give E�� =���	��.
Equation (9) further gives

q= 1


�+0.5
(12)
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Because in the above procedure, the fourth-order isotropic lattice tensor is not required as the
conventional LBMs, here the D3Q7 model is enough to recover the C–H equation. According to
the constraints in Equation (7), the equilibrium distribution functions take the following form:

g(0)
i = Ai +Bi�+Ci�ei�u� (13)

The coefficients can be chosen as

B0=1, Bi =0(i �=0) (14)

Ci = 1

2q
(15)

A0=−3���, Ai = 1
2��� (16)

where � is used to control the mobility.

2.2. The interface modeling

In this section, we discuss the surface tension force modeling.
In Equation (2), the term ��(p��) is related to the surface tension force. This term can be written

as a potential term [23, 27] ��(p��)=−�����−�� p0, where p0=nc2s · cs =c/
√
3 is the sound

speed. As a result, the momentum equation (i.e., Equation (2)) can be rewritten as

�t (nu�)+��(nu�u�)=−��(p0+���)+�����+����(��u�+��u�)+F� (17)

The chemical potential �� can be derived from the free energy density function. We adopt a
free energy function in a closed volume with a mixture of two fluids taking the form [23, 28]

F=
∫

�dV =
∫

dV

[
�(�)+ k

2
(���)2+ n lnn

3

]
(18)

Here, V is a control volume, k is a coefficient, which is related to the surface tension and the
thickness of the interface layer. � is the bulk free energy density per unit mass for the homogeneous
system. The square of gradient term is associated with variations of the density and contributes to
the free energy excess of the interfacial region, which defines the surface energy [28]. It is chosen
as a double-well form

�(�)= A(�2−�∗2)2 (19)

where A is an amplitude parameter to control the interaction energy between the two phases;
� is the order parameter. This form will contribute to two equilibrium states, �∗ and −�∗. The
chemical potential is [23]

�� = ��

��
−��

(
��

�(���)

)
= A(4�3−4�∗2�)−k�2�� (20)

The pressure tensor is [23]
p�� = p	��−k[(���)2	��−������] (21)
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where

p= A(3�4−2�∗2�2−�∗4)−k��2��+ k

2
(���)2+ n

3
(22)

It should be noted there are some first and second derivatives in above equations and they can be
evaluated through finite difference schemes, i.e.

��

�x�
=

18∑
i=1

�i ei� ·�(x+ei�	t)

c2s 	t

�2��=2 ·
18∑
i=1

�i [�(x+ei	t)−�(x)]
c2s (	t)

2

where �i are defined later in Equation (28).
Following the same procedure as References [22, 23], we can obtain the order parameter profile

along the normal direction of the interface �=�∗ tanh(2/W ), where  is the coordinate, which
is perpendicular to the interface, and W is the thickness of interface layer [23],

W =
√
2k/A

�∗ (23)

For a flat interface, the surface tension coefficient can be evaluated as [28] �=∫
k (��/�)2d.

Hence, the surface tension coefficient is

�= 4AW

3
�∗4 (24)

where the order parameter is �∗ =(�l −�g)/2. In the simulation, usually the �∗ is determined
by density ratio and the interface thickness is usually specified larger than 4 lattice unit [9]. The
surface tension � is specified by the parameters Mo, Eo in simulation and then the parameter A
is fully decided through Equation (24).

2.3. The continuity and momentum equations

After the above discussion on the surface tension force modeling, we discuss the continuity and
momentum equations. To recover the N–S equation, here the second LB equation is employed as

fi (x+ei	t, t+	t)− fi (x, t)= 1


n
[ f eqi (x, t)− fi (x, t)]+Si (25)

where 
n is a relaxation time parameter, which is different from the parameter 
� and Si is a
source term added into LBE to mimic the body force term, which appears in the N-S equation.

In the above equation, ei s are the discrete velocities of the D3Q19 model, which are given as

[e0,e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,e12,e13,e14,e15e16,e17,e18]

=c ·
⎡
⎣0 1 −1 0 0 0 0 1 1 −1 −1 1 −1 1 −1 0 0 0 0
0 0 0 1 −1 0 0 1 −1 1 −1 0 0 0 0 1 1 −1 −1
0 0 0 0 0 1 −1 0 0 0 0 1 1 −1 −1 1 −1 1 −1

⎤
⎦
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Here the body force term that appears in the above N–S equation is F�+�����, then the source
term can take the following form:

Si = ei��i

c2s
(F�+�����) (26)

To recover the NS equations through Chapman–Enskog expansion, there are several constraints
that should be satisfied: ∑

i
f (0)
i = n,

∑
i
f (0)
i ei� =nu�

∑
i
f (0)
i ei�ei� = (���+c2s n)	��+nu�u�

(27)

From these constraints, the equilibrium PDFs are constructed as follows:

f (0)
i =�i Ai +�i n

(
ei�u�

c2s
+ ei�u�ei�u�

2c4s
− u�u�

2c2s

)
(28)

where the coefficients are chosen as

A0 = 3n−6(���+c2s n)

Ai = 3(���+c2s n), i=1,2, . . .18
(29)

In above equations, for the D3Q19 model, wi = 1
3 (i=0), wi = 1

18 , (i=1,2, . . . ,6), wi = 1
36 ,

(i=7,8, . . . ,18). n is the density of the fluid, which can be obtained from n=∑
i fi .

2.4. Moving reference frame

As we know, the computational domain size in the vertical direction may be very large to allow
the bubble long-time rising vertically. Applying a moving reference is a good strategy to perform
the long-time simulation of a single bubble rising with a limited computational resource. To mimic
a moving frame, which is moving with a constant velocity, the inlet and outlet velocity boundaries
would be specified for top and bottom horizontal planes, respectively, while moving wall boundary
conditions specified for vertical wall boundaries. To handle these boundary conditions, we used
the extrapolation method.

The implementation details are explained as follows. Before streaming step is implemented, the
PDFs in moving wall boundary or top/bottom boundary are calculated as [29]

fi (xb, t)= f eqi (xb, t)+(1−1/
n)( fi (xf, t)− f eqi (xf, t)) (30)

where xb is the boundary node, xf is the nearby fluid node. gi (xb, t) is also calculated in the similar
way. The f eqi (xb, t) and geqi (xb, t) are calculated through Equations (28) and (13), respectively,
because the velocity is specified and �(xb), n(xb) are able to be extrapolated from the nearby
fluid nodes.

As we know, in LBM usually if Umax/cs<0.15, the compressibility effect is negligible [26]. In
a simulation if Reynolds number is known, the parameter 
n should be chosen using the above
incompressible constraint. Parameter study shows that numerical results are not sensitive to the
variation of 
�. 
� usually can be chosen in the range of [0.65,0.9] and in our simulations 
� was
set as 0.7.
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3. RESULTS AND DISCUSSIONS

Before numerical verifications, we introduce some commonly used nondimensional parameters
in bubble rising studies. These parameters are Eo,Mo and Re. Eo is the Eotvos number,
Eo=gd2e �l/�. Mo is the Morton number defined as Mo=g�4/(�l�

3) and Reynolds number is
defined as Re=�ldeU∞/�. The characteristic length, de=(6V/�)1/3, is the volume-equivalent
diameter. V is the bubble volume and U∞ is based on the observed rising velocity [30]. Because
we are interested in the high-density-ratio flow, hereafter in all our simulations, density ratio of
liquid and gas is 1000 and viscosity ratio is 100. The parameter � in all of our simulations were set
as 1000 and the thickness of surface interface was set as 4.0. Although � and interface thickness W
are chosen independently, the results in terms of rising velocity or bubble shape seem not sensitive
to � or W . Usually the � is suggested to choose as small as possible if the numerical instability
does not appear [9].

3.1. Moving-reference-frame verification

In our simulations, a moving frame was introduced to perform the long-time simulation of a single
bubble rising. First, we would like to verify this strategy. A bubble rising case with Eo=243,
Mo=266 was simulated in both a moving frame and two stationary frames. The main parameters
of our simulations are listed in Table I. Case A1 was performed in a moving frame and A2,
A3 were performed in stationary frames. The difference between case A2 and A3 is that smaller
bubble size (de=30) and computational domain are used in case A3. Hereafter, the 
n listed in the
Table means the 
n applied in liquid area. While in the gas (bubble) area, the relaxation parameter
is 
bn =10×(
n−0.5)+0.5 because the viscosity ratio is 100. The criteria distinguishing gas and
liquid is �=0.

The velocity of moving frame of A1 is set as Um =−0.0075 lu/ts, which is slightly higher than
bubble terminal velocity U∞ =0.00647 lu/ts, which is calculated from the experimental terminal
Reynolds number 7.77 [30]. Actually the velocity of moving frame Um is usually set as a value
around the terminal velocity so as to make the bubble moves only around the middle of the
computational domain. In this way, long-time simulation is possible and excessive computational
resources would be avoided.

The bubble shapes predicted in stationary and moving frames at different nondimensional times
are shown in Figure 1. The nondimensional time is defined as t∗ =�t/d2e , where t is the time step
value in a simulation. It is found in cases A1 and A2, the bubble shapes are almost identical. In
stationary frames, the discrepancy between the shapes obtained in cases A2 and A3 are negligible.
It seems that the bubble represented by 30 lattice units is able to give an accurate result.

A comparison of the velocity profiles of bubble rising in case A1 (moving reference frame) and
case A3 (stationary reference frame) is shown in Figure 2. In the figure, bubble rising velocity
is normalized by U∞ calculated from the experimental terminal Reynolds number 7.77 [30].

Table I. Parameters in simulations in stationary and moving reference frames.

Test case Frame Domain size de 
n Um � Fz

A1 Moving 200×200×260 40 0.6 −0.0075 0.02655 0.00403
A2 Stationary 200×200×500 40 0.6 — 0.02655 0.00403
A3 Stationary 150×150×400 30 1.0 — 0.885 0.23895
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AN EVALUATION OF A 3D FREE-ENERGY-BASED LBM 1201

Figure 1. A comparison of the evolution of the predicted bubble shapes in a moving frame (the left
column describes case A1) and two stationary frames (the middle column describes the case A2, the right
column describes the case A3) under the condition of Eo=243, Mo=266, �l/�g =1000, �l/�g =100.

It should be noted that the velocity of the moving frame itself has been added to the velocity
obtained in the moving frame, such that we can make a comparison with the velocity obtained in
the stationary frame directly. The bubble rising velocities obtained from the two frames seem to
agree well.

The above comparison of bubble shapes and rising velocities in stationary frames and a moving
frame verified our strategy of applying moving reference frame. Hereafter we apply this strategy
to all of our simulations.

3.2. Model validation with experiments

In this section, to validate our model, we compare our numerical results with the experimental
results [30]. As we know, bubble-rising experiments are usually performed in a large tank to
eliminate the wall boundary effect. In Bhaga and Weber’s experiment [30], the diameter of the
tank is about 15 times that of the bubble. However, in numerical simulations, a large computational
domain means that excessive computational time and memory are needed to finish the simulation.
On the other hand, due to the wall confinement, the computational domain size does have some

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2010; 63:1193–1207
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Figure 2. A comparison of the bubble rise velocities predicted in moving and stationary reference frames
under the condition of Eo=243, Mo=266, �l/�g =1000, �l/�g =100.

effect on the bubble rising velocity and bubble shape [31], a large computational domain is
preferred to get accurate results. Hence, we should choose a reasonable domain size to balance
these considerations.

To evaluate the effect of the computational domain size on the bubble rising velocity, we
simulated two cases with the same parameters Eo=116 andMo=848. In the first case, the domain
size is 121×121×240 and in the second it is 91×91×240. The initial spherical bubble radius
is 30 lattice units in both cases. The terminal bubble velocity should be about 0.00823 lu/ts,
which is calculated from Reynolds number measured by Bhaga and Weber [30]. Figure 3 shows
the predicted bubble rising velocity of the above two cases. It is found that the terminal bubble
velocity in the former case is about 0.00850 lu/ts and very close to the value 0.00823 lu/ts. While
bubble terminal velocity predicted by the latter case has a large discrepancy with the experimental
value. The terminal bubble shape of the former case is also found more closer to experimental
result than the latter case (not shown). Hence, the computational domain size should be at least 4
times the size of the bubble to eliminate the wall effect.

In the following simulations, the computational domain size Lx ×Ly×Lz is chosen
as Lx = Ly =4de and Lz =8de. Bubble’s diameter de is usually represented by 30 lattice
units.

Then six typical cases were further studied to evaluate this model. The nondimensional param-
eters, measured Reynolds number and the dimensional parameters we used are listed in Table II.
The velocities of moving frame in all cases are also listed in the Table. The Ums are calculated
from the terminal Re in experiments [30]. The criteria of choosing dimensional parameter are that
� should not be too high because numerical error may increase or instability may appear. If the
interface width is set as 4.0, usually � should be less than 5.0. In the LBM, after the incompressible
constraint is satisfied, the higher 
n is preferred because it requires less CPU time than a lower 
n
case to reach the same nondimensional time level if the two cases have the same Re number and
characteristic length.

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2010; 63:1193–1207
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Figure 3. A comparison of the bubble rising velocity in different computational domain sizes.

Table II. Nondimensional and dimensional parameters for three typical test cases.

Test case Eo Mo Re [30] de 
n Um Fz �

B1 17.7 711 0.232 30 2.0 −0.0039 0.02586 1.3148
B2 32.2 8.2×10−4 55.3 30 0.6 −0.0614 0.26259 7.3393
B3 116 848 2.47 30 1.0 −0.0137 0.04414 0.3425
B4 116 41.1 7.16 30 0.8 −0.0239 0.07218 0.56
B5 116 5.51 13.3 30 0.6 −0.0148 0.0219 0.1699
B6 115 4.63×10−3 94 40 0.55 −0.0392 0.07866 1.094

The terminal bubble shapes of cases B1, B2 and B3 are illustrated in Figure 4. In Figure 4, it is
found that these predicted terminal bubble shapes agree well with those observed in experiments
[30]. The bubble shapes at time t∗ =0.89, 0.44, 0.125 for cases B4, B5 and B6, respectively, are
also very close to the terminal shape observed in experiments [30]. In case B6, it is found that the
bubble deforms and rises in an oscillatory manner in our simulation, which is not consistent with
the experimental result.

Figure 5 illustrates the velocities in moving-reference frames as a function of nondimensional
time in cases B1–B6. In cases B1, B2 and B3, bubble velocities first increase and then decrease
toward a constant value. In these cases, the terminal bubble velocities in their moving frames are
all very close to 0, hence the terminal rising velocity in the stationary reference frame and Re
would be close to those measured in experiments [30].

Table III shows a comparison of the terminal rise velocities in the stationary reference frame. Our
numerical predictions are listed in the fourth column (Ren). They agree well with the experimental
data (i.e., the column ‘Re [30]’) in cases B1, B2 and B3. It is also noted that the numerically
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Figure 4. A comparison of the bubble shapes of numerical and experimental results [30]. In each
comparison, the left and the right are the experimental and numerical one, respectively. The bubble shapes
of cases B1, B2 and B3 are terminal shapes while in cases B4, B5 and B6, the bubble shapes at time

t∗ =0.89, 0.44, 0.125, respectively, are shown.

predicted Reynolds number is about 20% lower than that observed in experiments in case B1.
This deviation is also observed in Reference [31] (the third column), which is obtained by a front
tracking method. The wall confinement effect is attributed to the deviation because the effect may
be relatively high for very-low-Re cases [31]. For the B2 case, computed Ren is 16.9% higher
than that of the experiment. That may be due to the wall confinement effect which becomes
more prominent since the bubble’s diameter becomes large and closer to the walls. If a larger
computational domain is adopted, this discrepancy may become smaller. In cases B4 and B5, the
rising velocity seems not to be decreasing to a constant hence the terminal velocity is unable
to determine (refer to Figure 5). In case B6, the bubble volume decreases very quickly and the
terminal rising velocity is unable to determine.

3.3. Mass-conservation issue of the method

The mass conservation is an important issue in multiphase flow simulation. As we know, the VOF
methods are able to conserve mass exactly as they usually involve a step of interface reconstruction.
For the level set or present phase-field method, there are no interface-reconstruction steps and the
mass conservation may not so be good. Figure 5 illustrates how the bubble volumes (represent by
lattice nodes) change with time in cases B1–B6.

As we can see in Figure 5, the initial lattice nodes inside a bubble of diameter 30 lu is about
4�/3×(D/2)3=14137. The bubble volumes seem always decreasing with time. It means that the
mass is not conserved exactly in these cases. The mass-conservation in cases B1, B3, B4 and B5
seems much better than in the cases B2 and B6, which has higher Re.

Here we can see that in terms of mass conservation, this method’s performance may be similar
to that of the level set method, in which mass cannot be conserved exactly. Nevertheless, the
model can give a decent result with a minimum effort (without reconstruction) compared with the
VOF method.
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Figure 5. The bubble rising velocity and bubble volume as function of nondimensional time. They describe
the bubble rising velocity and bubble volume change for cases B1 to B6, respectively. The velocities are

all referred as those in moving-reference frames (refer to Table II for the Um).
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Table III. Comparison of numerical results and experimental results.

Test case Re [30] Reh [31] Ren (Ren−Re)/Re

B1 0.232 0.182 0.1856 −20%
B2 55.3 54.798 64.62 +16.90%
B3 2.47 — 2.499 +1.17%
B4 7.16 — — — %
B5 13.3 — — — %
B6 94 89.64 — —%

4. CONCLUSIONS

In this paper, 3D N–S equation and C–H equation are solved by a free-energy-based multiphase
LB model. A method used to handle the inlet/outlet and moving-wall boundary conditions are
introduced and these boundary conditions are simple and easy for implementation.

It is demonstrated that the present approach is able to simulate multiphase flows with density
ratio as large as 1000 and different viscosities when Re is small. In terms of bubble terminal velocity
and shape, good agreement was obtained between the present numerical results and experimental
results when Re is small. The mass conservation of this 3D model was also investigated and it
is found for small Re cases, the mass conservation is good and acceptable. Our future work is to
provide with this method better mass conservation to simulate high-Re multiphase flows.
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