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In many lattice Boltzmann studies about bubble rising, mass conservation is not satisfactory
and the terminal bubble rising shape or velocity is not so consistent with experimental
data as those obtained through other CFD techniques. In this paper, based on the
multiphase model (He et al., 1999 [1]), a mass-conserving axisymmetric multiphase
lattice Boltzmann model is developed. In the model, a mass correction step and an
effective surface tension formula are introduced into the model. We demonstrate how
the macroscopic axisymmetric Cahn–Hilliard equation and Navier–Stokes equation are
recovered from the lattice Boltzmann equations through Chapman–Enskog expansion. The
developed model is applied to simulate the bubble rising in viscous fluid. The mass
correction step in our scheme significantly improves the bubble mass conservation. The
surface tension calculation successfully predicts the terminal bubble shapes and reproduces
the effect of initial bubble shape. The terminal bubble rising velocities are very consistent
with experimental and numerical data in the literature. Qualitatively, the wakes behind
the bubbles also agree well with experimental data. This model is useful for predicting the
axisymmetric two-phase flows.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Lattice Boltzmann method (LBM) has been developed into a powerful tool to simulate multiphase flows [1–5]. The
LBM has many advantages compared to the common computational fluid dynamics (CFD) method. First it is based on the
molecular kinematic theory [6], it is able to recover macroscopic Navier–Stokes (NS) equation. Second, usually it involves
an equation of state. Hence, it is not necessary to solve Poisson equation in the LBM, which may take much effort in the
common CFD. Third it is an explicit scheme and easy to be parallelized.

There are several popular multiphase LBM models. The first one is the color-gradient model proposed by Gunstensen
et al. [7], which is based on the Rothman–Keller (R–K) lattice gas model [8]. Usually, the color-gradient model is used to
simulate binary fluid flows with identical densities [9].

The second type is the Shan–Chen (S–C) model [10]. The S–C single component multiphase model seems working well
with high density ratios [11]. Recent study shows that the surface tension and the ratios of densities and viscosities also
can be adjusted independently [12]. This finding may expand the application of the S–C model. However, our recent study
[13] shows there is a defect in the forcing strategy on the S–C model. Through a correct forcing strategy, the S–C model
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Fig. 1. Comparison of LBM result (Amaya-Bower and Lee [4], the left column) and experimental data [22] (the right column). The figure is copied from the
Table 2 in Ref. [4]. The Eötvös number and Morton number of cases A4, A5, and A6 (upper, middle, and lower rows) are illustrated in Table 1.

can achieve the maximum density ratio about 300 for 2D simple cases about a liquid droplet immersed inside a vapor
phase. Sankaranarayanan et al. [14] and Gupta and Kumar [15] used the S–C model to study the bubble rising. However,
in both studies the parameters are limited to a very narrow range. Besides that, in the 2D study of Gupta and Kumar [15],
the comparison between the LBM simulation and experimental data is poor in terms of bubble shape. Srivastava et al. [16]
developed the Shan–Chen multiphase model for axisymmetric flows. However, no complex flow phenomena, e.g., bubble
rising, were tested and the mass conservation issue is unknown.

The third type is the free energy (FE) LBM [17]. The original FE model [17] is known as not Galilean invariant for the
viscous terms in the Navier–Stokes equation [6,17]. Inamuro et al. [18] achieved a high density ratio through improving
Swift’s free-energy model [17], but the model has to solve a Poisson equation, which decreased the simplicity of the LBM.
Frank et al. using the LBM simulated the bubble rising [19]. However, only cases with very small Reynolds number were
simulated and the corresponding terminal spherical and oblate ellipsoidal bubbles were observed [19]. Cheng et al. [20]
using a free energy based model [21] studied 3D bubble–bubble interactions. However, because the model [21] they used is
not able to include the density contrast effect, the result is only limited to density match cases.

Later He et al. [1] proposed an incompressible multiphase LBM, which is referred to as HCZ model. In the model, one
set of distribution function is used to recover the incompressible condition and NS equations. The other set of distribution
function is able to recover a macroscopic Cahn–Hilliard (CH) equation, which is usually used to track the interfaces between
different phases. Recently, a series models [2,4,5] based on the model of He et al. [1] have been further developed to handle
higher density-ratio multiphase flow, which is referred to as Lee–Lin models. These models seem to be able to simulate
density ratio as high as 1000 [2,4]. For cases of a droplet splashing on a thin liquid film, the result looks good compared
with some experiment data [2]. The parameter-study about bubble rising [4] is much wider than the other corresponding
LBM studies.

However, in terms of terminal bubble shape, the result of Amaya-Bower and Lee [4] has large discrepancy with the
experimental data. For example, Fig. 1 shows some comparison in Table 2 in Ref. [4]. For case A4, the shape of the bubble
is spherical cap in the experiment [22]. However, the simulated result is a toroidal bubble, which is very different from the
spherical cap bubble. They attributed the discrepancy to grid resolution [4]. But it is difficult to explain why the aspect ratio
of the toroidal is very different from the experimental one. For the cases A5 and A6, basically the terminal bubble shapes
are skirted with rounded lower edge. However, for cases with high Re, the rounded lower edge should become sharper
(refer to Fig. 8). In a word, in terms of bubble shape, some simulation results with Lee–Lin model are not consistent with
the experimental ones.

Although some other studies based on the HCZ model or Lee–Lin model to handle the axisymmetric two-phase flows are
carried out [23–25], the validation cases are mainly focussed on very simple droplet flow problems, for example, droplet
oscillation and droplet collision. In the following Section 3, we will show the poor comparison between the simulations
using these models [24] and the experimental one. Beside, the issue of mass conservation is unknown [23–25]. Actually, in
terms of mass conservation, the original HCZ model is not satisfactory [26]. Because these models (including the Lee–Lin
model) are based on the HCZ model, the mass conservation property may be not so satisfactory for bubble rising [4].

Here based on the HCZ model and a technique to ensure mass conservation, an axisymmetric HCZ model is developed to
simulate the bubble rising problem. The mass conservation is ensured through a mass correction step in the simulation. The
revised surface tension calculation is shown more superior than the original surface tension calculation in the HCZ model.
All typical bubble shapes in experiment [22] are observed and compared in detail. The effect of initial bubble shape in the
literature is reproduced correctly using our model.
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This paper is organized as follows. First the macroscopic governing equation of our developed scheme is illustrated. Then
the axisymmetric multiphase LBM is introduced. Finally, the scheme is used to simulate the bubble rising and compared
with the experimental data and the other numerical results in the literature in detail.

2. Methods

2.1. Macroscopic governing equations

The HCZ model is an index-function based multiphase model. The governing equation for the index function φ in the
axisymmetric coordinates ((x, r)-coordinates) is

∂tφ + ∂β(φuβ) + φur

r
= λ∂β

(
∂β

(
pth − c2

s φ
))

. (1)

It is a Cahn–Hilliard equation for tracking the interface and λ is the mobility (refer to Appendix A.4). x, r are the axis and
radial directions, respectively. The subscript β and the following α denote Cartesian components and Einstein summation
convention is applied in this paper. pth is the thermodynamic pressure calculated from the Carnahan–Starling equation of
state [1].

pth = φRT
1 + bφ/4 + (bφ/4)2 − (bφ/4)3

(1 − bφ/4)3
− aφ2, (2)

where a is related to the intermolecular pairwise potential and b is the repulsion parameter or the effective molecular
volume.

For the incompressible multiphase flow, the continuity equation is

∂tρ + ∂β(ρuβ) = −ρur

r
. (3)

The momentum governing equation (Navier–Stokes (N–S) equation) is:

ρ∂t uα + ρ∂β(uβuα) = −∂α p + ∂α

[
μ(∂αuβ + ∂βuα)

] + Hα + (Fs)α + Gα, (4)

where (Fs)α is the “α”-component of surface tension Fs . G(x) = −(ρ(x) − ρl)g is the buoyant force acting on the bubble,
where x represents position of a computational node in the simulated domain.

Compared to purely 2D cases, there are some source terms due to axisymmetric effect on the right hand side (RHS) of
the N–S equation, i.e.,

Hα = μ

{
∂ruα

r
− ur

r2
δαr + ∂α

(
ur

r

)}
− ρ

uruα

r
. (5)

In the above expression, μ is the dynamic viscosity. Here all the source terms in the N–S equation are integrated as
F = H + Fs + G.

For the 2D cases, the surface tension Fs can be expressed in different forms [27], for example, in the study of He et
al. [1]

Fs = κρ∇(∇2ρ
)
, (6)

where κ is the surface tension coefficient. This is referred to as “original” surface tension calculation.
However, the above original surface tension calculation in the HCZ model changes its direction across the bubble inter-

face, and a wiggle over the interface region would appear [26]. The wiggle may cause numerical instability at large density
ratio. Some study [26,27] demonstrated that the following “revised” surface tension calculation is better.

Fs = −k∇ ·
(

n

|n|
)

|∇φ|∇φ, (7)

where the normal vector n is defined to be n ≡ ∇φ .
For the axisymmetric cases, there is an extra terms in Fs , that is

Fs = −k∇ ·
( ∇φ

|∇φ|
)

|∇φ|∇φ − k
∂rφ

r
· ∇φ. (8)

In Section 2.3, we will discuss how to evaluate the terms in Eq. (8) using finite difference approximation.
In the following, our axisymmetric model based on He et al. [1] will be introduced in detail.
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2.2. Axisymmetric multiphase HCZ LBM

Our axisymmetric multiphase LBM is based on HCZ model [1], in which the index function φ is used to track interfaces
between liquid and gas. In the model, two distribution functions f̄ i and ḡi are introduced, which are able to recover the
Cahn–Hilliard equation (evolution of the index function) and Navier–Stokes equation, respectively.

ḡi(x + eiδt, t + δt) = ḡi(x, t) − 1

τ1

(
ḡi(x, t) − ḡeq

i (x, t)
) + Si(x, t)δt, (9)

f̄ i(x + eiδt, t + δt) = f̄ i(x, t) − 1

τ2

(
f̄ i(x, t) − f̄ eq

i (x, t)
) + S ′

i(x, t)δt, (10)

where f i(x, t) is the density distribution function in the ith velocity direction at position x on time step t . τ1 is a relaxation
time which is related to the kinematic viscosity as ν = c2

s (τ1 − 0.5)δt . τ2 is related to mobility λ = 1
2 (1 − 1

2τ2
)δt (refer to

Appendix A.4).
Here the kinematic viscosities for the liquid (νl = c2

s (τl − 0.5)δt) and gas (νg = c2
s (τg − 0.5)δt) can be adjusted indepen-

dently. In the pure liquid and gas area, τ1 = τl and τ1 = τg , respectively. For the interfacial region, τ1(x) is interpolated
through

τ1(x) = τg + (
φ(x) − φg

) τl − τg

φl − φg
. (11)

Si(x, t), S ′
i(x, t) are the source terms in Eqs. (9) and (10), respectively. The equilibrium distribution functions ḡeq

i (x, t)

and f̄ eq
i (x, t) can be calculated as [1]

ḡeq
i (x, t) = wi

[
ph + ρc2

s

(
eiαuα

c2
s

+ eiαuαeiβuβ

2c4
s

− uαuα

2c2
s

)]
, (12)

and

f̄ eq
i (x, t) = wiφ

[
1 + eiαuα

c2
s

+ eiαuαeiβuβ

2c4
s

− uαuα

2c2
s

]
, (13)

respectively, where ph and ρ are the hydrodynamic pressure and density of the fluid, respectively.
In Eqs. (9) and (10), the ei ’s are the discrete velocities. For the D2Q9 model, they are given by (eix, eiy) = (0,0) (i = 0),

(eix, eiy) = c(cos (i−1)π
2 , sin (i−1)π

2 ) (i = 1,2,3,4), and (eix, eiy) = √
2c(cos( (i−5)π

2 + π
4 ), sin(

(i−5)π
2 + π

4 )) (i = 5,6,7,8).
In Eq. (13), for the D2Q9 model, wi = 4/9 (i = 0), wi = 1/9 (i = 1,2,3,4), wi = 1/36 (i = 5,6,7,8), cs = c√

3
, where

c = δx
δt is the ratio of lattice spacing δx and time step δt . Here, we define 1 lattice unit (δx) as 1 lu and 1 time step (δt) as

1 ts.
The hydrodynamic pressure and the momentums are obtained through

ph =
∑

gi + 1

2
uβ Eβδt − 1

2
c2

s ρ
ur

r
δt, (14)

where Eβ = −∂β [ψ(ρ)] and ψ(ρ) = ph − c2
s ρ;

ρc2
s uα =

∑
gieiα + 1

2
c2

s Fαδt. (15)

The index function is calculated from

φ =
∑

f i − φ

2

ur

r
. (16)

After φ is known, the corresponding density of the fluid can be calculated from

ρ = ρg + (φ − φg)
ρl − ρg

φl − φg
, (17)

where φg and φl are the two coexistence ‘density’ of the gas and liquid, respectively in Eq. (2). In Eq. (2), b = 4, a = 4 lu2/ts2,
and RT = c2

s are adopted [1]. For this parameter choice, through Maxwell construction, we know that two phases with
φg = 0.021 and φl = 0.247 would coexist.

The source terms including the axisymmetric effect and surface tension that appear in Eqs. (9) and (10) are

Si =
(

1 − 1

2τ1

){
(eiα − uα)FαΓi(u) + (eiα − uα)Eα

[
Γi(u) − Γi(0)

] − wic
2
s
ρur

r

}
, (18)

where Γi(u) = f̄ eq
/ρ , and
i
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Fig. 2. Geometry of computational domain L × DT

2 in the (x, r)-coordinates. r = 0 is the axisymmetric axis.

S ′
i =

(
1 − 1

2τ2

){
(eiα − uα)F ′

α

c2
s

Γi(u) − wi
φur

r

}
, (19)

where F ′
α = −∂α[ψ(φ)] and the function ψ(φ) = pth − c2

s φ.
Basically, the above formulae are similar to those in Ref. [24], except there are some typos in the study [24]. The major

typos are: a term −μ ur
r2 is missing in the RHS of Eq. (2) in Ref. [24], the viscous term in RHS of both Eqs. (16) and (55) in

Ref. [24] should be μ{ ∂r uα
r − ur

r2 δαr + ∂α( ur
r )} while not μ

r [∂rui + ∂iur]. The detailed derivations of macroscopic governing
equations are illustrated in Appendices A and B.

2.2.1. MRT collision
In higher Re cases, for example, Re > 50, smaller τ1 is preferred. However, if the above BGK (‘Bhatnagar–Gross–Krook’)

collision is used, numerical simulation may become unstable. Here, the Multiple Relaxation Time (MRT) collision model [25,
28] is used in these simulations.

The collision terms − 1
τ1

(ḡi − ḡeq
i ) and − 1

τ2
( f̄ i − f̄ eq

i ) in Eqs. (9) and (10) should be replaced by the MRT collision
model [25]. That is,

ḡi(x + eiδt, t + δt) = ḡi(x, t) −
∑

j

S̄1i j
(

ḡ j − ḡeq
j

) + Q iδt − δt

2

∑
j

S̄1i j Q j, (20)

where S̄1 = M−1Ŝ1M, Q i = Si/(1 − 1
2τ1

).

f̄ i(x + eiδt, t + δt) = f̄ i(x, t) −
∑

j

S̄2i j
(

f̄ j − f̄ eq
j

) + Q ′
i δt − δt

2

∑
j

S̄2i j Q ′
j, (21)

where S̄2 = M−1Ŝ2M, and Q ′
i = S ′

i/(1 − 1
2τ2

).

The matrix M is illustrated in Appendix C. The diagonal collision matrix Ŝ is given by [28] Ŝ ≡ diag(s0, s1, s2, s3, s4, s5, s6,

s7, s8). The parameters are chosen as: s0 = s3 = s5 = 1.0, s1 = 1.64, s2 = 1.54, s4 = s6 = 1.7, and s7 = s8 = 1
τ . In the collision

matrices Ŝ1 and Ŝ2, s0 to s6 are identical to those illustrated in the above except s7 = s8 = 1
τ1

in Ŝ1 and s7 = s8 = 1
τ2

in Ŝ2.

2.3. Calculation of the surface tension

The discretized form of Eq. (8) is illustrated in the following in detail. Fig. 2 shows the computational domain and the
size is L × DT

2 , where L is the length in axisymmetric axis direction, i.e., x-axis, and DT

2 is the radius of the circular tube
where the viscous fluid is inside. Initially a stationary bubble with diameter D is set close to x = 0 (the “bottom” of the
tube). The computational domain is partitioned into a uniform Cartesian mesh with the mesh space δx. Suppose the center
of each cell, Ωi, j , is located at (xi, r j) = ((i − 0.5)δx, ( j − 0.5)δx). The cell vertices are located at (xi+ 1

2
, r j+ 1

2
) = (iδx, jδx).

The discretized form of Eq. (8) can be written as

Fs = −k∇d ·
( ∇φ

|∇φ|
)

i j
|∇dφi j|∇dφi j − k

∂rφ

r
· ∇dφi j, (22)

where ∇d is a finite difference approximation to the divergence operator.
The normal vector at a vortex can be obtained by differentiating the phase field in the centers of the four surrounding

cells [27]. For example, the normal vector ni+ 1
2 , j+ 1

2
≡ (∇φ)i+ 1

2 , j+ 1
2

at the top right vertex of cell Ωi, j is

ni+ 1
2 , j+ 1

2
= (

nx
i+ 1

2 , j+ 1
2
,nr

i+ 1
2 , j+ 1

2

) =
(

φi+1, j + φi+1, j+1 − φi, j − φi, j+1

2δx
,
φi, j+1 + φi+1, j+1 − φi, j − φi+1, j

2δx

)
. (23)

The curvature of the interface s(φi, j) at a cell center (i, j) is calculated from the above vertex-centered normals:
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s(φi, j) = ∇d ·
(

n

|n|
)

i, j

= 1

2δx

(nx
i+ 1

2 , j+ 1
2

+ nr
i+ 1

2 , j+ 1
2

|ni+ 1
2 , j+ 1

2
| +

nx
i+ 1

2 , j− 1
2

− nr
i+ 1

2 , j− 1
2

|ni+ 1
2 , j− 1

2
| −

nx
i− 1

2 , j+ 1
2

− nr
i− 1

2 , j+ 1
2

|ni− 1
2 , j+ 1

2
| −

nx
i− 1

2 , j− 1
2

+ nr
i− 1

2 , j− 1
2

|ni− 1
2 , j− 1

2
|

)
. (24)

The cell-centered normal is the average of vertex normals,

∇dφi j =
ni+ 1

2 , j+ 1
2

+ ni+ 1
2 , j− 1

2
+ ni− 1

2 , j+ 1
2

+ ni− 1
2 , j− 1

2

4
. (25)

2.4. Mass correction

In the original HCZ model without mass correction, the mass of a rising bubble may increase with time [26]. The possible
reason is that the term on the RHS of Eq. (1) may not be negligible small near the interface [26]. In our axisymmetric model
based on the HCZ model, the similar unfavor behavior in bubble rising is also observed.

Hence, the mass correction step is necessary to ensure the mass conservation in our LB simulations. In our simulations,
the volume of the bubble is corrected using the scheme of Son [29],

∂φ

∂τ3
= (V − V 0)|∇φ|, (26)

where V is the bubble volume before the correction. V 0 = 1
6 π D3 is the initial volume of the bubble, where D is the initial

diameter of the bubble. τ3 is an artificial time. The equation is computed after each streaming step till the steady state
V = V 0 is reached.

In the implementation, V is determined in the following way. For a computational node x, if ρ(x) <
ρl+ρg

2 , it is supposed
to be occupied by gas, and it is labeled as xg . The formula about calculation of the volume (integration scheme) is

V =
∑
xg

2πrδrδx, (27)

where δx = δr = 1 lu, and r is the radius from xg to r = 0 in lattice unit (refer to Fig. 2). Here V has unit of lu3.
In the implementation, we take the following form [26],

∂φ

∂τ3
+ u · ∇φ = 0, (28)

where u = (ux, ur) = −(V − V 0)∇φ/|∇φ|. Although a high-order scheme can be used to solve this equation [26], here
for simplicity the first-order upwind finite difference scheme is used to discretize the convection term, i.e., u · ∇φ. The
first-order Euler’s scheme is used to discretize the time derivative.

For example, if ux > 0, ∂−
x φ = φ(i, j)−φ(i−1, j)

δx , if ux < 0, ∂+
x φ = φ(i+1, j)−φ(i, j)

δx . In our simulations solving this equation, the
time step dτ3 ∼ 0.15

V 0
is adopted. If u+

x = max(ux,0) and u−
x = min(ux,0) are defined in the x-axis, and the corresponding

variables in r direction are defined similarly, then the discretize form can be written as

φ
τ+dτ3
(i, j) = φτ

(i, j) − (
u+

x ∂−
x φ + u−

x ∂+
x φ

)
dτ3 − (

u+
r ∂−

r φ + u−
r ∂+

r φ
)

dτ3. (29)

2.5. Axisymmetric boundary condition

In our simulation, one boundary (r = 0) represents the axisymmetric axis and the other three boundaries (x = 0, x = L,
and r = DT

2 ) are walls. For the walls, the non-slip wall boundary condition is imposed. In the LBM, corresponding simple
bounce-back scheme is used to get the unknown f i , gi in the inward direction after the streaming step. In the scheme,
these unknown distribution functions are set to be the distribution functions in the corresponding reverse directions. For
example, after the streaming step, f4, f7, and f8 are unknown in the upper wall boundary (refer to Fig. 2); they are set to
be f4 = f2, f7 = f5, and f8 = f6.

The source terms and boundary condition in the axisymmetric axis should be paid more attention. For the source terms
like ρ ur

r , we should handle it carefully. According to l’Hôpital’s rule law, we have limr→0 ρ ur
r = ρ∂r ur . Hence, after we got

∂rur using the finite difference scheme, limr→0 ρ ur
r is obtained. For both f i and gi in the x-axis, the slip boundary condition

should be applied. For example, in the x-axis (refer to Fig. 2), the unknown distribution functions are f2, f5, and f6. These
unknowns after streaming step can be obtained through setting f2 = f4, f5 = f8, and f6 = f7.
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Table 1
Cases for bubble rising (σ = 0.011κ,νl = (τl − 0.5)c2

s δt , D = 100 lu, tube diameter DT = 5D and density ratio 15.5).

Case Eo Mo Re. [22] τl κ g Re. (LBM)

A1 17.7 711 0.232 0.862 0.0005 4.06 × 10−8 0.288
A2 32.2 8.2 × 10−4 55.3 0.54081 0.008 1.18 × 10−6 48.4
A3 243 266 7.77 0.9155 0.004 4.46 × 10−6 6.93
A4 115 4.63 × 10−3 94 0.536 0.005 2.64 × 10−6 83.7
A5 339 43.1 18.3 0.710 0.003 4.66 × 10−6 17.0
A6 641 43.1 30.3 0.646 0.002 5.88 × 10−6 27.7
A7 116 5.51 13.3 0.712 0.005 2.66 × 10−6 12.0
A8 114 8.6 × 10−4 151 0.5238 0.005 2.61 × 10−6 131.3
A9 116 0.103 42.2 0.578 0.005 2.66 × 10−6 36.0
B1 94.3 4.85 × 10−3 77.9 0.5487 0.008 3.46 × 10−6 70.2
B2 61.9 8.2 × 10−4 99.5 0.5274 0.005 1.42 × 10−6 82.6
B3 292 26.7 22.1 0.750 0.005 6.69 × 10−6 16.6

3. Numerical validation

In this section, all typical terminal bubble shapes are observed in our simulations. The mass conservation property of our
model, the effect of different surface tension calculations, the density ratio effects on the terminal shape and velocity are
investigated in the following subsections. The terminal bubble shapes and velocities are compared with the experimental
data in detail. Finally we demonstrate that our axisymmetric model is able to reproduce the effect of initial bubble shape
in Ref. [30].

In the literature, usually two independent non-dimensional numbers: Eötvös number and Morton number for bubble
rising problems are defined [22]:

Eo = g D2ρl

σ
, (30)

Mo = gμ4
l

ρlσ 3
. (31)

The Reynolds number is based on terminal bubble rising velocity Ut and initial bubble diameter D , i.e., Re = Ut D
νl

, where νl

is the kinematic viscosity of liquid.
Table 1 illustrates the main parameters used in our simulations. In these simulations, the typical terminal bubble shapes,

such as spherical, oblate ellipsoidal, disk, spherical cap, and skirted are all observed. To compare with the experimental
setting, the tube diameter in our simulation is DT = 5D . All of the initial bubbles are supposed to be spherical except
simulations in Section 3.7. From the regime map of the experimental observation, we know that at high Reynolds number
and high Eo number, the bubble may rise in a wobbly path, which is not axisymmetric flow. Here the bubble rising under
this extreme conditions is not considered.

In the LBM simulations, to ensure better incompressibility conditions, the maximum velocity magnitude should not ex-
ceed 0.1 lu/ts. In Table 1, all terminal Res are known from experiment [22], so we can calculate the expected terminal
velocity in the LBM simulations. From the calculation, the expected rising velocities are all less than 0.02 lu/ts, which suffi-
ciently satisfies the incompressible condition well. For this unsteady flow problem, a smaller time step is preferred. Hence,
smaller τ is preferred in the simulations. On the other hand, smaller τ may induce numerical instability. The parameters
are chosen according to a balance between the two constraints.

In the simulations, it is found that the maximum density ratio ρl
ρg

can be slightly larger than φl
φg

. In all of the simulations

in Table 1, we set ρl = 0.247 mu/lu3, and ρg = 0.016 mu/lu3, which means the maximum density ratio in our simulations
is ρl

ρg
= 15.5. In Section 3.4, the effect of density ratio will be discussed.

In Table 1, first we can set κ ≈ O (0.001), then the surface tension is calculated through σ = 0.011κ (the relationship
is measured from the Laplace law). The acceleration of gravity is determined from g = σEo

D2ρl
. The kinematic viscosity of the

liquid is determined through

νl =
(

D2σ 2Mo

ρ2
l Eo

) 1
4

. (32)

The relaxation time for liquid is τl = νl

c2
s δt

+ 0.5.

Although the relaxation time for gas τg is not necessary to be identical to τl , here τ2 = τg = τl is adopted in simulations
in Table 1. We will demonstrate this assumption is acceptable in the following Section 3.1.

Our LBM result about terminal bubble rising Res are listed in the rightmost column of the table, and compared to the
Res measured from experiments [22]. In Section 3.4, the comparison will be discussed in detail.
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Fig. 3. Four simulations for case A7 (refer to Table 1, τl = 0.712). In simulations 1, 2, and 3, the kinematic viscosities of gas are νg = νl , νg = 1
2 νl , νg = 4νl ,

respectively. In these three simulations τ2 = τl . In simulation 4, νg = νl and τ2 = 1.0.

Fig. 4. Bubble evolution in the four simulations for case A7 (refer to Table 1), the time interval of each snapshot is t∗ = 0.0494. Parameters of simulations
1 to 4 are shown in the caption of Fig. 3.

3.1. τ -Effect

To demonstrate τ -effect on bubble rising, we take case A7 as an example (density ratio is fixed to be 15.5). Four simu-
lations with different kinematic viscosity ratio νl

νg
are performed. The rising velocities for the four simulations (case A7) as

a function of time are shown in Fig. 3. Fig. 4 shows the bubble evolution in the four simulations. The time is normalized by
t∗ = t νl

D2 , where t is the time steps in simulations. In the simulations 1, 2, and 3, τ2 = τl is adopted while τg is different.

From Fig. 3, it is seen that although τg ’s are different, rising velocities in simulation 2 (νg = 1
2 νl) and simulation 3 (νg = 4νl)

are almost identical to that of simulation 1. Hence, the simulation result is not sensitive to the kinematic viscosity ratio in
the range of 1

4 <
νl
νg

< 2.

As we know when the mobility changes in a proper range, the mobility does not affect the simulation results [31]. Since
the mobility is related to τ2, here τ2-effect is studied. From the comparison of simulations 1 and 4 in Fig. 3 and Fig. 4, it is
seen that no matter if τ2 = 1 or τ2 = τl , parameter τ2 almost does not affect the numerical result in terms of rising velocity
and bubble evolution. Although τ2 and τg is adjustable, the maximum density ratio in our simulation is not improved
through changing τ2 or τg .

In the following Section 3.4, we will see that the density ratio has more significant effect on the bubble rising behavior
than the kinematic viscosity ratio. In all of the following simulations, τ2 = τg = τl is adopted for simplicity.

3.2. Mass conservation

The mass correction issue is one of the key issues we pay special attention to. Case A2 is simulated with and without
mass correction step. The result of the mass ratio V (t) is shown in Fig. 5, where V (t) is the bubble volume at time t . It is
V 0
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Fig. 5. Thick dashed line and the thin solid line represent the mass ratio V
V 0

as a function of time with and without mass correction, respectively. Case A2
in Table 1 is simulated.

Fig. 6. Surface-tension-calculation effect on bubble shape evolution. Topleft and topright photographs are the experiment results [22] for cases A4 and A9,
respectively. (a1) Bubble shape evolution of case A4 with revised surface tension calculation; (a2) case A4 with original surface tension calculation; (b1) case
A9 with revised surface tension calculation; (b2) case A9 with original surface tension calculation. Parameters in cases A4 and A9 are illustrated in Table 1.
The horizontal is r-direction.

seen that without the mass correction step, V
V 0

increases rapidly at the initial stage and then increases slowly with time. In
other words, the bubble continuously grows up.

For the simulation with mass correction (the dashed line in Fig. 5), the bubble volume is almost kept constant although
there is very small oscillation. The small oscillation may be due to the simple upwind scheme we used. If essentially
non-oscillatory (ENO) scheme [26] is used, the oscillation may be eliminated. However, due to simplicity, the simple upwind
scheme and the first-order Euler’s scheme are still recommended.

3.3. Surface-tension-calculation effect

After revising the typo of Premnath [23], it is expected that the axisymmetric model is able to simulate the bubble rising
correctly. However, in this section we can see that without the revised surface tension calculation mentioned in Section 2.3,
the axisymmetric HCZ model [24] can only give poor result compared to the experimental result.

Cases A4 and A9 were simulated to compare the effect of surface-tension-calculation schemes. Results about bubble
shapes evolution as they rise are shown in Fig. 6. In the figure, columns (a1) and (a2) represent the results of case A4
with revised and original surface tension calculations, respectively. The time interval of each snapshot is t∗ = 0.012. It is
seen that with the original surface tension calculation, the bubble becomes toroidal (refer to (a2)), which is very different
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Fig. 7. Density ratio effects on (a) shape and (b) rising velocity of bubble (Case A7).

from the experimental photograph shown in the topleft of Fig. 6. On the contrary, the result with revised surface tension
calculation (refer to (a1)) is very consistent with the experiment data.

For case A9, from Fig. 6 (b1) and (b2), we can see that with the revised surface tension calculation, the terminal bubble
shape in (b1) is very consistent with the result of experiment [22]. The time interval of each snapshot is t∗ = 0.026. The
bubble shapes in (b2) still have some discrepancies with the experimental photograph. It is noticed that in the above
simulations, the mass conservation is ensured through the mass correction step.

3.4. Density ratio effect

Here in our simulations, the density ratio is not able to reach 1000, which is the density ratio in many bubble rising
experiments [22]. Hua and Lou [30] found that effect of density ratio is more significant in terminal velocity than in terminal
shape. In this section, the effects of density ratio (or dynamic viscosity ratio) on the terminal velocity and bubble shape are
investigated. Here case A7 is extensively simulated under different density ratio. In the simulations, the kinematic viscosities
for the fluid and gas are identical, which means τ1 = τg = τl .

The terminal bubble shapes for different density ratio are shown in Fig. 7(a). The rising velocities as a function of
time are illustrated in Fig. 7(b). It is seen that the bubble shapes are not affected much by density ratios. From Fig. 7(b),
we can see that the rising velocities all increase rapidly at first and reach their equilibrium terminal values with small
amplitude oscillations. The Re in the experiment is 13.3. For density ratios 3, 6, 15.5, the terminal Res are 9.3, 10.9, and
12.0, respectively. Hence, with density ratio O (10), the terminal simulated Re seems very close to the experimental one.
From Fig. 7(a) and (b), we also found that the effect of density ratio is more significant in terminal velocity than in terminal
shape. These conclusions are consistent with those of Hua and Lou [30].

The maximum density ratio in our simulations is about 15.5. From the above discussion we know that using this density
ratio, we can get the terminal rising velocity very close to the experimental data (density ratio 1000). The simulated terminal
Res for the other cases are also compared with the experimental ones in Table 1. The measured Res from LBM simulation
on the rightmost column of the table agree well with the experimental Res from Ref. [22].

For the cases with very small Mo (high Re), such as A2, A4, A8, B1 and B2 in Table 1, numerical instability may appear if
the BGK collision model is used and τ1, τ2 are small. For these cases, the simulations with density ratio ρl

ρg
= 15.5 are not

applicable using the BGK collision model. Hence, the MRT collision is used for these simulations with ρl
ρg

= 15.5. The rising

Re from our MRT LBM simulation are illustrated in Table 1, which have small discrepancies (about 10%) with the experiment
data because the density ratio is not so high as that in the experiment [22].

3.5. Terminal bubble shape

In principle, the surface tension force tends to maintain the bubble to be spherical. For cases with specific density,
bubble diameter, and acceleration of gravity, a high Eo number means low surface tension, which allows large deformation
[30]. On the other hand, higher Re would induce larger deformation in the bubble’s vertical direction [30]. The final bubble
shape is determined by the combination effect of Eo and Re. Fig. 8 shows the terminal bubble shapes comparison with
the experimental data [22] in six cases. For case A1, due to small Eo and Re (refer to Table 1), the bubble remains almost
spherical when it rises. The final bubble shape in case A2 is oblate ellipsoidal (disk like). In case A3 the bubble shape is an
oblate ellipsoidal cap. At lower part of the bubble, there is a rounded lower edge. Due to high Re, the bubble shape in case
A4 is a spherical cap. Due to large Eo, both terminal bubble shapes in cases A5 and A6 are skirted. The shapes all agree well
with both the experimental ones [22] and the numerical ones using finite volume scheme [30].
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Fig. 8. Comparison of terminal bubble shapes observed in experiments and predicted in LBM (A1–A6) of various Eo and Mo. Left, middle, and right columns
represent experiment results [22], results from Hua and Lou [30], and LBM results, respectively.

3.6. Wake behind the bubble

To further validate our LBM scheme, the wake behind the bubble is compared with the observation in the experi-
ment [22]. In the experiment, H2 tracer was used to obtain the flow visualization. Fig. 9 shows the terminal bubble wakes
in three cases B1, B2, and B3. The main parameters used in the simulations are illustrated in Table 1. In each case, the
closed toroidal wake predicted by our LBM simulation agrees well with the experimental one. For case B1, which is shown
in Fig. 9(a), there are some bright spots at the lower outside of bubble rim in the experiment photograph. The possible
reason is that secondary wake circulations occur just behind the bubble rim. Indeed in our LBM simulation, there are two
small secondary wakes. In case B2 (Fig. 9(b)), the secondary wake is not observed. In case B3 (Fig. 9(c)), the secondary
circulation area in the skirt bubble wake becomes larger. The LBM results are very consistent with both the numerical [30]
and experimental [22] studies.

3.7. Effect of initial bubble shape

Hua and Lou [30] discussed the effect of initial bubble shape on the bubble rising. They found that for bubble rising
with the lower Reynolds number, the terminal bubble shape and rising velocity are almost not affected by the initial bubble
shape. However, for the high-Re cases, the initial bubble shapes would significantly affect the terminal bubble shapes [30].
In this section, we can see that our LBM successfully reproduces the effect of initial bubble shape in Ref. [30].

Fig. 10 shows the evolution of the bubble shape under conditions of two different initial bubble shapes for case A8.
Through comparison between (a) and (b), we can see the final bubble shape depends on the initial bubble shape. When the
bubble aspect ratio is initially small (refer to Fig. 10(a)), the bubble may rise slowly due to relatively large drag force on the
bubble. Hence only a weak liquid jet would form at the bubble bottom [30]. Finally, the bubble becomes a spherical cap.
For the case with an initial spherical bubble (refer to Fig. 10(b)), the toroidal bubble is predicted. These phenomena have
been observed in numerical simulations [30]. The present axisymmetric LBM is able to reproduce the effect of initial bubble
shape [30].

On the other hand, for this case (case A8), the spherical cap bubble was observed in the experiment [22]. Why in the
experiment the terminal bubble is a spherical cap can be understood as following. In the experiments, the initial bubble
shapes are usually assumed to be spherical. However, this may not be true. It is noticed that in the experiment [22], the
bubble was first hold by a hemi-spherical dumping cup with a relatively large size, and then released. When it was hold,
a large bubble may deform to ellipsoidal shape due to the smaller surface tension force and stronger buoyancy force [30].
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Fig. 9. Terminal bubble wakes in (a) case B1 (upper row); (b) case B2 (middle row); (c) case B3 (bottom row). The left, middle, and right columns are
results from experiment [22], numerical work [30], and our LBM, respectively.

Hence, our predicted bubble shape agree well with the experimental one as long as the initial bubble shape is oblate in the
experiment [22].

4. Conclusions

We developed a mass-conserving axisymmetric HCZ model. Due to the revised surface tension calculation, bubble rising
shape is consistent with experimental result and the effect of initial bubble shape were reproduced successfully. In our
simulations, the terminal bubble rising velocities are very consistent with the experimental ones. Quantitatively, the wakes
behind the bubble agree well with the experimental ones and those of Hua and Lou [30].

Through adopting the mass correction step in our scheme and using a revised surface tension calculation, present ax-
isymmetric multiphase LB model is more superior than the previous one [23] for bubble rising problem.

For high-density-ratio issue, developing a Lee–Lin model [2] based axisymmetric LBM [23] may be able to handle the
high-density-ratio bubble rising flows. However, 3D simulations using Lee–Lin model about bubble rising is not so satisfac-
tory [4], whether good numerical results can be achieved in axisymmetric simulations (based on the Lee–Lin model) is an
open question. High-density-ratio is an important issue we will work on in the near future.
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Fig. 10. The evolution of the bubble shape at time interval t∗ = 7.93e−3 for case A8. (a) Initially an oblate bubble, aspect ratio between height and width
of the initial bubble is 0.716; (b) initially a spherical bubble.

Appendix A. Chapman–Enskog analysis

Applying Taylor expansion on Eq. (9), and adopt Chapman–Enskog expansion ∂t = ∂t1 + ε∂t2 + · · · and ḡi = ḡ(0)
i + ε ḡ(1)

i +
ε2 ḡ(2)

i , where ε = δt , we have

ε(∂t1 + ε∂t2 + eiα∂α)
(

ḡ(0)
i + ε ḡ(1)

i + ε2 ḡ(2)
i

)
+ ε2

2
(∂t1 + ε∂t2 + eiα∂α)2(ḡ(0)

i + ε ḡ(1)
i

)

= − 1

τ1

(
ḡ(0)

i + ε ḡ(1)
i + ε2 ḡ(2)

i − ḡ(eq)

i

) + Siδt (33)

Retaining terms to O (ε2), in different time scale, Eq. (33) yield

O (ε): (
ḡ(0)

i − ḡeq
i

)
/τ1 = 0, (34)

O
(
ε1): (∂t1 + eiα∂α)ḡ(0)

i + 1

τ1
ḡ(1)

i − Si = 0, (35)

O
(
ε2): ∂t2 ḡ(0)

i +
(

1 − 1

2τ1

)
(∂t1 + eiα∂α)ḡ(1)

i + 1

2
(∂t1 + eiα∂α)Si + 1

τ1
ḡ(2)

i = 0. (36)

A.1. Preparation

We note that Eq. (14) yields
∑

ḡi = ∑
ḡ(0)

i + δt
∑

ḡ(1)
i + δt2 ∑

ḡ(2)
i + · · · = (ph − δt

2 uβ Eβ) + c2
s

ρur
2r δt .

From Eq. (34) and Eq. (12), we have∑
ḡ(0)

i =
∑

ḡeq
i = ph. (37)

Hence, from the above two equations, we can derive

∑
ḡ(1)

i = −1

2
uβ Eβ + c2

s
ρur

2r
,

∑
ḡ(2)

i = 0. (38)

Similarly, from Eq. (15), we can obtain
∑

eiα ḡi = ∑
eiα ḡ(0)

i + δt
∑

eiα ḡ(1)
i = c2

s (ρuα − δt
2 Fα). Hence, the first moments

of ḡ(0)
i and ḡ(1)

i are

∑
eiα ḡ(0)

i = c2
s ρuα,

∑
eiα ḡ(1)

i = −1

2
Fαc2

s . (39)

The zeroth and first moments of the source term Si take the form
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∑
i

Si =
(

1 − 1

2τ1

){
uα Eα − c2

s
ρur

r

}
,

∑
i

eiβ Si = c2
s

(
1 − 1

2τ1

)
Fβ . (40)

To be well-prepared for the further derivation, we also write down the second moment of ḡ(0)
i and Si . From Eq. (37), we

have ∑
g(0)

i eiαeiβ = c2
s (phδαβ + ρuαuβ). (41)

Using Eq. (18) and omitting higher order terms of O (u3), we have

∑
eiαeiβ Si = c2

s

(
1 − 1

2τ1

){
Eγ (uαδβγ + uβδαγ + uγ δβα) + (Fβuα + Fαuβ) − c2

s
ρur

r
δαβ

}
. (42)

A.2. Mass conservation

Summing both sides of Eq. (35) over i and using Eqs. (37), (38), and (40) gives

∂t1 ph + c2
s ∂α(ρuα) − uα Eα + c2

s
ρur

r
= (∂t1 + uα∂α)ph + c2

s

(
ρ∂αuα + ρur

r

)
= 0. (43)

Then we proceed to O (ε2). Using Eqs. (37), (38), (39), and (40) and summing both sides of Eq. (36) over i gives

∂t2 ph = 0. (44)

From Eqs. (43) and (44), we obtained

(∂t+uα∂α)ph + c2
s

(
ρ∂αuα + ρur

r

)
= 0. (45)

Here we can see that only when (∂t+uα∂α)ph = 0, the incompressible condition ρ∂αuα + ρur
r = 0 can be satisfied.

A.3. Momentum conservation

Multiplying Eq. (35) by eiβ and summing over i and using Eqs. (40) and (41) gives

O (ε): ∂t1(ρuβ) + ∂α(phδαβ + ρuαuβ) − Fβ = 0. (46)

Multiplying Eq. (36) by eiβ and summing over i gives

O
(
ε2): c2

s ∂t2(ρuβ) +
(

1 − 1

2τ1

)[
∂t1

(∑
eiβ ḡ(1)

i

)
+ ∂α

(∑
eiαeiβ ḡ(1)

i

)]

+ 1

2

[
∂t1

(∑
eiβ Si

)
+ ∂α

∑
(eiβeiα Si)

]
= 0. (47)

From Eqs. (39) and (40), we know that(
1 − 1

2τ1

)
∂t1

(∑
eiβ ḡ(1)

i

)
= c2

s

(
1 − 1

2τ1

)
∂t1

(
−1

2
Fα

)
= −1

2
∂t1

(∑
eiβ Si

)
. (48)

Hence, Eq. (47) can be simplified as

c2
s ∂t2(ρuβ) +

(
1 − 1

2τ1

)
∂α

∑(
eiαeiβ ḡ(1)

i

) + 1

2
∂α

∑
(eiβeiα Si) = 0. (49)

To perform derivation, our temporal task now is to get
∑

(eiαeiβ ḡ(1)
i ). We note from Eq. (35) that ḡ(1)

i = −τ1(∂t1 +
eiα∂α)ḡ(0)

i + τ1 Si . Substituting this equation into Eq. (49), Eq. (49) is further simplified as

c2
s ∂t2(ρuβ) − (τ1 − 0.5)∂α

∑(
eiαeiβ(∂t1 + eiγ ∂γ )ḡ(0)

i

) + τ1∂α

∑
(eiβeiα Si) = 0. (50)

Eq. (50) includes the third moments of ḡ(0)
i . From Eq. (12), we have

∂γ

∑(
eiαeiβeiγ ḡ(0)

i

) = c4
s ∂γ

[
ρ(uαδβγ + uβδαγ + uγ δβα)

]
. (51)

Substituting Eqs. (41), (42) and (51) into Eq. (50) gives



400 H. Huang et al. / Journal of Computational Physics 269 (2014) 386–402
∂t2(ρuβ) − (τ1 − 0.5)
{
∂α∂t1(phδαβ) + ∂α∂t1(ρuαuβ)︸ ︷︷ ︸+c2

s ∂α∂γ

[
ρ(uαδβγ + uβδαγ + uγ δβα)

]}

+ (τ1 − 0.5)

{
∂α[Fβuα + Fαuβ ]︸ ︷︷ ︸+∂α

[
Eγ (uαδβγ + uβδαγ + uγ δβα) − c2

s
ρurδαβ

r

]}

= 0. (52)

In Appendix B, we will show that the underbraced terms in Eq. (52) can be canceled. From Eq. (43), we know

∂t1(phδαβ) =
{
−c2

s

[
∂γ (ρuγ ) + ρur

r

]
+ uγ Eγ

}
δαβ. (53)

Substituting this equation and Eγ = −∂γ (ph − c2
s ρ) into Eq. (52), and noticing the terms uα∂β ph , uβ∂α ph will be canceled

with their counterparts in ∂t1(ρuαuβ) (see Appendix B), it yields

∂t2(ρuβ) − c2
s (τ1 − 0.5)∂α

{
ρ[∂βuα + ∂αuβ ]} = 0. (54)

From Eqs. (46) and (54), using ∂t(ρuβ) = ∂t1 (ρuβ) + δt∂t2 (ρuβ) and ν = c2
s (τ1 − 0.5)δt , we have the Navier–Stokes

equations,

∂t(ρuβ) + ∂α(ρuαuβ) = −∂β ph + ν∂α

{
ρ[∂βuα + ∂αuβ ]} + Fβ. (55)

A.4. Cahn–Hilliard equation

To obtain the equation tracking interface, we start from the equation analogous to Eqs. (34)–(36) for the distribution
functions f̄ i . From Eq. (16) and Eq. (33), we know that

∑
i f̄ (0)

i = φ,
∑

i f̄ (1)
i = φur

2r , and
∑

i f̄ (n)
i = 0, for n > 1. Summing

both sides of Eq. (35) over i yields

∂t1φ + ∂α(φuα) + φur

r
= 0. (56)

Summing Eq. (36) over i and substituting
∑

S ′
i = −(1 − 1

2τ2
)

φur
r yields

∂t2φ +
(

1 − 1

2τ2

)[
∂α

(∑
i

eiα f̄ (1)
i

)
+ ∂t1

(
φur

2r

)]
+ 1

2

[
∂α

(∑
i

eiα S ′
i

)
−

(
1 − 1

2τ2

)
∂t1

(
φur

r

)]
= 0. (57)

In the simulation
∑

f̄ ieiα is unknown or not calculated. Hence, although
∑

f̄ eq
i eiα is known, it is impossible to determine∑

i eiα f̄ (1)
i in the LBM. If this term is assumed to be omitted, substituting

∑
i eiα S ′

i = (1 − 1
2τ2

)F ′
α , Eq. (57) yields

∂t2φ + 1

2

(
1 − 1

2τ2

)
∂α F ′

α = 0. (58)

Substituting F ′
α = −∂α(pth − c2

s φ) into above equation, we have

∂t2φ = 1

2

(
1 − 1

2τ2

)
∂α

(
∂α

(
pth − c2

s φ
))

. (59)

Combining Eqs. (56) and (59) together gives

∂tφ + ∂α(φuα) + φur

r
= λ∂2

α

(
pth − c2

s φ
)
, (60)

where λ = 1
2 (1 − 1

2τ2
)δt . This is the macro phase-tracking equation, which is a Cahn–Hilliard-like equation in our axisym-

metric model based on HCZ model [1].

Appendix B

Here to prove the term ∂t1 (ρuαuβ) in Eq. (52) and the term ∂α[Fβuα + Fαuβ ] in Eq. (42) can be canceled.
From Eq. (46), we know that

uα∂t1(ρuβ) = −uα∂α(phδαβ + ρuαuβ) + uα Fβ, (61)

and

uβ∂t1(ρuα) = −uβ∂β(phδαβ + ρuαuβ) + uβ Fα. (62)
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Substituting the above two equations into ∂t1 (ρuαuβ) = uα∂t1 (ρuβ) + uβ∂t1 (ρuα) − uαuβ∂t1ρ , we have

∂t1(ρuαuβ) = −uα∂α(phδαβ + ρuαuβ) − uβ∂β(phδαβ + ρuαuβ)

+ (uβ Fα + uα Fβ) − uαuβ∂t1ρ. (63)

We note that in the above equation, the terms uα∂β ph , uβ∂α ph will be canceled with their counterparts in Eq. (52).
Terms uα∂α(ρuαuβ) and uβ∂β(ρuαuβ) are of order O (u3), which can be neglected. On the other hand, from Eq. (56) we
can see ∂t1ρ = −∂α(ρuα). Hence, the last term in the above equation is of order O (u3). Omitting all the terms of order
O (u3), we have

∂t1(ρuαuβ) = ∂α[Fβuα + Fαuβ ]. (64)

Appendix C

The transformation matrix M for 2D is [28]:⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1 1 1 1
−4 −1 −1 −1 −1 2 2 2 2

4 −2 −2 −2 −2 1 1 1 1
0 1 0 −1 0 1 −1 −1 1
0 −2 0 2 0 1 −1 −1 1
0 0 1 0 −1 1 1 −1 −1
0 0 −2 0 2 1 1 −1 −1
0 1 −1 1 −1 0 0 0 0
0 0 0 0 0 1 −1 1 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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