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Post-stall flow control on an airfoil by local
unsteady forcing

By J I E-Z H I W U, X I-Y U N L U†, A N D R E W G. D E N N Y‡,
M E N G F A N¶ AND J A I N-M I N G W U

The University of Tennessee Space Institute, Tullahoma, TN 37388, USA

(Received 14 January 1997 and in revised form 21 April 1998)

By using a Reynolds-averaged two-dimensional computation of a turbulent flow over
an airfoil at post-stall angles of attack, we show that the massively separated and
disordered unsteady flow can be effectively controlled by periodic blowing–suction
near the leading edge with low-level power input. This unsteady forcing can modulate
the evolution of the separated shear layer to promote the formation of concentrated
lifting vortices, which in turn interact with trailing-edge vortices in a favourable
manner and thereby alter the global deep-stall flow field. In a certain range of post-
stall angles of attack and forcing frequencies, the unforced random separated flow can
become periodic or quasi-periodic, associated with a significant lift enhancement. This
opens a promising possibility for flight beyond the static stall to a much higher angle
of attack. The same local control also leads, in some situations, to a reduction of drag.
On a part of the airfoil the pressure fluctuation is suppressed as well, which would
be beneficial for high-α buffet control. The computations are in qualitative agreement
with several recent post-stall flow control experiments. The physical mechanisms
responsible for post-stall flow control, as observed from the numerical data, are
explored in terms of nonlinear mode competition and resonance, as well as vortex
dynamics. The leading-edge shear layer and vortex shedding from the trailing edge
are two basic constituents of unsteady post-stall flow and its control. Since the former
has a rich spectrum of response to various disturbances, in a quite wide range the
natural frequency of both constituents can shift and lock-in to the forcing frequency
or its harmonics. Thus, most of the separated flow becomes resonant, associated with
much more organized flow patterns. During this nonlinear process the coalescence
of small vortices from the disturbed leading-edge shear layer is enhanced, causing a
stronger entrainment and hence a stronger lifting vortex. Meanwhile, the unfavourable
trailing-edge vortex is pushed downstream. The wake pattern also has a corresponding
change: the shed vortices of alternate signs tend to be aligned, forming a train of
close vortex couples with stronger downwash, rather than a Kármán street.

1. Introduction
Owing to the obvious importance in applications, a great effort has been made

in the past two decades to enlarge the range of usable angles of attack for a large-
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aspect-ratio wing through various flow controls. Basically, relevant works fall into
two categories. The first category is usually referred to as separation control, which
concentrates on partially separated flow at α < αstall , where αstall is the static-stall angle
of attack. Since the first experimental study of Collins & Zelenevitz (1975), there has
been ample literature showing that a partially separated flow can become an almost
fully attached flow by unsteady forcing, so that the stall is delayed. In this category,
unsteady controls are much more effective than steady ones and can be realized at
a very low power-input level (e.g. Wu, Vakili & Wu 1991; Seifert et al. 1993; Seifert,
Darabi & Wygnanski 1996; Wygnanski 1997).

The second and more ambitious category is the separated-flow control after the
flow has eventually fully separated. As α increases beyond αstall , fully separated flow
develops and becomes a bluff-body flow. This flow gives a normal force on the airfoil
with a lift component, which reaches a peak at a maximum utilizable angle of attack,
αm ' 40◦. This second peak can be of the same level as, or even higher than, the
first one at αstall . Meanwhile, drag also quickly increases (e.g. Fage & Johansen 1927;
Critzos, Heyson & Baswinkle 1955).

Early experimental studies and physical analysis on separated-flow control, aiming
at utilizing the whole range of 0 < α < αm for a wing or flap, have been conducted
by several groups and has a long history, as extensively reviewed by Wu et al. (1991).
Based on the work of J. M. Wu and A. D. Vakili in the mid 1980s, these authors
concluded that, first, the lift enhancement on a large-aspect-ratio wing should be the
result of capturing a vortex on the upper surface of the wing in the time-averaged
sense; and, second, since using steady controls cannot achieve this one must rely on
unsteady controls with low-level power input. Wu et al. (1991) also conjectured that
the underlying physics of post-stall lift enhancement by unsteady controls consists of
a chain of mechanisms: vortex layer instability – receptivity – resonance – nonlinear
streaming.

Experimental studies by Hsiao’s group (Hsiao, Liu & Shyu 1990; Hsiao, Wang &
Zohar 1993; Hsiao, Shyu & Chang 1994; Chang, Hsiao & Shyu 1992) using a NACA
633-018 airfoil, and Zhou and Fernholz (Zhou et al. 1993) using a NACA-0025 airfoil
(with sharp edge forward), confirmed the above basic ideas. In a range of post-stall
angle of attack up to about 35◦, a local unsteady excitation (acoustic and/or oscillating
flap) near the leading edge may increase the lift by 40% to 70%, and the lift/drag
ratio can be increased up to 80% at a moderate α. The possibility of capturing a
vortex by unsteady control was also confirmed analytically by Chernyshenko (1995).
He used a simple theoretical model to prove that while a vortex above a circular
cylinder in an oncoming flow is unstable and must move away, it can be stabilized and
captured in the mean sense by a two-point alternate blowing–suction. Numerically,
Laurie & Farokhi (1993) applied an inviscid discrete vortex method to compute the
control effect by an oscillating leading-edge flap on the flow over a NACA-0012 airfoil
at α = 15◦. The flap has a chord length about c/4 and forms an upstream extension
of the airfoil. The authors found that with forcing the lift is greatly increased. Then,
passive control of turbulent separated flow over a NACA-0012 airfoil at α = 18◦ was
computed by Gillam & Cooper (1994) with the Baldwin–Lomax turbulence model.
The control device consisted of a porous region and plenum located downstream of
the mid-chord. It was found that the passive control can eliminate flow fluctuation.

In spite of this positive progress, a thorough understanding of the wing flow at a
post-stall angle of attack and its control is still lacking due to the complexity of the
flows. At such a large angle of attack shear layers are shed from both leading and
trailing edges of the wing, rolling up into mutually interacting vortices. Secondary
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and tertiary separations from the mid-portion of the upper surface may also be
induced. All these make the flow field inherently unsteady, and no simple analytical
theory is possible. Therefore, a full clarification of the mechanisms of post-stall lift
enhancement by unsteady controls is highly desirable, which heavily relies on careful
numerical simulations and detailed experimental flow-field surveys.

Motivated by the above needs, we carried out a series of two-dimensional Navier–
Stokes computations of a post-stall turbulent flow over an airfoil and its unsteady
control. The purpose of the study was twofold: to reproduce the lift and drag
characteristics of uncontrolled and controlled flows, and to further clarify the physical
mechanisms therein.

2. Physical background of post-stall flow control
We first discuss the basic physical mechanisms behind the post-stall flow control,

which provides some guidance to our computation.

2.1. The vortical source of post-stall lift and drag

It is well known that, at least at low Mach numbers, lift (and drag) on a wing
with attached flow is entirely due to the vorticity contained in asymmetric boundary
layers on the upper and lower surfaces of the wing. Recently, Wu & Wu (1996)
re-emphasized this vortical source of aerodynamic force by explicitly putting the
Kutta–Joukowski lift formula (a counterclockwise circulation Γ is assumed positive)

L = −ρUΓ (1)

and its three-dimensional extension on the basis of viscous rotational flow theory.
They show that these formulas hold if the flow is incompressible and steady, and if
the Reynolds number approaches infinity (i.e. the ‘Euler limit’ of Navier–Stokes flow).
In a fully separated unsteady flow, which is our concern, although the favourable
circulation in the upper-surface boundary layer is mostly lost, (1) still holds in a
time-averaged sense if the mean Γ of the whole flow field can be properly estimated.
In the Kirchhoff–Rayleigh theory (Lamb 1932), the circulation in (1) already exists
implicitly, because the free streamlines shed from the leading and trailing edges of
an inclined flat plate are simply vortex sheets, or the Euler limit of shear layers.
But the theory underestimates the normal force. In fact, once an airfoil starts to
move at a post-stall angle of attack, the separated vortex sheets must immediately
roll up at their free ends. They never have a chance to extend to infinity smoothly
as assumed in Kirchhoff’s theory. After the vortex sheets roll into concentrated
vortices, they carry more favourable circulation above a wing with a low-pressure
core compared to unrolled sheets (Wu & Wu 1993), and produce a higher normal force
than that predicted by the Kirchhoff–Rayleigh theory. In other words, the difference
between Kirchhoff’s and Rayleigh’s theoretical prediction and the experimental value
of the normal force is a measure of the net contribution of vortex-sheet rolling
up.

Roughly speaking, in the Euler limit a time-averaged separated flow can be viewed
as a Prandtl–Batchelor flow with constant vorticity in a captured closed bubble or
bubbles (Batchelor 1956). If the dimensionless bubble area and vorticity therein are S
and ω0, then by (1) the additional lift coefficient due to a vortex bubble is Cl ' 2ω0S ,
and for the drag Cd ' 2ω2

0S/Re (Chernyshenko & Castro 1993). Thus, as ω0 increases
as α, the drag will increase even faster; and the lift/drag ratio L/D ' Re/ω0 increases
as the Reynolds number.



24 J.-Z. Wu, X.-Y. Lu, A. G. Denny, M. Fan and J.-M. Wu

From the above simple observation one may already learn something important
about post-stall flow control. First, one should enhance the rolling up of the leading-
edge shear layer (Wu & Wu 1993), such that the circulation above the wing is even
larger than that in the attached boundary layer. This implies that the control should
promote the discretization of this layer into individual vortices, and enhance their
merging.

Secondly, since kinematically the total circulation (including the circulation carried
away by wake vortices) in the flow field must be zero, the formation of unfavourable
trailing-edge vortices is inevitable. But, what one could do through control is to
suppress the rolling up of the trailing-edge shear layer and/or push the trailing-edge
vortex downstream.

2.2. Unforced randomness vs. forced resonance in separated flow

We now examine the specific dominating mechanisms involved in post-stall flow
control. Obviously, two major mechanisms must play an essential role in a fully
separated flow field: the local instability of separated shear layers from both leading
and trailing edges, and the global instability that causes vortex shedding. While the
control of the former has benefited from the studies of forced mixing layers (e.g. Ho &
Huerre 1984), that of the latter has benefited from the studies of forced cylinder-wake
flows (e.g. Rockwell 1990). What we need is to combine these to guide our physical
understanding and numerical tests.

2.2.1. Unforced separated flow

The dimensionless shear-layer frequency is defined as

Stshear =
fshearθ

U
, U = 1

2
(U1 +U2), (2)

where θ is the momentum thickness of the layer and U1 and U2 the velocities at its two
edges. For different U1 and U2, the most unstable mode of an unforced straight shear
layer always occurs at Stshear ' 0.032 if the flow is laminar, and Stshear ' 0.044–0.048
if the flow is turbulent (Ho & Huerre 1984). This most unstable frequency is referred
to as the natural frequency and denoted by f0

shear . Note that θ is an increasing function
of the streamwise distance from the separation point, say s; hence, f0

shear must be a
decreasing function of s.

On the other hand, the global instability that causes vortex shedding is the result
of absolute instability (e.g. Huerre & Monkewitz 1990). Therefore, owing to the
coexistence of a variable f0

shear and a natural shedding frequency f0
shed between the

leading-edge shear layer and trailing-edge vortices, plus the fluctuating frequencies
of secondary and tertiary separations, the unforced separated flow must be a highly
nonlinear multi-frequency system. In the system the shear-layer evolution and vortex
shedding process are already coupled with and modulate each other. Because the
interaction of three frequencies that are not mutually integer multiples of each other
implies chaos, an unforced separated flow often exhibits random behaviour.

2.2.2. Forced shear layer

For a forced shear layer, the key parameter is the forcing frequency fe. The
response frequency of the shear layer, frshear , may differ from f0

shear and is shifted
to a super- or subharmonic of fe. Under this frshear , the shear layer rolls up into
discrete vortices, which then merge into larger ones with the characteristic frequency
accordingly reduced. This process may continue in a stepwise manner, leading to a
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rich spectrum of response to various disturbances. The merging process also enhances
the entrainment. Such a subharmonic resonance and frequency lock-in are known to be
the basic mechanism for effective shear-layer control, which always leads to a more
regularized flow field than the non-resonant case.

In addition, a forcing at the very low frequency of O(10−1f0
shear) and a finite

amplitude may cause the so-called ‘forced fusion’ (Rockwell 1972) or ‘collective
interaction’ (Ho & Nosseir 1981; Ho & Huang 1982), in which a coalescence of
many small vortices into a large one occurs within a short distance. Unal & Rockwell
(1988) have proposed that this mechanism is responsible for the vortex formation from
separated shear layers in a bluff-body flow. This could also be especially valuable for
lift enhancement, because the length scale of a fully separated flow is usually not large
enough for the formation of a large lifting vortex merely from successive pairings.
On the other hand, unlike the straight shear layer appearing in the experiments of
Rockwell and Ho and co-workers, the leading-edge shear layer above an airfoil has
a tendency to turn down and roll up. This makes multi-vortex coalescence occur
more easily under proper control. Because there is no absolute distinction between
a perturbed shear layer and its discrete version, in what follows we shall name this
phenomenon rolling-up coalescence.

2.2.3. Forced vortex shedding and unsteady control

After the controlled leading-edge shear layer is quickly discretized and a strong
lifting vortex is formed by merging, the lifting vortex will interact with trailing-edge
vortices just like in a bluff-body flow. Here we also have the frequency lock-in
phenomenon, where the natural shedding frequency shifts to a harmonic of fe (e.g.
Stansby 1976). It is therefore possible to find a proper range of fe so that the leading-
edge and trailing-edge vortices are both effectively modulated by a single forcing. In
fact, this possibility is reinforced by the following observation. While the momentum
thickness θ of a laminar shear layer varies as Re−1/2, that of a turbulent shear layer
varies as Re−1/7 (e.g. White 1974). Thus, if Re changes from 104 to 107, say, f0

shear

will increase by about 30 times for laminar flow but only about three times for
turbulent flow. Due to the weak dependence of f0

shed on Re (except the transition
from subcritical to supercritical regimes), then, in turbulent flows the ratio f0

shear/f
0
shed

keeps the same order of magnitude in a wide range of Re. Actually, we found that
f0

shed/f
0
shear = O(10−1). On the other hand, we are most interested in a forcing with

fe = O(10−1)f0
shear for promoting rolling-up coalescence. Therefore, a single forcing

has a good chance of being effective.
Moreover, since disturbances can propagate both upstream and downstream in an

absolutely unstable zone, there can be a natural mechanism to close the loop of
resonance. In such a resonant flow the unfavourable random modes are suppressed,
making the retained main modes very regular and strong.

From the above discussion it is clear that, unlike the wake control of a circular-
cylinder flow, we now have to pay more attention to the flow field above the airfoil.
In particular, the focus must be on the control of the leading-edge shear layer. Its
upstream location and highly flexible receptivity, as well as the fact that it is the only
source of lift, make the leading-edge shear layer the most effective constituent to be
controlled. Obviously, for an effective control of such a shear layer the forcing must
be imposed asymmetrically relative to the airfoil configuration, as in the case in the
above-mentioned experiments with a single leading-edge control device. It should be
stressed that the recent rapid development of smart materials and micro-fabricated
electromechanical systems (MEMS) has made the desired unsteady active control
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practically feasible without using any complex mechanical actuators (e.g. McMichael
1996).

3. Numerical method
3.1. Numerical scheme

A compressible Navier–Stokes solver was adapted to the present problem. The scheme
is approximately factorized, using second-order central differencing in space plus a
fourth-order artificial viscosity, and is second-order implicit in time. The code has
been confirmed to work well at low Mach numbers by several test cases, including
flow over a circular cylinder with vortex shedding, as well as attached and separated
airfoil flows (Denny 1997). For the calculation performed in this study, an O-grid was
employed and stretched such that the mesh height adjacent to the wall is less than
10−4.

The computation is very complicated if it is to faithfully simulate an oscillating flap,
where a moving grid has to be embedded in a fixed global grid. Such a computation
has been carried out (Denny 1997) and will be reported elsewhere. In the present
study we used local periodic blowing–suction located at 2.5% chord lengths from
the leading edge to mimic the effect of forcing. This location has been shown by the
experiments of Hsiao et al. (1993, 1994) to be most effective over a wide range of
angle of attack. We stress that in this study the blowing–suction with no net flux is
merely a simplified simulation of various control means; it cannot reflect the full effect
of, say, an oscillating flap or some other specific device. But, periodic blowing–suction
itself may well be a candidate for practical devices (e.g. Seifert et al. 1996), which
could be achieved by using a synthetic jet (e.g. Smith & Glezer 1997), say, and does
not require a complex system of pumps and pipes. Moreover, no matter what kind of
specific actuator it is produced by, as long as the forcing disturbance has the proper
frequency and amplitude, qualitatively the same end result could be anticipated.

The no-slip and impermeability conditions were imposed on the airfoil surface
except at a few grid points at the blowing–suction location. A non-reflective condition
(Thompson 1990) was imposed on the outer boundary of the computational domain.
The initial condition was simply taken as a uniform flow. After starting, the transient
state evolves to a quasi-periodic state. Data were recorded after the quasi-periodic
state was reached.

The computational domain has a radius of 12 chord lengths, which was deemed
sufficient by numerical tests. It has also been determined that the computed results
are independent of the time step we used (or CFL number). In table 1 we show the
time-averaged lift and drag coefficients, Cl and Cd, of a NACA-0012 airfoil along
with their root-mean-square values, as well as the lift/drag ratio L/D, for a set of
parameters with two grid resolutions, i.e. 141 × 181 (circumferential × normal) and
181× 261. Because for this kind of massively separated and unsteady flow the initial
transient stage is quite random and has a profound effect on the detailed fluctuating
history of the flow, it is impractical to reach an exact grid independence. Thus, we
judge our results for the two grid resolutions as in good agreement. In what follows
we only show the results with 141× 181 meshes.

3.2. Parameters

The computation focused mainly on the effect of forcing frequency and angle of
attack; in several runs the amplitude effect was also examined.

In the experiments of Hsiao’s group (Hsiao et al. 1990, 1993, 1994; Chang et al.
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Grid fe/fs Cl Cd L/D Clrms Cdrms

141 0 1.017 0.543 1.873 0.295 0.138
181 1.0 1.540 0.551 2.795 0.302 0.230

181 0 1.046 0.559 1.871 0.316 0.149
261 1.0 1.576 0.578 2.727 0.293 0.221

Table 1. Validation of grid resolution: NACA-0012, α = 25◦, Rec = 5× 105. Cl , Cd, L/D are
averaged values; Clrms , Cdrms are RMS values.

1992), it was reported that the forcing frequency was chosen as the shear-layer
frequency f0

shear for lower post-stall α, and the natural shedding frequency f0
shed for

higher α. Because θ and U in (2) vary along a streamline, and because above an
airfoil the separated shear layer is no longer straight and there can be secondary
and tertiary separations, how to select a single reference value of f0

shear is not trivial
(Hsiao et al. did not explain where the shear-layer frequency was detected). If f0

shear

was referred to the initial frequency at separation point, taking fe = f0
shear might not

be the best choice. In contrast, in the experiment of Zhou et al. (1993) it was found
that the optimal effect occurred when fe = f0

shed and its first superharmonics. Because
the natural vortex-shedding frequency can be accurately determined by computation
or experiment, it is more convenient to use f0

shed as a reference in choosing our fe. We
thus define a relative forcing frequency

f̂e =
fe

f0
shed

, (3)

and for most runs we chose

f̂e = 2j , j = 0, ±1, ±2, . . . , (4)

such that the imposed fe can effectively modulate the vortex shedding process. As

addressed before, in a range of angles of attack it is possible that f̂e given by (4) also
falls into a proper range that can promote the vortex discretization in the shear layer
and their merging.

We chose the Reynolds number Rec (based on chord length c) as 5 × 105. This is
of the same order as those in the experimental studies cited above (up to 6.7 × 105)
(Zhou et al. 1993) and in the computation of Ko & McCroskey (1997), which was
6× 105. The Mach number was fixed at 0.2. The airfoil for computation was NACA
0012, since its uncontrolled force character over the whole range of 0◦ 6 α 6 360◦

has been extensively studied by careful experiments (Critzos et al. 1955). But, this is
certainly not the optimal shape for post-stall control purposes.

The periodic blowing–suction was simulated over five grid points of total length
l = 2.5%c to form a velocity profile v(s). The flow rate, defined by

cµ =
|v|max l

Uc sin α
, (5)

is fixed to 2.5% in most runs, which at α = 25◦ corresponds to |v|max/U ' 0.42.
Introducing the factor sin α is to ensure that with the same cµ a higher α requires a
larger |v|max/U as it should. This magnitude order of |v|max/U is relatively large in
practice; the forcing effect with smaller amplitudes will be reported in § 4.1.2. It should
be stressed that, the required cµ may well be reduced by using a smaller l (for that
case a denser grid would be needed) while keeping the same |v|max . Chang et al. (1992)
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have presented evidence that it is not the nominal cµ but the maximum disturbance
velocity |v|max/U that is crucial for the control.

3.3. Turbulence models

In Reynolds-averaged computations of separated unsteady turbulent flow, to find a
proper yet simple turbulence model is an extremely delicate issue. These kinds of flows
are very sensitive to the location of the separation point, initial transition point, and
turbulence strength at the separation, etc. These quantities in turn strongly depend on
the airfoil geometry and the Reynolds number. While for a circular-cylinder flow there
is a well-defined category of flow regimes versus Reynolds number (e.g. Williamson
1996 and references therein), establishing a similar category for post-stall airfoils
would be much more complicated. In a preliminary survey of existing experiments
and computations on post-stall airfoil flow, we have found indications that, for a
given airfoil, different flow regimes could occur depending on Reynolds numbers
and angles of attack, as well as the airfoil geometry. There is quasi-periodic flow
with regular vortex shedding; there can be unsteady flow with a very small Strouhal
number (about O(10−1) of that in a bluff-body flow); and, surprisingly, the turbulent
flow could even converge to a steady state with a stationary vortex being completely
captured above the airfoil. Figure 1 sketches this survey for the NACA-0012 airfoil,
which includes some laboratory experiments and numerical tests using the Spalart–
Allmaras (S–A) turbulence model (Spalart & Allmaras 1992). Due to the lack of
systematic experimental data, whether all these regimes do appear in practice is still
uncertain, and the boundaries of these regimes are far from being clarified. The
occurrence of these regimes seems to have a close relation with the existence of two
competing types of separation described by Jones (1934): front separation and rear
separation. While the former causes a stall with sudden increase in the fluctuations
of lift and drag, the stall caused by the latter has no serious fluctuations. Which type
will occur depends on the airfoil geometry very sensitively.

Because of this complexity, therefore, it could well happen that different turbulence
models, as well as their different combinations with various numerical schemes, may
lead to qualitatively distinct predictions for a massively separated flow. A theoretically
higher-level turbulence model may not be better than a lower-level one for computing
unsteady separated flow. For example, in computing dynamic stall, a comparative
study of the Baldwin–Lomax (B–L) algebraic model (Baldwin & Lomax 1978), the
S–A model, and a standard k–ε model has been made by Ko & McCroskey (1997),
who concluded that the S–A model seems to be the best. But opposite evidence
also exists. For a study of the effects on qualitative flow behaviour of viscosity, grid
density, and treatment of boundary conditions (NACA-0012; up to α = 15◦ only), see
Barton & Pulliam (1984).

Being aware of this uncertainty, therefore, in most runs of this fundamental study
we used the B–L model for simplicity, along with the Launder–Sharma (1974) wall-
damping function. The B-L model is known to overestimate the lift for separated
flow (Ko & McCroskey 1997). This was also observed in our computation (see
§ 4.1 below). We did find that the S–A model gives somewhat better agreement
with experimentally measured time-averaged forces (Denny 1997; Zhu 1997, private
communication). However, the most puzzling problem is, at Re = 5×105, that all flow
patterns predicted by using the B–L model fall into the ‘turbulent vortex shedding’
regime of figure 1 for all our tested α, rather than the ‘turbulent steady stall’ regime
predicted by using the S–A model for about 18◦ 6 α 6 25◦. As a comparison, we
have computed the flow field at α = 20◦ without any turbulence model for Re = 105
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Figure 1. Possible regimes of flow patterns over a NACA-0012 airfoil at post-stall angles of attack
versus Reynolds number. All data are taken from experiment unless noted. Shaded regions denote
tentative approximate boundaries.

and 5× 105 (‘laminar’ and/or ‘transitional’ flow). Both belong to the vortex shedding
regime. A similar puzzle has been encountered by Rumsey et al. (1987) with the B–L
model at Re = 106; they showed that at α = 18◦ the flow is oscillating, but at α = 25◦

it is steady. It is worth mentioning that we also met the sensitivity of post-stall flow
(and/or turbulence models) to airfoil geometry: when applied to the NACA 633-018
airfoil, the same numerical code with the S–A model predicts oscillating flow at the
same range of angle of attack and Reynolds number (Denny 1997). Denny also gave
a more detailed discussion on the effect of turbulence models, grid density, artificial
viscosity, and time step in post-stall flow simulation.

In effect, even for a two-dimensional airfoil, the real turbulent flow is inherently
three-dimensional, with the wavelength of spanwise fluctuations comparable to the size
of eddies that can be resolved by two-dimensional Reynolds-averaged computation.
Moreover, small eddies formed from the disturbed shear layer could have an important
effect on the evolution of massively separated flows and their controls, but they
could have been smeared out by the Reynolds-averaged approach. Therefore, all
two-dimensional computations at Reynolds-average level, including those listed in
figure 1 and that in our study, by no means faithfully simulate these kinds of
complicated flows. Rather, we hope to call more attention to this messy situation,
which reflects an urgent need for systematically determining the boundaries between
different regimes and justifying the practical applicability of various models (along
with various schemes) by more reliable methods, e.g. accurate experiment or large-
eddy simulation, etc.

Nevertheless, a three-dimensional turbulent post-stall flow is generically random
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α (deg.) fe Cl Cd L/D Clrms Cdrms

18 0 0.988 0.261 3.785 0.073 0.017
0.5 0.952 0.227 4.194 0.149 0.042
1.0 0.891 0.223 4.005 0.125 0.059
2.0 0.987 0.233 4.236 0.084 0.035
4.0 1.003 0.238 4.214 0.085 0.026
8.0 0.989 0.242 4.087 0.091 0.028

20 0 0.968 0.388 2.495 0.194 0.052
1/3 1.370 0.419 3.269 0.312 0.171
0.5 1.395 0.397 3.514 0.294 0.149
1.0 1.275 0.324 3.935 0.134 0.077
1.5 1.042 0.296 3.520 0.120 0.075
2.0 1.003 0.306 3.278 0.130 0.057
4.0 1.066 0.338 3.154 0.116 0.048

25 0 1.017 0.543 1.873 0.295 0.138
0.5 1.761 0.671 2.624 0.256 0.248
1.0 1.540 0.551 2.795 0.302 0.230
2.0 1.382 0.503 2.748 0.120 0.094
4.0 1.187 0.488 2.432 0.150 0.084

30 0 1.125 0.729 1.543 0.299 0.162
0.5 1.740 0.935 1.861 0.388 0.278
1.0 1.714 0.919 1.865 0.427 0.299
2.0 1.615 0.844 1.914 0.259 0.175

35 0 1.267 0.985 1.286 0.308 0.194
0.5 1.457 1.083 1.345 0.412 0.277
1.0 1.596 1.143 1.396 0.428 0.287
2.0 1.696 1.226 1.383 0.372 0.226

Table 2. Time-averaged effect of forcing at different angles of attack and frequencies.

and unsteady. We thus believe that our results can at least be used for qualitative
understanding of the underlying physics of most post-stall flows and their control.
This is the main purpose of the present paper.

The computations were carried out on a Cray-C90 supercomputer. Each run took
about 1–2 hours of CPU time. In the computation, the angle of attack was taken as
18◦, 20◦, 25◦, 30◦ and 35◦. Based on (3) and (4), a selective set of values of forcing

frequency, f̂e = 0, 0.5, 1.0, 2.0, and 4.0, was first tested at α = 25◦. Then the most

effective values of fe were tested for other α, where a few additional values of f̂e were
also tested.

4. Lift, drag and pressure
4.1. Lift and drag

The computed time-averaged lift and drag at different α and fe are compared in
table 2, where the root-mean-square (RMS), amplitudes of Cl and Cd, are also listed.
The computed lift enhancement is summarized in figure 2, where the experimental
curve for unforced flow (Critzos et al. 1955) is also shown which is lower than the
numerical result with fe = 0. As mentioned before, this discrepancy is mainly due to
the inaccurate turbulence modelling, and can be reduced by using better turbulence
models. Nevertheless, figure 2 indicates that this overestimate occurs at all computed
α, so the right trend of variation was nevertheless captured. The figure vividly
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Figure 2. Overall view of mean lift enhancement due to forcing. NACA-0012 airfoil. Solid line is
experimental value (Critzos et al. 1955).

indicates that, compared to the uncontrolled post-stall case, there is a significant
lift enhancement up to α = 35◦. Only a narrow lift valley around αstall ' 12◦ (for
Rec = 5 × 105) remains, which has a width of about 7◦. This residual valley could
be eliminated by adding a high-frequency component in the forcing with fe ' f0

shear

(Seifert et al. 1996), or by sweeping the wing.
A similar effect of forcing was also observed at α = 20◦ and Re = 105 without

any turbulence model: the mean lift coefficient was increased from the unforced

value Cl = 1.25 to 1.41 at f̂e = 1, and the mean drag coefficient was decreased
correspondingly from Cd = 0.46 to 0.36. However, for Re = 5× 105, the same forcing
seems to have no obvious effect on Cl and Cd if no turbulence model was turned on.

In what follows we examine some details of the effect of forcing frequency, amplitude
and angle of attack.

4.1.1. Effect of forcing frequency

To illustrate the result, we fixed α = 25◦. In this case f0
shed = 0.152f0

shear , where f0
shear

is estimated at a point just downstream of the separation point.
Figure 3(a) gives a typical time variation of lift and drag coefficients for the

unforced flow. The corresponding power spectrum of Cl is shown in figure 3(b), where
the only peak is at St0shed = f0

shedc/(U sin α) ' 0.158, no other modes being excited.
A quasi-periodicity is clearly seen, mainly modulated by the natural vortex shedding
frequency. The time-dependent Cl and Cd under forcing, as well as their power spectra,
are shown in figures 4–7. The following effects of forcing frequency are then evident.

First, harmonic resonance with vortex shedding obviously happens at f̂e = 1.0 and
2.0 (figures 5 and 6). In both cases many harmonic modes of f0

shed are excited.
Consequently, we obtain the most favourable increase of lift/drag ratio (49.2% and
46.7%, respectively). In particular, the random high-frequency modes observed for the
unforced case are almost completely suppressed when fe = 2f0

shed , implying a perfect
frequency lock-in, which is the characteristic of the strongest resonance. This pattern
must represent a well-organized vortical flow.

Secondly, the above two cases have very different amplitudes of Cl and Cd. While

at f̂e = 1.0 the amplitude is even larger than the unforced case, it is much smaller at

f̂e = 2.0. Figures 5(a) and 6(a) suggest that a dramatic change of the vortex shedding
pattern takes place as the forcing frequency is doubled: one large vortex is replaced
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Figure 3. Unsteady force character of NACA-0012 airfoil. Unforced flow, Rec = 5× 105, M = 0.2,
a = 25◦. The dimensionless time in this and following figures is Ut/c. (a) Instantaneous lift and
drag coefficients. (b) Power spectral density of Cl .

by two smaller ones, which are shed at f̂e = 2.0. Therefore, a resonant state is not
necessarily associated with amplitude amplification. The same phenomenon has also
been observed in circular-cylinder flow control (Lu & Sato 1996). In addition to a
high lift/drag ratio, in practice the amplitude of Cl and Cd should be as small as
possible.

Thirdly, as f̂e reduced to 0.5 (figure 4), we have subharmonic resonance with vortex
shedding. This leads to the largest lift increase (73.2%) among all test cases, but the
drag is also increased by 23.6% (the total normal force is increased by 41.8%). Many
subharmonic modes are excited, but other modes are less suppressed compared to

f̂e = 1 and 2. On the other hand, the largest drag reduction (5.5%) occurs when f̂e = 4
(figure 7), but the lift increase is small. Therefore, the optimal lift enhancement, drag
reduction, lift/drag-ratio increase, and amplitude alleviation, all occurred at different
forcing frequencies.

Finally, we stress that the selection of f̂e according to (4) is merely for convenience.
It by no means implies that these discrete numbers are optimal. Actually, under a



Post-stall flow control 33

2.0

1.5

1.0

0.5

0 20 60 80

t

Cl

40 100 120

2.5

Cd

Cl
Cd

(a)

(b)

0

f
1 2 3 4 5

10–5

10–4

10–3

10–2

10–1

Po
w

er
 s

pe
ct

ru
m

 o
f 

C
l

100

140 160

Forcing

Figure 4. Forced flow. f̂e = 0.5, cµ = 2.5%. For other details see figure 3.

forcing the shedding frequency of a trailing-edge vortex must have a shift, being no

longer f0
shed. Moreover, we have also computed the case with f̂e = 1/3 (table 2),

√
2,

and
√

3/2 at α = 20◦. The effect of f̂ on Cl and Cd is summarized in figure 8 for
α = 20◦, indicating that the effective frequency spans a wide smooth spectrum, which
is very favourable in practical applications.

4.1.2. Effect of amplitude

The effect of amplitude, cµ or vmax/U, was tested for several selected cases. At

α = 25◦ and f̂e = 1, a forcing with cµ = 1% (vmax/U ' 0.17) has only a negligible
effect on the lift. This is in qualitative agreement with the observation of Ho &
Nosseir (1981) that the rolling-up coalescence is a nonlinear phenomenon that occurs
only if the forcing amplitude is above a threshold value.

At a higher f̂e, however, the rolling-up coalescence may not be able to occur;
thus a forcing with a lower amplitude could be effective. We tested this at α = 20◦

and f̂e = 1 for several vmax/U (table 2 indicates that the peak lift enhancement that

corresponds to possible rolling-up coalescence occurs when f̂e ' 0.5). The result is
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Figure 5. As figure 4 but f̂e = 1.

shown in figure 9. The control effect is still nonlinear; but it seems that no clear-cut
threshold amplitude exists. It was observed that when vmax/U < 0.1 the flow is no
longer well organized, although the lift is still enhanced, even greatly, along with a
drag enhancement.

Figure 9 suggests that the flow may have more than one response mechanism
depending on the forcing amplitude. In the small-amplitude range both lift and drag
are increased by the forcing as Hsiao’s group observed, and reach a peak at an
optimal amplitude, say vmax1. This range does not require a regularization of the flow,
and the power input for effective control can be very small. But, the physics behind
this effect is not yet very clear to us. In contrast, in the large-amplitude range, the
flow is regularized, and the lift enhancement may be (not always) associated with a
drag reduction. Although not seen from figure 9, a second peak of lift should exist at
another optimal amplitude vmax2 ∼ 10vmax1. Most of our computations and discussion
belong to this case, which, however, has never been observed in experiments. A
systematic study of the amplitude effect at various angles of attack and forcing
frequencies is therefore highly desirable.
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Figure 6. As figure 4 but f̂e = 2.

4.1.3. Effect of angle of attack

At different angles of attack, similar pictures of Cl and Cd with various forcing
frequencies were obtained. It is sufficient here to look at table 2 for the time-averaged
values of lift, drag, and lift/drag ratio. The table also roughly outlines the range of
angle of attack for effective flow control: between 20◦ and 30◦. The strongest effect
occurs at α = 20◦, where the optimal enhancement of the lift/drag ratio is as large

as 57.7% at f̂e = 1.0. Interestingly, this is also the frequency with an almost perfect

lock-in phenomenon, similar to the case at α = 25◦ with f̂e = 2.0.

The effect of unsteady control quickly drops to the level of 10% both as α decreases
only 2◦ below 20◦, and as α increases beyond 30◦.

4.2. Surface pressure

We fix α = 20◦ as an example to look at the effect of forcing on surface pressure.
Most runs used cµ = 2.5%.
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Figure 7. As figure 4 but f̂e = 4.

4.2.1. Response frequency and amplitude

The instantaneous pressure distribution without forcing and with f̂e = 1 at four
different times of a cycle are shown in figure 10, and the RMS Cp fluctuations are
shown in figure 11. Without forcing, a major part of the upper surface is in completely
separated flow as indicated by the planform of the curves; and there is a strong Cp
fluctuation near the trailing edge (x/c > 0.85). When the forcing is turned on, a strong
lifting vortex travels above the upper surface and hence causes a moving suction peak.
Moreover, the forcing almost entirely eliminates the unfavourable RMS peaks near
the trailing edge, but the fluctuation on the front portion is enhanced. In particular,
a very strong narrow RMS peak of Cp appears near the leading edge.

Figure 12 shows the time-dependent Cp and the corresponding power spectral
density at x/c = 0.9848. Evidently, with forcing, the original broadband fluctuating

frequency is locked-in to f̂e and its harmonics like Cl and Cd. On the other hand, the
forcing reduces the Cp amplitude near trailing edge by eight times, but greatly enhances
it near the leading edge (figure 11). The latter may be attributed to several mechanisms,
of which we list two. First, because the periodic blowing/suction is a source of
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pressure waves, in two-dimensional flow the Cp amplitude must have a contribution
roughly inversely proportional to the distance from the forcing location and reaching
a maximum near the leading edge. Secondly, and perhaps more importantly, in the
forced flow the lifting vortices are strong and concentrated, and each shedding implies
a strong impulse to the flow field compared to the unforced case where these vortices
are much weaker and leave the airfoil quite randomly. Then these impulses may
induce a stronger and more regularized oscillation of the separation point as well as
of the kinetic energy contained in the separating boundary layer, which also occurs
near the leading edge.
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Figure 10. Time-variation of Cp distribution. α = 20◦. (a) Unforced. (b) Forced, f̂e = 1, cµ = 2.5%.

The above discussion, however, cannot fully explain why the strong RMS peak
near the trailing edge is greatly suppressed by forcing. We leave this issue to § 6.2.

4.2.2. Potential application in buffet control

As suggested by V. Sharma (1996, private communication), the change of pressure
character due to forcing may have potential benefit for buffet control, which requires
minimizing the Cp amplitude and avoiding a broadband frequency spectrum. We
saw that this goal has already been reached near the trailing edge. To reduce the
amplitude in the front part, one could reduce cµ to a minimum effective value. We
found that when cµ is decreased from 2.5% to 1.5%, the Cp amplitude can be reduced

by 27% near the leading edge. Another possible means is to adjust f̂e. A higher f̂e
could spread the energy of a single strong impulse to several weaker ones. Setting
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f̂e = 2 confirmed this conjecture, where for the same cµ = 2.5% the leading-edge Cp
amplitude is reduced by 12.8% compared to f̂e = 1. An additional benefit is that the
spacing between two neighbouring peaks is doubled, implying a smaller chance of
exciting the buffet.

In addition, one could consider a different forcing mode. If instead of blowing–
suction the forcing device only creates tangential oscillation along the wall, then the
forcing wave will be a transverse wave (vortical wave), and the forced Cp fluctuation
should be weaker. Theoretical studies have confirmed that this kind of transverse
forcing mode can be applied to separation control (Wu, Wu & Wu 1991, 1993). Note
that the vortical wave is also the source of a longitudinal pressure wave, but this effect
is secondary (Wu, Ma & Wu 1994). Moreover, the phase difference effect between
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forcing and responding waves is also worth exploring. Finally, a sharp leading edge
with a fixed separation point would further reduce the separation oscillation. A
numerical study based on these thoughts are being undertaken.

4.3. Necessary conditions for post-stall flow control

According to the discussion of § 2, in addition to the parameters and location of
forcing, it seems that the following two basic conditions for post-stall lift enhancement
are necessary: (i) the coexistence of a well-developed free shear layer and trailing-edge
vortices; and (ii) a well shaped ‘resonant cavity’ enclosed by the leading-edge shear
layer, trailing-edge vortices, and upper surface of the wing.

In the first condition, the shear layer must be free enough to undergo the local
instability, discretization, and pairing, or rolling-up coalescence. Only in this case can
these processes be effectively modulated by forcing. For α too close to αstall , the shear
layer is too close to the surface (as observed at α = 18◦; the figure is not shown) and
loses part of its freedom to be modulated. Thus, the forcing effect is reduced.

In the second condition, the above mentioned ‘resonant cavity’ cannot be too large.
For otherwise the intrinsic communication between the shear layer and trailing-edge
vortices will be too weak. This happens for α > 35◦, and explains why the forcing
effect declines at too large angles of attack. Note that this condition also emphasizes
the importance of the airfoil shape.

5. Forced resonance and mode competition
Having obtained positive results for post-stall unsteady flow control by local

excitation, we proceed to further explore the underlying physics. We first look at the
flow as a nonlinear oscillator.

There is a basic difference between our study and most studies on mode competition
and nonlinear interaction in bluff-body wake flows. While the latter have been
based on experimentally measured data (e.g. Kourta et al. 1987) or direct numerical
simulation at a laminar Reynolds number (e.g. Karniadakis & Triantafyllou 1989),
our data were taken from Reynolds-averaged computations with an eddy-viscosity
model, where small-scale fluctuations have been smeared out. Before going into detail,
therefore, a general discussion is necessary to clarify in what sense the concepts of
instability, coherent structure, and chaos can be applied to the Reynolds average of
a turbulent flow.

The applicability of the concept of instability to fully developed turbulent flow
lies in the existence of turbulent coherent structures. Successful attempts have been
made to apply the linear instability theory, originally developed for laminar flow
and transition, to predict the onset of coherent structures and their development
(e.g. Wygnanski 1987). The prediction is improved by introducing a variable eddy
viscosity into the Orr–Sommerfeld equation with slowly varying unidirectional basic
flow, which is drawn from experiment by taking a time average. Thus, it has been
established that turbulent flows also have an instability problem in an averaged sense,
and between two statistical states, say a periodic one and a steady one, transition may
happen due to the change of a parameter. Some necessary conditions for the stability
of a statistically steady turbulent state have been found recently by Malkus (1996).

It is also meaningful, therefore, to talk about the instability of a Reynolds-averaged
turbulent flow. The average should be understood as an ensemble average to allow
for unsteadiness. Actually, using an eddy-viscosity model to simulate a Navier–Stokes
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turbulent flow can be viewed as dealing with a laminar flow of a model fluid with a
nonlinear constitutive structure; so the instability problem is always there.

The existence of nonlinear instability in a Reynolds-averaged turbulent flow, then,
immediately implies the possibility that chaos may appear at large scales. Of course,
this chaos must be distinguished from that leading to transition from laminar to
turbulent flows. For a flow past an oscillating circular cylinder at a low Reynolds
number, Olinger & Screenivasan (1988) have experimentally confirmed that the
nonlinear interaction of two competing frequencies (forcing and shedding) can lead
to chaos through quasi-periodicity, characterized by ‘Arnold’s tongues’. In this aspect,
our situation is somewhat similar. We shall also see that, as the forcing frequency
increases from zero, the transition takes place from unforced chaotic flow to forced
periodic flow, and then to forced chaotic flow. In between the periodic and chaotic
states there are some quasi-periodic states. Essentially, the chaos is due to the
nonlinear interaction of different constituents of post-stall flows, each of which has
its own characteristic frequency.

In a numerical study of unforced and forced laminar flow over a circular cylinder
at Re = 100 based on cylinder diameter, Karniadakis & Triantafyllou (1989) assumed
that the excitation provided by the shear-layer instability lies outside the receptivity
region of the wake. Thus, in their computation only a single shedding frequency
responded to the forcing frequency, which implies a quasi-periodic or periodic flow
as they observed. The shear-layer instability in circular-cylinder flows was detected
experimentally only at higher Reynolds numbers (above 350 by Gerrard 1978; and
1900 by Unal & Rockwell 1988). William-Stuber & Gharib (1990) observed chaos
experimentally in the wake of a thin airfoil at Rec = 8600. They set the airfoil at α = 0◦

to remove the region of absolute instability, and used more than one active strip heater.
Thus, two external excitations with different frequencies interact simultaneously with
the shedding mode, which made the quasi-periodic pattern unstable and become
chaotic.

In our case, the characteristic Reynolds number (based on chord length) is much
higher, and the separated unstable shear layer from leading edge and its control
play a crucial role in affecting the vortex shedding and wake. Therefore, many more
high-frequency modes are excited. Chaotic regime appears as well as periodic and
quasi-periodic ones. In this section, our focus is the conditions and results of different
resonant states, frequency shift and lock-in, as well as a preliminary search of the
periodic, quasi-periodic, and ‘chaotic’ regimes of the flow state. The types of unforced
and forced flow patterns are summarized in table 3, a few typical details of which are
addressed below.

5.1. Unforced flow

We first illustrate the flow behaviour using the data at α = 25◦. Figures 13 and
14 give information about instantaneous velocity components (u, v) at two points in
the unforced flow field, where plots (a) and (b) are respectively the phase diagram
(velocity end-point diagram) and power spectral density (PSD) of the kinetic energy
(u2 + v2)/2. As shown in the figure of table 3, point 1 is upstream of the airfoil, while
point 2 is downstream of, and very close to, the leading-edge separation point. The
fluctuation at point 1 is dominated by the global instability, so its PSD (figure 13b)
has a single peak at a low f0

shed . Figure 13(a) indicates that the flow at point 1 is more
chaotic.

In contrast, point 2 is dominated by both f0
shed and f0

shear = 6.60f0
shed , as seen from

figure 14(b). Thus, the (u, v) fluctuation is much faster than that at point 1. The flow
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Velocity pattern

α (deg.) fe/f
0
shed frshed/f

0
shed P1 P2 P3

20 1/3 1/3 P P Q
1/2 1/2 Q P Q
1.0 1.0 P P P
3/2 3/2 C P Q
2.0 7/6 C P Q
4.0 4/3 C P Q

25 1/2 1/2 Q Q
1.0 1.0 Q Q
2.0 2.0 P P
4.0 4/3 C Q

30 1.0 1.0 C C
2.0 2.0 C C

P1

P2

P3

Table 3. Velocity patterns vs. α and fe/f
0
shed . Location of points P1, P2, P3 are shown in the figure:

(x, y) = (−0.099, 0.213), (0.107, 0.074), (1.990, 0.775). P: Periodic. Q: Quasi-periodic. C: Chaotic.

is chaotic (figure 14a), and the corresponding PSD has broadband spectra. The waves
around f0

shear indicate that, at high Reynolds numbers, the leading-edge shear layer
has a variable most unstable frequency (Ho & Huerre 1984). Therefore, as asserted
in § 2.2, the unforced flow is already a multi-frequency system.

It has been found that the nonlinear interaction between two modes in high-
Reynolds-number circular-cylinder flows is associated with the appearance of the
sum and difference of two basic frequencies (e.g. Miksad et al. 1982). Kourta et al.
(1987) use this mechanism to analyse the transition to turbulence in the wake of a
cylinder. This phenomenon also appears in our case, as clearly seen from figure 14(b).
Because the shedding mode has global influence, it interacts nonlinearly with local
shear-layer instability modes. Except for a subharmonic peak at f0

shed/2 at the low-
frequency end, sum and difference modes were identified at

f0
shear − 6f0

shed = 0.6f0
shed , f0

shear + f0
shed/2 = 7.1f0

shed ,

2f0
shear − 6f0

shed = 7.2f0
shed , 2f0

shear − 5f0
shed = 8.2f0

shed ,

etc. The excitation of these sum and difference modes leads to the broadband waves
and chaos.
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Figure 13. Instantaneous flow at point 1 of table 3. NACA-0012, Rec = 5× 105, M = 0.2, α = 25◦.
Unforced flow. (a) Phase diagram. (b) Power spectral density of kinetic energy (u2 + v2)/2.

We observed that the numerical result at α = 18◦ (not shown) exhibits a much
more organized behaviour than that at α = 25◦. The flow-field survey indicates that
at this lower angle of attack the leading-edge shear layer is very close to the airfoil
surface, and can only develop much less unstable modes. Thus, the number of distinct
frequencies taking part in interaction is reduced, and the flow at point 2 becomes
quasi-periodic. On the other hand, increasing angle of attack to 30◦ will cause more
variable unstable shear-layer frequencies to join the interaction, and hence more
chaotic behaviour at the same point 2.

5.2. Forced flow: frequency lock-in

The most obvious effect of forcing on unsteady separated flow is that both response
frequencies, frshed and frshear , lock-in to fe and its harmonics as expected, which leads
to a flow regularization, i.e. becoming quasi-periodic or periodic, as has been reflected
by the force and pressure characteristics. This happens in a range of fe, and the
optimally organized patterns occur when

α = 25◦ : f̂e = 2.0 = frshed = 1
3
frshear,

α = 20◦ : f̂e = 1.0 = frshed = 1
6
frshear.

Figures 15–17 show the results at points 1 and 2 for α = 25◦ and point 3 (downstream
of the trailing edge, see the figure in table 3) for α = 20◦. These are in sharp contrast
to figures 13 and 14.
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Figure 14. Instantaneous flow at point 2 of table 3. α = 25◦. For other details see figure 13.

Although the frequency lock-in has been found in bluff-body wake flows and airfoil
flow at α = 0◦ (Koopmann 1967; Olinger & Sreenivasan 1988; Gharib & William-
Stuber 1989; William-Stuber & Gharib 1990; Lam 1996), it is of interest that in
post-stall airfoil flows it occurs in a much wider range of forcing frequency. This
implies a better chance for control.

5.3. Forced flow: frequency not lock-in

As the forcing frequency increases beyond an upper bound, the shedding frequency

no longer locks into fe. At α = 20◦, this begins to be observed when f̂e = 2.0.
The non-lock-in of shedding frequency is most clearly seen at point 3 in the near
wake, figure 18. The response shedding frequency becomes frshed = 7fe/12 = 7f0

shed/6,
which is a rational number close to the natural shedding frequency. Meanwhile, many
superharmonics of fe/12 are excited around frshed; but only superharmonics of fe
remain at higher frequency range. Due to those nfe/12 modes, the flow at point 3 is
pseudo-periodic, but that at point 1 becomes more chaotic (not shown).

As mentioned before, shear layers are very flexible in responding to an external

forcing, thus at α = 20◦ and f̂e = 2 the shear-layer response frequency frshear is still
locked into nfe and the flow near the leading-edge shear layer is still periodic.

As fe further increases to 4f0
shed, for α = 20◦ we found that the response shedding

frequency becomes fe/3 = 4f0
shed/3, again a rational number close to f0

shed. Note
that at point 3 (figure 19) there is a series of sideband peaks caused by a very
low-frequency peak (fe/67), implying a long-wave modulation of the flow. This long
wave brings back the nonlinear interaction through the sum and difference modes,
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Figure 15. Instantaneous flow at point 1. α = 25◦, f̂e = 2.

which was found to also modulate the integrated lift and drag (figure not shown).
The same phenomenon in vortex shedding has been observed in some experiments
and computations (e.g. Lu & Dalton 1996). It was checked that the fe/67 peak is not
due to the data sampling in a finite interval during Fourier transformation. It seems
that this long wave is the result of frshed drifting from 4f0

shed and perfect lock-in has
become impossible.

Similar non-lock-in of the response shedding frequency frshed is also observed at

α = 25◦ when f̂e = 4.0. Once again, we have frshed = fe/3. The shear-layer response
frequency is still a superharmonic of forcing.

6. Vorticity field and vortex dynamics
A forced nonlinear oscillator can represent many different physical systems. In

order to fully understand the specific fluid-dynamic mechanisms of post-stall flow
control, we must combine this kind of information with a flow-field survey. In this
section, we display some instantaneous and time-averaged flow patterns at α = 25◦

and discuss their implications.

6.1. Unforced versus forced instantaneous vorticity contours

Figure 20 shows a few typical stages of vortex evolution in a period for unforced
flow. We see a strong, well rolled-up trailing-edge vortex; some secondary and tertiary
separated vortices from the mid-portion of the upper surface; and an irregularly
drifting leading-edge shear layer. Only the last one is favourable for lift, but it
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Figure 16. Instantaneous flow at point 2. α = 25◦, f̂e = 2.

becomes two to three small discrete vortices (the location of their formation is
random), and these favourable vortices are quite loosely associated with low-level
vorticity. When the strong trailing-edge vortex stays above the rear part of the airfoil,
the lift is minimum; while when it sheds away, the lift increases. The wake consists
of a Kármán vortex street, though quite irregular, with an increasing width, in which
the vortices of opposite signs are staggered.

The forced instantaneous vorticity contours at f̂e = 1.0 are shown in figure 21. The
leading-edge shear layer rolls up into a strong coherent favourable vortex nearer to
the airfoil. In a smaller part of the period the secondary vortex still has an effect, but
weaker than the unforced case. It is remarkable that the trailing-edge vortex shrinks
to a narrow region and moves downstream before it sheds off. The wake vortices are
now aligned in almost a single array. Such a single vortex array behind an oscillating
airfoil has been observed by, e.g., Cornish (1982) and Koochesfahani (1989), and in an
acoustically excited circular-cylinder flow by Detemple-Laake & Eckelmann (1989).

Note that the uneven spacing between the wake vortices of figure 21 implies that
they form a row of short-spaced vortex couples rather than a Kármán street. Each
vortex couple, which in the co-moving frame of reference appears as a Kelvin oval,

carries along a body of fluid. Figure 22 sketches the patterns of the wakes for f̂e = 0
and 1 (not to scale). For the unforced case, the wake flow induced by the vortices
oscillates up and down, but in the mean sense has only a small downwash (see also

figure 23a below). In contrast, for f̂e = 1 the fluid carried by the vortex couples
moves up; but since the spacing between neighbouring couples is larger, more fluid
is induced to move down. Thus, the time-averaged flow (figure 24a below) indicates a
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Figure 17. Instantaneous flow at point 3. α = 20◦, f̂e = 1.

downwash. This may serve as an alternative explanation of the lift enhancement by
appropriate forcing.

It is mentioned in § 4.2 that the forced vortex shedding causes a stronger impulse
than the unforced one, which may be one of the reasons for the surface pressure to
have larger amplitude on the front part of the airfoil. The present comparison of the
structure of forced and unforced vorticity contours is consistent with this assertion.

As f̂e is increased to 2.0, the size and strength of both the lifting vortex and trailing-
edge vortices are reduced (not shown). The doubling of forcing frequency implies that
vortex merging near the leading edge occurs at a smaller scale than before, and so
does the trailing-edge vortex formation. Therefore, the wake is narrower. It seems
that the forcing at this fe can take very good care of both high-frequency shear
layer and low-frequency shedding. Two lifting vortices with a nice circular shape may
coexist above the wing, and the unfavourable interference of the trailing-edge vortex
is further limited. The wake vortices also align in a single array but the strength of
vortex couples is halved and their spacing is more even. This further explains why
the amplitude of Cl , Cd and Cp is greatly reduced.

The favourable effect of forcing declines as f̂e further increases to 4.0 (figure not
shown), where we have fe/f

0
shear = 0.606 which is of order one. Thus, as explained

by Ho & Nosseir (1981), the shear layer is simply discretized to a series of travelling
vortices; no rolling-up coalescence happens. Note that, in contrast to the case of

f̂e = 2.0, although we still found that the number of leading-edge vortices is doubled
and their strength is halved, this is not the case for the trailing-edge vortex. Meanwhile,
the small travelling vortices are not strong enough to entrain most of disorganized
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Figure 18. Instantaneous flow at point 3. α = 20◦, f̂e = 2.
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Figure 19. Instantaneous flow at point 3. α = 20◦, f̂e = 4.

fluid. Consequently, the response shedding frequency no longer follows fe, and the
irregular secondary and tertiary separation reoccur. As a result, the drag is still
reducing but the lift enhancement is small.

We mention that, without a turbulence model, the flow was found to separate
earlier than with the B–L model (figure not shown). A series of small separated
vortices appeared upstream and downstream of the forcing location, which did not
merge to larger vortices. Therefore, in both unforced and forced cases, the oscillating
flow patterns were less regular than those with a turbulence model.



Post-stall flow control 49

(a)

(b)

(c)

Figure 20. Instantaneous vorticity contours with constant time interval. Solid lines: ω > 0,
dotted lines: ω < 0. α = 25◦, unforced.

6.2. Time-averaged flow patterns

The time-averaged streamlines and vorticity contours of unforced flow are shown
in figure 23, indicating how much the lifting vortex is pushed up by its induced
secondary separated vortex. This high position of the lifting vortex in turn induces



50 J.-Z. Wu, X.-Y. Lu, A. G. Denny, M. Fan and J.-M. Wu

(a)

(b)

(c)

Figure 21. Instantaneous vorticity contours with the same constant time interval as in figure 20.

Solid lines: ω > 0, dotted lines: ω < 0. α = 25◦, f̂e = 1. The flow is periodic. Four frames almost
form a period.
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(a)

(b)

Figure 22. Sketch of the wake patterns. (a) f̂e = 0. (b) f̂e = 1.

(a)

(b)

Figure 23. Time-averaged streamlines (a) and vorticity contours (b). α = 25◦. Unforced.

the trailing-edge vortex to invade deeply upstream and influence a large rear portion
of the airfoil.

By contrast, figures 24 and 25 are the time-averaged streamlines and vorticity

contours with f̂e = 1 and 2 (when f̂e = 4 the patterns become about the same as
unforced case). It is evident that the mean lifting vortex is now in a much neater and
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(a)

(b)

Figure 24. Time-averaged streamlines (a) and vorticity contours (b). α = 25◦, f̂e = 1.

more comfortable circumstance, while the trailing-edge vortex is limited to a narrow
fan region downstream the airfoil. Note that the two or three ‘leaves’ of the mean
trailing-edge vorticity contours indicate that, before shedding off, the trailing-edge
vortex wanders around the edge and stays longer at these positions in a period. When

f̂e = 2, the mean shear layer has very smooth contours. It extends across the whole
chord length, basically parallel to the free stream with an almost constant mean
thickness. The mean trailing-edge vortex is thereby pushed more downstream and

confined in a even smaller region than that for f̂e = 1. This nearly perfect resonant

state at f̂e = 2 results in a narrower wake and smaller drag.
In § 4.2 we noticed that the surface-pressure fluctuation near the trailing edge is

greatly suppressed by forcing but did not give an explanation. We believe that this
effect should be mainly attributed to the very favourable reduction of the trailing-edge
vortex in both size and influence on the airfoil surface. Unlike the lift, this effect is
stronger as fe increases.

Note that the mean-streamline patterns satisfy the topological rule for two-
dimensional cross-sectional flow (Hunt et al. 1978):(∑

N

+
1

2

∑
N ′

)
−
(∑

S

+
1

2

∑
S ′

)
= −1,

where N, N ′, S , and S ′ stand for node, semi-node, saddle, and semi-saddle, respectively.
In figure 23(a) we have

∑
N = 3,

∑
N ′ = 0,

∑
S = 1, and

∑
S ′ = 6; while in figures 24(a)

and 25(a), these numbers are 1, 0, 0, 4, respectively. The fewer the number of critical
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(a)
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Figure 25. Time-averaged streamlines (a) and vorticity contours (b). α = 25◦, f̂e = 2.

points, the ‘healthier’ would be the flow pattern – it would be easier to utilize and
control. The post-stall resonance between the leading-edge shear layer and trailing-
edge vortices, triggered by a low-level forcing, precisely achieves such a goal.

6.3. Forced rolling-up coalescence and entrainment

From the above discussion and recalling the results, we may interpret the main
vortex-dynamics mechanisms that cause the difference between forced and unforced
flow patterns as follows.

First, the forcing with a low frequency such as fe = f0
shed = 0.152f0

shear at α =
25◦ causes several small discrete vortices, formed from high-frequency shear-layer
instability, to quickly merge into a large vortex. In addition, we mention that a
forcing with cµ < 1% did not enhance the lift in that case, i.e. the forcing strength
must be above a threshold level. Therefore, we identify the vortex merging as a typical
rolling-up coalescence addressed by Ho & Nosseir (1981). From computed vorticity
contours, a merging of three vortices can be recognized. It was also observed that,

compared to f̂e = 1.0, when f̂e reduces to 0.5 the rolling-up coalescence involves
more vortices and produces a larger vortex with higher strength (not shown); thus
the maximal lift enhancement occurs at the low effective frequency end.

Secondly, since the main vortex has a rolling-up structure, when it is strong enough
it will have the ability of entraining most disordered fluid into its core. This seems to
be the fluid-dynamic mechanism of frequency lock-in for this special flow. Note that
for two-dimensional steady flow without a sink of mass, the rolling-up is impossible.
Here we see another unique advantage of unsteady control.
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Thirdly, the entrainment by a strong lifting vortex is asymmetric on its upper and
lower sides: the main entrainment occurs on its upper side, where the fresh stream
brings larger momentum into the vortex, making it tend to turn downward. This is
a very favourable effect. Since most of disorganized secondary and tertiary separated
flow disappears, once saturated, the main vortex tends to be advected along the main
stream direction, closer to the airfoil surface than the unforced case. Therefore, the
upstream invading of trailing-edge vortices due to the induction of the main vortex
travelling above it, as in the unforced case, is also greatly suppressed. The circulation
around the airfoil is thus more favourable.

We stress that the first and second mechanisms, i.e. the rolling-up coalescence and
strong entrainment, are both necessary. For example, even if the coalescence appears,
the vortex formed thereby could be too far from the airfoil surface so that it cannot
entrain most disorganized fluid. In this case the flow field will still behave like an
unforced flow. This indeed happens at α = 30◦ as was observed from the PSDs of
some typical points (figures not shown). The remaining strong disorganized flow will
conversely make the coalescence process aperiodic. This is the main reason for the
observed much smaller lift enhancement.

7. Concluding remarks
The present study provides numerical evidence for post-stall flow control by un-

steady excitation. The lift is increased (never decreased as noticed in experiments). If
the forcing frequency is in an appropriate range, the drag, as well as the fluctuating
amplitudes of lift and drag, can be reduced. The broadband random spectrum of
surface-pressure fluctuation becomes a sharp-peak regularized spectrum, and near the
trailing edge the fluctuating amplitude is drastically reduced.

For the NACA-0012 airfoil, the following items of our numerical results are in
qualitative agreement with experiments on different airfoils by Hsiao’s group and
Zhou and Fernholz (see references cited in § 1): the range of angles of attack (20◦–
30◦) within which a local unsteady forcing works; the forcing location (near the
leading edge); the range of effective forcing frequency (about 0.3–2.0 fshed ); and the
level of lift enhancement (up to 70%). Our computations also revealed some new
phenomena that need be tested by future experiments. Unfortunately, due to the
coexistence of several different flow regimes at post-stall angles of attack and the
sensitivity of flow patterns to airfoil geometry, further quantitative comparison of our
results with existing experiments does not make much sense. Nevertheless, along with
these experiments, it can be asserted with confidence that the control effect does exist
and could be very beneficial.

If the post-stall flow control can be further improved by adding a high-frequency
forcing and/or sweeping the wing, then a monotonic increase of lift is possible for the
whole range of 0 6 α 6 αm, such that one can enjoy a new freedom to use the vortical
lift on a wing or flap at a very high angle of attack, with the flow being completely
separated. The post-stall control greatly enhances such a vortical lift.

The physical mechanisms behind the post-stall flow control by unsteady forcing
are discussed based on our numerical solutions of Reynolds-averaged Navier–Stokes
equations. For such a flow without forcing, both the local shear-layer instability and
the global vortex shedding instability take place, each of which has a characteristic
frequency. Their nonlinear interaction appears as mode competition, and sum and
difference frequencies. It results in a complicated chaotic unsteady flow.

The nonlinear resonance between the unsteady excitation near the leading edge
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and the separated shear layer thereof, and that between the same forcing and vortex
shedding, play a key role in modifying the flow pattern. In a wide range of angles of
attack, a forcing with appropriate frequency and amplitude can cause the response
frequencies of both shed vortices and shear layer to lock into the harmonics of
the forcing frequency, while other random modes are suppressed. In this way, the
originally disorganized flow becomes a well organized flow.

From the vortex-dynamics point of view, the above organizing process corresponds
to a sufficiently strong entrainment due to the rolling-up structure of the lifting vortex.
To produce such an organized flow with high lift, there are some necessary conditions.
First, the discrete vortices formed from the shear layer must be forced into rolling-up
coalescence, which is possible only if the forcing frequency is an order lower than
the natural shear-layer frequency, and the forcing amplitude is above a threshold.
Secondly, the concentrated lifting vortex must be not too far from the airfoil surface.
To ensure these conditions, the angle of attack cannot be too close to the stall angle,
neither can it be too large.

Mainly due to the wide response spectrum of the shear layer to disturbances,
different forcing frequencies result in different resonant states, which are responsible
for different lift and drag characters. At the lowest tested forcing frequency (1/3 of
the natural shedding frequency), the lifting vortex formed from rolling-up coalescence
is strongest, giving rise to an optimal lift enhancement. Above this, there is a forcing
frequency that can take best care of both shear-layer and vortex shedding instabilities,
so that the entrainment effect is strongest and the flow is most organized, associated
with a much narrower wake and smaller amplitude of fluctuating lift, drag, and
surface pressure. Somewhere in between these two frequencies, the lift/drag ratio
can be optimal. Further increasing the forcing frequency will no longer maintain
the shedding frequency lock-in, and the flow returns to chaotic, associated with a
reduction of the forcing effect.

To conclude this paper, we briefly discuss the specific circumstances where the post-
stall flow control technique may be very useful. As said before, from the viewpoint
of aerodynamic efficiency in the cruise condition, the optimal use of L = −ρUΓ is in
the regime of attached flow. Any flow control cannot change this basic fact. However,
just like the steady detached-vortex flow on slender wings or leading-edge extensions
has greatly enlarged the range of usable angles of attack, we now expect that the
unsteady controlled separated flow could be used at even larger angles of attack, as
long as the drag is not a key issue to address. In practice, this happens at least in the
following cases: (i) landing of aircraft with flap deployed; and (ii) highly manoeuvring
flight.

In the first case, the technique can be applied to a flap as suggested by R. M.
Wlezien (1996, private communication). The increased drag on the flap at post-stall
angle of attack is only a small portion of the aircraft drag, which is beneficial in
landing. The use of post-stall control would reduce the flap size and weight by
enlarging its usable angle of attack. In the second case, the technique could be used
on the main wing, for which a sharp-turn manoeuvre needs a large drag. It is worth
exploring if the post-stall lift enhancement and buffet alleviation by unsteady control
can be applied not only to large-aspect-ratio wings but also to slender wings.
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