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Large-eddy simulations of turbulent swirling
flows injected into a dump chamber
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(Received 12 October 2003 and in revised form 22 September 2004)

Turbulent swirling flows injected into a coaxial dump chamber at different swirl num-
bers were studied using large-eddy simulations. The Favre-filtered conservation equa-
tions of mass, momentum, and energy in three dimensions were solved numerically by
means of a finite-volume approach. Results have been validated against experimental
data in terms of mean flow velocity and turbulence properties. The work provides in-
sight into several salient features of swirling flows, including vortex breakdown, shear-
layer instability, and vortico-acoustic interactions. The dominant acoustic mode in
the chamber was found to be sensitive to unsteady vorticity evolution, which in turn
strongly depends on the swirl number. Low-frequency acoustic oscillations may arise
from large-scale coherent motions in the central toroidal recirculation zone at high
swirl numbers. In contrast, the shear-layer instability downstream of the backward-
facing step results in high-frequency acoustic waves at low swirl numbers.

1. Introduction
Swirling flows are common in nature, as in tornadoes and whirlpools, and are uti-

lized in a wide range of engineering applications. For example, they are used as an
effective means of stabilizing flames and enhancing fuel/air mixing in combustion
devices for propulsion and power-generation systems. Of practical interest in swirling
flows is vortex breakdown, a phenomenon that manifests itself as an abrupt change
in the core of a slender vortex, and usually develops downstream into a recirculating
bubble or a spiral pattern. Because of the widespread occurrence of vortex breakdown,
considerable effort has been devoted to achieving a better understanding of this
phenomenon since its discovery by Peckham & Atkinson (1957) in their investigation
of the flows over ‘Gothic’ wings. Comprehensive reviews on this subject have been
written by Sarpkaya (1971a, b), Faler & Leibovich (1977a, b), Leibovich (1978, 1984),
Shtern & Hussain (1999), and Lucca-Negro & O’Doherty (2001).

Sarpkaya (1971a) classified three types of breakdown in laminar swirling pipe
flows: bubble, spiral, and double helix. The bubble mode usually predominates at
high swirl numbers, while the spiral mode occurs at low swirl numbers. The double
helix mode is formed when the vortex core expands and spirals, and is observed only
in a diverging tube (Sarpkaya 1971b). These types of vortex breakdown are among
the seven distinct modes of vortex core disruption revealed by Leibovich (1978) using

† Present Address: University of Science and Technology of China, Hefei, Anhui 230027, China.
‡ Present Address: Agency for Defense Development, Taejeon 305-600, South Korea.
¶ Present Address: General Electric Aircraft Engines, Cincinnati, OH 45215, USA.

§ Author to whom correspondence should be addressed: vigor@psu.edu



172 X. Lu, S. Wang, H.-G. Sung, S.-Y. Hsieh and V. Yang

water flow visualization over a wide range of Reynolds and swirl numbers. At higher
Reynolds numbers, the only characteristic geometric forms are the bubble and spiral
modes (Leibovich 1984). Many investigations of vortex breakdown have focused
on laminar flows with low Reynolds numbers (Grabowski & Berger 1976; Spall &
Gatski 1991; Spall 1996). In practical applications such as swirl combustors, however,
vortex breakdown occurs within turbulent flows. Although studies on laminar flows
provide useful technical references, extension of these results to the turbulent regime
is of questionable value. Sarpkaya (1995) and Sarpkaya & Novak (1998) presented
experimental results on vortex breakdown in non-cavitating high-Reynolds-number
turbulent swirling flows, and concluded that the resulting ‘conical’ breakdown is
fundamentally distinct from the various forms of laminar vortex breakdown. The
conical form of breakdown actually results from rapid precessing, in which the vortex
core deviates slightly from the tube centreline. In spite of extensive studies conducted
in the past few decades, a universally accepted explanation for the occurrence of
vortex breakdown remains to be established (Shtern & Hussain 1999; Lucca-Negro &
O’Doherty 2001). The presence of turbulence at high Reynolds numbers further
complicates the problem. Understanding and characterizing turbulent swirling flows
is still one of the fundamental challenges in fluid mechanics.

A large number of numerical studies have been performed on swirling flows. Lucca-
Negro & O’Doherty (2001) conducted a systematic review of numerical simulations
based on the Reynolds-averaged Navier–Stokes (RANS) equations. The RANS
simulation may be appropriate for time-mean turbulent flow properties, but it may
not describe unsteady flow evolution with high fidelity. Recent advances in large-
eddy simulations (LES) have provided a powerful tool for studying the dynamics
of turbulent swirling flows. Pierce & Moin (1998) examined a confined coaxial jet
with swirl and heat release. A low-Mach-number variable-density formulation was
implemented to account for the effects of heat release, along with an assumed PDF
approach for modeling the subgrid-scale mixture fraction in the limit of infinitely fast
chemistry. Kim, Menon & Mongia (1999) investigated turbulent fuel/air mixing in a
gas turbine combustor using a conventional LES technique. Grinstein et al. (2002)
explored unsteady non-reacting swirling flows in single- and triple-swirler nozzles by
means of a monotone integrated large-eddy simulation (MILES) technique. Huang
et al. (2003) and Huang & Yang (2004) studied the turbulent flame dynamics of a lean-
premixed swirl-stabilized combustor based on a level-set flame library approach. The
mutual couplings between acoustic motions, vortex shedding, and flame oscillations
were examined. Those studies showed that the LES technique is capable of capturing
salient flow structures and flame dynamics in turbulent environments. Only limited
information about detailed flow evolution and the mechanisms driving acoustic
motion in swirling flows appears in existing literature, however.

In this paper, a large-eddy simulation technique is utilized to study the turbulent
swirling flows injected into a dump chamber, simulating the experiment conducted by
Favaloro et al. (1989), as shown in figure 1. The purpose is to achieve an improved
understanding of some of the fundamental phenomena in turbulent swirling flows,
including turbulence properties, vortex breakdown, and unsteady flow development.
Special attention is given to the effects of swirl on the generation of acoustic waves
and their subsequent interactions with the shear-layer instability. In addition, a linear
acoustic analysis is conducted to help identify the mechanisms of driving acoustic
motions in the chamber. The paper is organized as follows. Sections 2 and 3 present
the theoretical formulation and numerical method, respectively. The results are then
described in § 4, and the conclusions in § 5.
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Figure 1. Schematic of a dump chamber with an inlet duct. Dimensions in mm.

2. Theoretical formulation
2.1. Filtered governing equations

Large-eddy simulations are implemented in the present work for turbulence closure, in
which large-scale motions are explicitly computed and eddies with scales smaller than
the grid or filter size are modelled to represent the effects of unresolved motions on
resolved scales. The formulation is based on the Favre-filtered conservation equations
of mass, momentum, and energy in three dimensions. The equations can be expressed
in the following conservative form:

∂ρ̄

∂t
+

∂ρ̄ũi

∂xi

= 0, (1)

∂ρ̄ũi

∂t
+

∂(ρ̄ũi ũj )

∂xj

= − ∂p̄

∂xi

+
∂
(
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∂xj

, (2)
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∂

∂xi

(
−q̃i + ũj τ̃ij − QSGS

i + σ SGS
i − H SGS

i

)
, (3)

where an overbar denotes the spatial filter and a tilde the Favre filter, i.e. f̃ = ρf /ρ̄.
The variables ρ, ui, p, and E represent the density, velocity component, pressure, and
specific total energy, respectively. The diffusive fluxes are given by

τ̃ij = 2µ̃S̃ij − 2
3
µ̃δij S̃kk, (4)

q̃i = −k̃
∂T̃

∂xi

. (5)

Here, µ and k are the molecular viscosity and thermal conductivity, respectively. The
strain-rate tensor Sij is defined as Sij = (∂uj/∂xi + ∂ui/∂xj )/2. The equation of state
for an ideal gas is used.

The subgrid closure terms are defined as

τ SGS
ij = ρ̄(euiuj − ūi ūj ), (6)

DSGS
ij = (τ̄ij − τ̃ij ), (7)

QSGS
i = (q̄i − q̃i), (8)

H SGS
i = ρ̄(fEui − Ẽũi) + (pui − p̄ũi), (9)

σ SGS
i = (ujτij − ũj τ̃ij ). (10)

These terms arise from unresolved scales and need to be modelled in terms of resolved
scales. Because the filter scale of LES falls in the inertial subrange of the turbulent
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kinetic energy spectrum, the modelling of subgrid terms is relatively universal in
comparison with that of the RANS simulation.

2.2. Subgrid-scale models

The introduction of the dynamic model (Germano et al. 1991) has spurred significant
progress in the subgrid-scale (SGS) modeling of non-equilibrium flows. Among the
various SGS turbulence models, such as the mixed model (Fureby 1996) and the
two-parameter mixed model (Salvetti & Banerjee 1995), the dynamic SGS model for
turbulence closure offers the best tradeoff between accuracy and cost (DesJardin &
Frankel 1998). In the present study, the Smagorinsky dynamic model for compressible
flows proposed by Moin et al. (1991) is employed. The anisotropic part of the SGS
stresses, (6), is treated using the Smagorinsky model (Smagorinsky 1963), while the
isotropic part, τ SGS

kk , is modeled with a formulation proposed by Yoshizawa (1986),

τ SGS
ij − 1

3
δij τ

SGS
kk = −2CR∆̄2ρ̄|S̃|

(
S̃ij − 1

3
δij S̃kk

)
= CRαij , (11)

τ SGS
kk = 2CI ρ̄∆̄2|S̃|2 = CIα, (12)

where αij = −2∆̄2ρ̄|S̃|(S̃ij − δij S̃kk/3), α = 2ρ̄∆̄2|S̃|2. CR and CI are model constants
and are determined dynamically during calculation. The model utilizes the information
about resolved scales at the grid-filter level and at a coarser test-filter level with ∆̂ > ∆̄.
The least-squares method proposed by Lilly (1992) is then implemented to obtain the
two model parameters,

CR =
〈LijMij 〉
〈MklMkl〉

− 1

3

〈LmmMnn〉
〈MklMkl〉

, (13)

CI =
〈Lkk〉

〈β − α̂〉 . (14)

The brackets 〈·〉 denotes local smoothing in the test filter (Fureby 1996; DesJardin &
Frankel 1998), which is used to circumvent the numerical instability originating from
the dynamic calculation of the coefficients of the eddy-viscosity model (Moin et al.
1991; Germano et al. 1991). A local volume-weighted average with around 27 points
is employed. Additional clipping based on the entropy-limit condition of the form
µ +µT � 0 is implemented to limit the extent of backscattering in the calculation,
where µT is the SGS turbulent viscosity. In the present study, the fraction of grid
points requiring additional clipping is less than 1%. The explicit forms of Lij , Mij

and β are

Lij = b̄ρũiũj − ˆ̄ρ ˜̃ui
˜̃uj = 1ρuiρuj/ρ̄ − bρui

bρuj/ ˆ̄ρ, (15)

Mij = βij − α̂ij ; βij = −2∆̂2 ˆ̄ρ| ˜̃S|( ˜̃Sij − δij
˜̃Skk/3); β = 2 ˆ̄ρ∆̂2| ˜̃S|2, (16)

where the hat represents the test-filtered variable. A Favre-filtered variable at the test-

filter level is defined as ˜̃f = cρf / ˆ̄ρ.
The subgrid energy flux term, H SGS

i , is modelled as
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2
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∂xi

)
(17)

where H̃ represents the filtered specific total enthalpy. The turbulent Prandtl number,
Prt , takes a conventional value of 0.7 (Zang, Dahlburg & Dahlburg 1992). The SGS
kinetic energy term, kSGS,

kSGS = 1
2
(euiui − ũi ũi) (18)
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is formulated using the model proposed by Yoshizawa (1986). The SGS viscous diffu-
sion term, σ SGS

i , is neglected in the present study due to its small contribution in
the energy equation (Martin et al. 2000). The nonlinearity of the viscous stress term,
DSGS

ij , and the heat flux term, QSGS
i , is invariably neglected (Piomelli 1999).

2.3. Boundary conditions

The flow under consideration is subsonic and confined in a volume reaching from the
downstream end of the swirl vanes to the chamber exit, as shown in figure 1. The no-
slip, adiabatic conditions are applied to all the solid walls. The boundary conditions
at the outlet and inlet are specified according to the method of characteristics.

At the outlet, extrapolation of primitive variables from the interior region may cause
undesirable reflection of waves propagating into the computational domain. The non-
reflecting boundary conditions based on the characteristic equations proposed by
Poinsot & Lele (1992) are applied. A reference pressure, pr , is utilized to preserve
the average pressure in the computational domain through small-amplitude acoustic
waves originating from a virtual boundary. If the chamber exit pressure differs
from the reference quantity, information will propagate to the boundary to adjust the
pressure to a prespecified value. The reference pressure can be obtained using a simpli-
fied radial momentum equation

∂pr

∂r
=

ρU 2
θ

r
(19)

at the exit, where Uθ is the long-time-averaged azimuthal velocity. Because the
azimuthal velocity at the exit is small, a uniform distribution of the reference pressure
eventually leads to the same result as that from (19). Thus, a constant reference
pressure is employed in the present study for convenience. It should be noted that the
present treatment of boundary conditions is not perfectly non-reflecting due to the
introduction of the reference pressure. Low-frequency acoustic waves may be partially
reflected into the flow field (Polifke & Wall 2002). The corresponding cutoff frequency
depends on the chamber geometry and flow condition, as well as the relaxation
coefficient, σ , in the characteristic equation determining the temporal variation of the
incoming acoustic-wave amplitude. An appropriate value of σ should be selected to
keep the cutoff frequency much lower than the frequency range of concern.

To specify the instantaneous inlet flow conditions, the flow properties are decom-
posed into the mean, acoustic, and turbulent components, e.g. p = p̄ + p′

a +p′
t (Huang

et al. 2003). The acoustic part can be written as a synthesis of the Fourier components

p′
a(t) = Re

[
L∑
1

p̂a,n(ωn) eiωnt

]
, (20)

where ω denotes frequency. For the mean flow properties, the total temperature and
velocity are specified, and the pressure is determined based on a one-dimensional
approximation to the momentum equation in the direction normal to the inlet
boundary. Owing to the lack of experimental information at the inlet, the flow velocity
profile at the inlet is tuned to match the experimental data at the first measurement
position, x/H = 0.38. The axial velocity profile bears a close resemblance to that
described by the 1/7-power law. The radial velocity is nearly zero, and the azimuthal
component is determined by the swirler vane angle.

Because the vortico-acoustic interaction is one of the major foci of the current
study, the inlet acoustic boundary must be treated carefully. Due to the presence of the
swirler vanes, which are difficult to simulate numerically, the non-reflecting boundary
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condition of Poinsot & Lele (1992) cannot be simply implemented at the inlet. It is
well established that the acoustic waves generated in the dump chamber propagate
both upstream and downstream. On reaching the swirler vanes, the upstream-running
wave will be partially reflected back and partially transmitted upstream through the
vanes. The acoustic reflection and transmission properties can only be expressed in
terms of the acoustic admittance function, Ad , defined as

Âd(ωn) =
ûa,n(ωn)/c̄

p̂a,n(ωn)/γ p̄
. (21)

Here γ and c̄ denote the ratio of specific heats and the mean speed of sound, respec-
tively. The admittance function can be obtained either from impedance-tube experi-
ments for the swirler, or by matching the measured acoustic field for a given physical
configuration (Broda et al. 1998). The corresponding acoustic velocity takes the form

u′
a(t) = (c̄/γ p̄) Re

[
L∑
1

Âd(ωn)p̂a,n(ωn) eiωnt

]
(22)

In the present study, a zero acoustic admittance is utilized to represent an acoustically
closed boundary. This condition simulates a physical configuration in which perforated
plates (i.e. a flow straightener) are placed in front of the swirler vanes.

Turbulence is provided by superimposing broadband noise with a Gaussian dis-
tribution on the mean velocity profile. The effect of the inlet turbulence on the flow
development seems to be modest. The turbulence intensity was varied by 50% from
its nominal value of 10% of the mean flow quantity at the inlet, but very little impact
was observed on the result. This may be attributed to the strong shear layers and
high-intensity turbulence generated in the flow field, which overshadow the influence
of the incoming turbulence.

3. Numerical method
The theoretical formulation is numerically solved by means of a density-based finite-

volume approach, which allows the treatment of arbitrary geometry and avoids the
problems with metric singularities usually associated with finite-difference methods.
Spatial discretization is achieved using a fourth-order central differencing scheme
developed by Rai & Chakravarthy (1993). A sixth-order scalar artificial dissipation
term is employed to prevent numerical oscillations. Temporal integration is performed
using an explicit four-step Runge–Kutta scheme (Jameson 1983).

Apte & Yang (2001) conducted a comprehensive analysis of numerical errors
associated with several common algorithms within the context of LES, extending the
approach of Fabignon, Beddini & Lee (1997). The errors arising from the convection,
artificial viscosity, and SGS terms were assessed by introducing a reference turbulent
kinetic energy spectrum obtained from isotropic turbulence theory. Following the
same methodology and substituting the artificial viscosity term used in the present
study, ε6 = 0.001, it was found that the numerical dissipation is smaller than the SGS
term as shown in figure 2. This figure shows the normalized spectrum of the turbulent
kinetic energy, E(k, τ ), after one eddy turnover time, τ , for isotropic turbulence with
Mach number, M = 0.6, Reynolds number, Re =4.51 × 105, CFL number, CFL = 0.6,
and grid parameter, ξ = �x/η = 50. Here k, �x and η, denote the wavenumber, grid
size, and Kolmogorov scale, respectively. Figure 2 indicates that the present numerical
method offers a reasonable predictive capability for turbulent flows because of its
relatively low dissipation and high accuracy.
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Figure 2. Comparison of effects of artificial dissipation and SGS terms on the turbulent
kinetic energy spectrum based on the four-step Runge–Kutta scheme along with fourth-order
central differencing (RK4-4C) scheme. Re =4.51 × 105, M = 0.6, ξ = 50, CFL= 0.6.

The code is further equipped with a multi-block domain decomposition feature
to facilitate parallel processing in a distributed computing environment using the
Message Passing Interface (MPI) library. The parallelization methodology is robust
and the speedup is almost linear. A detailed description of the numerical architecture
is given by Wang (2002).

4. Results and discussion
The detailed flow structures and acoustic-wave evolution in the swirl chamber shown

in figure 1 were studied in depth. The work simulates the experiment conducted by
Favaloro et al. (1989). A swirler with 12 circular inlet guide vanes is located 50.8 mm
upstream of the dump plane. The leading edge of each blade is designed to be tan-
gential to the incoming flow and perpendicular to the centreline of the chamber. The
chamber consists of a Plexiglas pipe measuring 152.4 mm in diameter and 1850 mm
in length. The inlet temperature and pressure are 300 K and 1 atm, respectively. The
Reynolds number is 1.25 × 105 based on the inlet diameter. The centreline velocity in
the inlet pipe, U = 19.2 m s−1, and the height of the backward-facing step, H =
25.4 mm, are used as the reference quantities to normalize the flow properties. The
detailed configuration of the experimental rig, which can be found in Favaloro et al.
(1989), is omitted for the sake of clarity. Two swirl numbers (S = 0.3 and 0.5), defined
as the ratio of the axial flux of the angular momentum to that of the axial momentum
divided by the inlet radius, are considered. More emphasis is placed on the S = 0.5
case because of the occurrence of vortex breakdown. The situation with S =0.3, in
which vortex breakdown is not observed, is treated for comparison.

The computational domain consists of the inlet duct immediately downstream
of the swirler and includes the entire dump chamber. A three-dimensional grid is
generated by rotating a two-dimensional grid with respect to the centreline. The
total grid numbers are 161 × 75 × 81 in the axial, radial, and azimuthal directions,
respectively. The grid is uniform in the azimuthal direction, but stretched in the axial
and radial directions in order to resolve rapid flow variations in the shear-layer and
near-wall regions. The mean cell size in the upstream region of the chamber is around
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Figure 3. Streamlines based on mean axial and radial velocity components;
swirl numbers S = 0.3 and 0.5.

2mm, which falls roughly in the inertial subrange of the turbulent kinetic energy
spectrum based on the Reynolds number. The spatial resolution near the wall spans
from y+ = 2 to 6, which is within the viscous sub-layer. The computational domain is
divided into 28 subdomains for parallel processing.

The CFL number is 0.9 and the physical time step is around 5 × 10−5 ms. For each
swirl number, the calculation is performed over an extended time period to ensure
the establishment of a stationary flow field. Data are then collected for about 3 flow-
through times (i.e. 66 ms) to obtain statistically meaningful turbulence properties.

4.1. Flow evolution and vortex breakdown

The streamlines of the time-mean flow field based on the axial and radial velocities
are presented in figure 3. Both the primary and secondary separation bubbles are
observed in the downstream region of the backward-facing step. The length of the
corner recirculation zone (CRZ) is shorter for the high swirl-number case (S =0.5)
due to the stronger expansion of the main flow resulting from the higher centrifugal
force. A small separation bubble exists behind the centrebody and the flow rapidly
merges along the centreline. The result is consistent with the experimental observation
by Favaloro et al. (1989).

A simplified momentum equation indicates that a radial pressure gradient is
produced by the centrifugal force arising from the swirling effect:

∂p

∂r
=

ρU 2
θ

r
. (23)

The pressure tends to be minimized in regions where strong swirling motions occur,
i.e. in the wake of the centrebody. As the flow expands and the azimuthal velocity
decays with the axial distance, the pressure is recovered in the downstream region.
Consequently, a positive pressure gradient is generated along the axial axis, which
may lead to the formation of a recirculating flow in high-swirl flows, a phenomenon
commonly termed ‘vortex breakdown’.

Vortex breakdown occurs only at high swirl numbers, as shown in figure 3. A
toroidal recirculation zone (CTRZ) is formed in the central region for S =0.5, reaching
from x/H ≈ 0.36 to 7.8. This kind of vortex breakdown is different from the patterns
observed in previous experiments, and cannot be classified as of the bubble, spiral, or
conical type. Figure 4 shows the mean azimuthal velocity field, one of the key factors
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Figure 4. Contours of mean azimuthal velocity, swirl number S = 0.5.
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Figure 5. Time evolution of streamlines based on mean axial and radial velocity components
spatially averaged in the azimuthal direction (time increment of 0.6 ms), swirl number S = 0.5.

dictating the occurrence of vortex breakdown, for S =0.5. Because the centrebody is
quite small, the flow merges quickly toward the centreline after passing over it. The
conservation of angular momentum gives rise to a high azimuthal velocity during
this merging process. The maximum azimuthal velocity occurs in the region between
x/H ≈ −1.21 and −0.43, where the pressure reaches its local minimum. The azimuthal
velocity decays in the downstream region because of flow expansion and viscous
dissipation. An adverse pressure gradient develops along the axial direction, which
subsequently results in the presence of a central recirculating flow starting from
x/H ≈ 0.36.

The temporal evolution of the flow field is examined to explore the phenomenon of
vortex breakdown. Figure 5 shows the instantaneous streamlines on an (x, r)-plane,
spatially averaged in the azimuthal direction, at various times during a typical flow
evolution period. The time increment between the snapshots is 0.6 ms, and t =0
corresponds to the instant at which data collection begins after the flow reaches
its stationary state. At t = 37.7 ms, a new vortical bubble is generated in front of
a braid of vortical bubbles. These bubbles then coalesce at t = 39.0 ms. The bubble
located in the downstream side of the vortical braid is separated into two structures
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at t = 39.6 ms; one stays at basically the same location, and the other is convected
downstream and finally disappears due to turbulent diffusion and viscous dissipation
at t = 41.4 ms. During this period, the coalesced vortical bubble separates, and another
new bubble appears in the upstream region at t =42.0 ms. These snapshots exhibit a
very complicated vortex evolution in the central region.

4.2. Mean flow-field and turbulence characteristics

To validate the present analysis and to characterize turbulent swirling flows, this
section compares numerical and experimental data (Favaloro et al. 1989) in terms of
mean velocity, turbulence intensities, and turbulent kinetic energy.

4.2.1. Mean velocity profiles

Figure 6 shows the radial distributions of the time-mean axial, radial, and azimuthal
velocity components at the three measurement locations x/H = 0.38, 1.0 and 4.0.
The swirl number is 0.5. Reasonable agreement is obtained with the experimental
measurements of Favaloro et al. (1989).

The negative axial velocity near the centreline indicates the existence of a central
recirculation zone. Flow reversal is also observed in the corner region (r/H > 2). The
axial velocity profile at x/H = 0.38 is similar to that at the inlet and smoothly develops
to a parabolic shape in the downstream region (x/H = 4.0) due to flow expansion
and turbulent diffusion. The weak radial momentum in the inlet and the geometrical
confinement render the radial velocity considerably smaller than the other two com-
ponents. The flow gradually spreads in the radial direction because of the centrifugal
effect, leading to a positive radial velocity in the main flow passage. The rapid
variation in the corner region results from the sudden expansion of the geometry and
the existence of a recirculating flow.

Two points should be noted here concerning the azimuthal velocity plots shown
in figure 6. First, the linear profile of the azimuthal velocity in the central toroidal
recirculation zone bears a strong resemblance to that of a solid-body rotation, and
is insensitive to the occurrence of flow reversal. Similar behaviours were previously
observed in many experimental and numerical studies on swirling flows, such as
Panda & McLaughlin (1994), Billant, Chomaz & Huerre (1998), Pierce & Moin
(1998), Paschereit, Gutmark & Weisenstein (1999), and Wang (2002). One factor
contributing to this phenomenon is the strong vorticity in the slender core region,
whose time-averaged distribution to first approximation can be treated as uniform
because of the high-intensity tangential motion and turbulent mixing in the core
region. Therefore, a first-order Taylor expansion of the azimuthal velocity profile, i.e.
linear distribution, represents a good approximation in the vortex core region. Another
factor is that as in the Rankine vortex core the internal attenuation of flow motion
with a linearly distributed azimuthal velocity is relatively weak, so that vorticity
strength is preserved. The second point is that the present analysis underpredicts the
azimuthal velocity near the wall. This deficiency may be attributed to the lack of
reliable data specifying the inlet flow conditions, which may exert significant influence
on the results (Grinstein et al. 2003).

All the velocity profiles indicate a decrease in the maximum velocity magnitude and
an increase in the radial location at which the maximum velocity occurs in the down-
stream region. In addition to turbulent diffusion and viscous dissipation, the swirling
effect and the rapid flow expansion arising from the chamber geometrical variation
across the dump plane contribute substantially to the observed phenomena. As a
consequence, the axial and azimuthal velocities decrease to satisfy the conservation
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Figure 6. Radial distributions of mean velocity components at different axial locations (line:
computation; symbol: experiment, Favaloro et al. 1989), swirl number S = 0.5.
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Figure 7. Radial distributions of turbulence intensities at different axial locations (line:
computation; symbol: experiment, Favaloro et al. 1989), swirl number S = 0.5.

of mass and angular momentum. The entire process promotes the pressure recovery in
the downstream region, and leads to the occurrence of vortex breakdown, especially
for high-swirl-number flows.

4.2.2. Turbulence intensities and turbulent kinetic energy

Figure 7 shows the radial distributions of the normalized turbulence intensity com-
ponents at three measurement locations, x/H = 2.0, 4.0, and 6.0. The distributions of
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Figure 8. Radial distributions of turbulent kinetic energy at different axial locations (line:
computation; symbol: experiment, Favaloro et al. 1989), swirl number S = 0.5.

the turbulent kinetic energy, k, are given in figure 8. Two peaks, resulting from the
strong shear layers originating from the centrebody and the backward-facing step, are
observed on the profiles of the turbulence intensities at x/H = 2.0. The development
in the downstream region is similar to that of the mean velocity profiles, which expand
radially and become more uniform as the flow evolves. The smooth distributions of
the three turbulence intensity components and their approximately equal magnitudes
in the downstream region suggest that turbulence tends to become isotropic as a result
of the diffusion and dissipation effects. This redistribution process usually proceeds
much faster than that in non-swirling flows because of the swirling effect. The high
turbulence intensity in the central region (see figure 8) resulting from the unsteadiness
of the vortex core produces rapid fluid mixing within the recirculation region.

4.3. Instantaneous flow field

The present flow field involves an array of intricate phenomena, including the
Kelvin–Helmholtz instability, vortex breakdown, and centrifugal instability (Panda &
McLaughlin 1994; Martin & Meiburg 1996). Figure 9 shows two instantaneous axial
velocity fields for swirl numbers of 0.3 and 0.5. Shear layers are produced at the trailing
edges of the centrebody and the backward-facing step due to the Kelvin–Helmholtz
instabilities in both the axial and azimuthal directions. The flow evolution in the
azimuthal direction is presented on the two cross-sections at x/H = 0.36 and 1.54.
The shear layer originating from the backward-facing step remains almost symmetric
immediately downstream of the dump plane (x/H = 0.36). It then rolls up and forms
large asymmetric structures at x/H = 1.54, because of the strong shear force in the
azimuthal direction.

The large velocity difference in the azimuthal direction at a high swirl number
(S = 0.5) significantly increases the strength of the shear layer, especially around the
boundary of the central toroidal recirculation zone. As a consequence of flow reversal,
the effective flow passage area in the chamber is reduced, which hence increases the
axial velocity difference and further enhances the shear layer in the axial direction.
The large-scale structures are eventually dissipated by turbulent diffusion and viscous
damping when the flow convects downstream.
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Figure 9. Instantaneous axial velocity fields on an (x, r)-plane and two cross-sections, x/H =
0.36 and 1.54. Contour levels between −12 and 33 m s−1 with increment of 3 m s−1. Solid lines:
positive values; dashed lines: negative values. (a) Swirl number S = 0.5 and (b) swirl number
S =0.3.

(a) (b)

Figure 10. Snapshots of iso-surfaces of vorticity magnitude at 1.5 × U/H . Dark lines
represent streamlines. (a) Swirl number S = 0.5 and (b) swirl number S =0.3.

Figure 10 shows snapshots of the iso-surfaces of vorticity magnitude at |Ω | =
1.5U/H (i.e. 1133 s−1) for S = 0.3 and 0.5. Helical vortex tubes develop from the inlet
and travel in a direction opposite to the main swirling flow, although the whole struc-
ture follows the motion of the main flow. The swirl number plays an important role
in dictating the flow evolution and its underlying mechanisms. The helical structure
at S = 0.5 arises from the vortex breakdown and expands in the downstream region.
The situation is different, however, for a low swirl number, in which the helical
structure of the vortex tube shrinks in the downstream region. This phenomenon may
be attributed to the precession of the vortex core around the centreline. The resultant
intermittent occurrence of vortex breakdown causes the helical structure issued from
the centrebody to vanish rapidly as the flow evolves downstream. A high swirl number
apparently helps maintain flow coherence and leads to strong flow reversal.
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Figure 11. Instantaneous fluctuating pressure field on an (x, r)-plane and cross-sections at
x/H =1.94, 5.87, 9.81, and 13.75. Contour levels between −600 and 600 Pa with increment of
50 Pa. Solid lines: positive values; dashed lines: negative values. Swirl number S = 0.5.

4.4. Acoustic field

The strong vortical motion in the chamber often produces acoustic waves propagating
throughout the entire field. The shear layers, on the other hand, are susceptible to
acoustic excitations if such disturbances occur at appropriate locations and frequen-
cies. A feedback loop can thus be established, depending on the mutual coupling
between the vortical and acoustic fields. To explore vortico-acoustic interaction, the
fluctuating pressure field is obtained by subtracting the long-time-averaged pressure
from its instantaneous quantity.

Figure 11 shows snapshots of the fluctuating pressure field on several cross-sections
for the high-swirl-number case with S = 0.5. Considerable pressure fluctuations take
place immediately downstream of the centrebody, where strong vorticity is present.
The entire field exhibits a wide range of length scales, with broadband turbulent mo-
tion in the upstream region which develops into large-scale coherent acoustic motion
in the downstream region. To help identify the wave characteristics, especially those
associated with longitudinal waves, the complicated three-dimensional field shown in
figure 11 is spatially averaged in the azimuthal direction. Figure 12 presents the time
sequence of the resultant quasi-two-dimensional fields. The data are further reduced by
spatial averaging over each cross-section along the axial axis. The averaged quasi-one-
dimensional fields shown in figure 13 indicate that a negative pressure peak, followed
by a positive one, forms periodically and travels downstream at the speed of sound.
Two negative pressure peaks are observed in the chamber at t = 35.9 ms. Because the
evolution patterns of these two fluctuations are almost identical, we conclude that
the frequency of the pressure wave is approximately 655 Hz, based on the distance
between the two pressure peaks at t = 35.9 ms and the wave propagation speed.

As mentioned in § 2.3, the downstream boundary conditions are not perfectly non-
reflecting. Low-frequency acoustic waves may be partially reflected into the flow field
due to the introduction of the reference pressure. The cutoff frequency, below which
flow disturbances may propagate into the computational domain, can be estimated
following the method described by Polifke & Wall (2002). In the present study, the
relaxation coefficient σ in the characteristic equation is taken to be 0.25 and the
chamber length is 0.6 m. The resultant cutoff frequency of 100 Hz is much smaller
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x/H

Figure 12. Time evolution of fluctuating pressure field spatially averaged in the azimuthal
direction. Contour levels between −600 and 600Pa with increment of 50 Pa (time increment
of 0.3 ms). Solid lines: positive values; dashed lines: negative values. Swirl number S = 0.5.

than the oscillation frequencies of concern (i.e. greater than 600 Hz). The treatment
of the downstream boundary conditions appears to be appropriate.

4.4.1. Vortico-acoustic interactions

The frequency spectra of pressure fluctuations are obtained to quantitatively char-
acterize the acoustic flow evolution. Figure 14 shows the result at y/H = 0.06 and
z/H =0.07 and three different axial positions, x/H = 0.56, 2.19 and 7.20, which are
located in the upstream, centre, and downstream regions of the central toroidal recircu-
lation zone, respectively. The most dominant mode is 1380 Hz, and other characteristic
frequencies include 660, 2040, and 3420 Hz. The corresponding wave amplitudes
decrease in the downstream region due to dissipation and dispersion effects. These
frequencies represent various acoustic modes in the chamber and are determined by
the mean flow properties and chamber geometry.

A simple acoustic modal analysis (Morse & Ingard 1986), without accounting for
the mean flow effects, indicates that the eigen-frequencies of the first tangential (1T)
modes in the dump chamber and the inlet duct are fc = 1350 Hz and fi = 2000 Hz,
respectively. They are almost identical to the observed harmonics shown in figure 14.
The analysis assumes the speed of sound to be 340 m s−1 for air at ambient condi-
tions, and the radii of the inlet duct and the chamber are taken to be 50.8 and 76.2 mm,
respectively. The two transverse acoustic modes interact with each other through non-
linear gasdynamics to generate a subharmonic and a superharmonic with frequencies
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Figure 14. Frequency spectra of pressure fluctuations at different axial locations near the
centreline: (a) x/H = 0.38, (b) x/H = 2.19 and (c) x/H =7.20, and y/H = 0.06, z/H = 0.07.
Swirl number S = 0.5.

of fS1 = fi − fc = 650 Hz and fS2 = fi + fc =3350 Hz, respectively. The former propa-
gates in the form of a traveling longitudinal wave as shown in figures 11–13.

The acoustic modal analysis was corroborated using a finite-element software
package, ANSYS (ANSYS 2003). The code solves the Helmholtz equation for linear
acoustic waves in the entire computational domain without the influence of the
mean flow. The results indicate a dominant transverse acoustic mode with an eigen-
frequency of 1300 Hz. The corresponding mode shape is shown in figure 15. The
first tangential mode prevails in the dump chamber and it induces a degenerated
tangential wave in the inlet duct.

To identify the mechanisms of acoustic-wave generation and its relationship with
the shear-layer evolution, the vortical flow dynamics need to be further explored. It
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is well established that the shear layer originating from the centrebody is sensitive
to external forcing (Wu et al. 1998), such as acoustic motion in the chamber. Thus,
we may employ shear-layer instability theories to help explain the mutual coupling
between the vortical and acoustic motions. Following common practice (Ho & Huerre
1984), the Strouhal number, St, is defined as

St =
fSδ

Ū
, with Ū = 1

2
(U1 + U2) (24)

where δ is the initial momentum thickness of the shear layer, and U1 and U2 the
free-stream velocities on the two sides of the shear layer. The mean averaged axial
velocity Ū is approximately 10 m s−1 near the trailing edge of the centrebody in the
present study. The most unstable mode of an unforced planar shear layer occurs at
St ≈ 0.044–0.048 for turbulent flows (Ho & Huerre 1984). The momentum thickness δ

is roughly one fourth of the vorticity thickness, which can be calculated from the axial
velocity profile in the radial direction (Panda & McLaughlin 1994). Based on (24), the
frequency of the most unstable mode of shear-layer instability, f 0

S , is approximately
of the order of 103 Hz near the downstream region of the centrebody.

For the case with a swirl number of 0.5, the most prevalent acoustic mode shown
in figure 14 has a frequency of 1380 Hz, which is consistent with the frequency of
the most unstable shear-instability mode. Consequently, the shear layer originating
from the centrebody can be easily locked to the first-tangential mode of the acoustic
oscillation in the chamber. At this response frequency, f R

S , the shear layer rolls
up into discrete vortices and reinforces the acoustic oscillation in the chamber. A
feedback loop between the acoustic fluctuation and shear-layer instability is thus
established and leads to a large excursion of flow motions. When the discrete vortices
are convected downstream, they pair with the adjacent ones to form larger structures
with a characteristic frequency of f R

S /2 = 690 Hz. This subharmonic frequency is also



Simulations of swirling flow injected into a dump chamber 189

Frequency (Hz)

p′
 (P

a)

40002000 60000
Frequency (Hz)

40002000 60000
Frequency (Hz)

40002000 60000

20

40

60 (a) (b) (c)

Figure 16. Frequency spectra of pressure fluctuations at different axial locations near the
centreline: (a) x/H = 0.38, (b) x/H = 2.19 and (c) x/H = 7.20, at y/H = 0.06 and z/H = 0.07.
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Figure 17. Frequency spectra of velocity and pressure fluctuations at x/H = 0.36,
y/H = 1.97 and z/H = 0.07. Swirl number S = 0.3.

close to the frequency of the longitudinal acoustic mode in the chamber, 655 Hz, as
determined from the reduced one-dimensional pressure profiles shown in figure 13.

4.4.2. Effects of swirl number

The effects of swirl number on the acoustic field were examined. Figure 16 shows
the frequency spectra of the pressure fluctuations at three different locations for a low
swirl number of S = 0.3. Compared with the case of S = 0.5 (figure 14), the dominant
frequency over the entire field is around 3900 Hz, and the well-defined harmonics in
the low-frequency range disappear. The corresponding acoustic field is the mixed first
tangential (1T) and first radial (1R) mode in the chamber.

An extensive spectral analysis of the velocity and pressure fluctuations in the cham-
ber was conducted to identify the driving mechanism of flow oscillations associated
with the vortico-acoustic interaction. Figure 17 shows the result in the region im-
mediately downstream of the trailing edge of the backward-facing step (x/H = 0.36,
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y/H =1.97, and z/H = 0.07). The radial and azimuthal velocity fluctuations are closely
coupled with the local pressure oscillation, and exhibit a dominant harmonic at
3900 Hz. The acoustic field interacts effectively with the shear-layer instability at this
key position in the flow field, as will be elaborated later. As previously mentioned,
the two shear layers originating from the trailing edges of the centrebody and the
backward-facing step may exert significant influence on the oscillatory flow charac-
teristics. Their specific effects depend on the swirl number and chamber geometry.
At the high swirl number of S = 0.5, the large vortical structure associated with the
central recirculating flow overshadows the shear layer originating from the corner
region, and dominates the flow development in the chamber. The resultant acoustic
wave thus has a characteristic frequency of 1380 Hz, which matches the frequency of
the centrebody shear-layer instability. At a low swirl number of S = 0.3, no vortex
breakdown occurs, and the importance of the flow field on the downstream side of the
centrebody in exciting acoustic oscillations diminishes. In contrast, the shear layer in
the corner region plays a crucial role in dictating the acoustic flow evolution, whose
characteristic frequency of 3900 Hz matches that of the mixed 1T/1R acoustic mode
in the chamber.

The acoustic field can be quantitatively analysed using the proper orthogonal de-
composition (POD) method to extract energetic coherent structures from the simula-
tion data. For a given pressure field, p(x, t), the POD analysis can determine a set of
orthogonal functions ϕj (x), j = 1, 2, . . . , so that the projection of p onto the first n

functions

p̂(x, t) = p̄(x) +

n∑
j=1

aj (t)ϕj (x) (25)

has the smallest error, defined as E(‖p − p̂|2). Here, aj (t) represents the temporal
variation of the j th mode. A more complete discussion of this subject can be found
in Berkooz, Holmes & Lumley (1993).

Because of the limitations of data storage, the POD analysis was only conducted
for the fields on an (x, r)-plane (θ =0◦) and an (r, θ)-cross-section at x/H = 1.15. A
total of 220 snapshots spanning a time period of 13 ms were used. Figure 18 shows
the three most energetic POD modes on the (x, r)-plane. The first mode reveals a
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structure corresponding to the mixed second longitudinal (2L) and first radial (1R)
mode of the acoustic wave in the dump chamber, and the first longitudinal (1L) mode
in the inlet duct. The dominant frequency of the temporal variation of this POD mode,
determined from a separate spectral analysis, is 3900 Hz. The energy carried by this
mode contains more than 20% of the total energy of the acoustic pressure field. The
POD mode shape indicates the existence of an acoustic pressure node (i.e. p′ = 0) near
the trailing edge of the backward-facing step, where the acoustic velocity reaches its
maximum. The same location also experiences a strong shear-layer oscillation, arising
from the Kelvin–Helmholtz instability. Thus, the vortex shedding from the edge of
the backward-facing step provides a stimulus to drive acoustic motion, especially in
the radial direction. This observation is also corroborated by the frequency spectra
of acoustic motion given in figure 17.

To obtain a complete picture of the acoustic wave structure, the POD analysis
was further applied to examine the situation on a transverse plane. Figure 19 shows
the fluctuating pressure field at x/H = 1.15. The first mode reveals an axisymmetric
structure, which may result from the longitudinal flow motions and noises. Its
frequency content shows a broadband distribution. The second and third modes
indicate the mixed first tangential (1T) and first radial (1R) mode of the acoustic
wave, consistent with the previously observed 1R mode on the (x, r)-plane. These
two modes carry about 22% of the total energy of the acoustic pressure field, and
are spatially shifted from each other by 90◦. Furthermore, they are counter-rotating
with respect to the main swirling flow. This result confirms the earlier conclusion
with respect to figure 10 that the counter-rotating helical mode is more unstable
than the co-rotating mode for a swirl jet (Lessen, Singh & Paillet 1974; Martin &
Meiburg 1996). The fourth POD mode corresponds to a radial mode oscillation.
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Results from the POD analysis of the acoustic fields on both the (x, r)- and the
transverse planes lead to the conclusion that the mixed 1L/1T mode prevails in
the inlet duct and the mixed 2L/1T/1R mode prevails in the dump chamber. The
former has a characteristic frequency of 3879 Hz, and the latter of 3827 Hz. Both
frequencies are very close to the dominant frequency of the flow field, f = 3900 Hz,
as revealed in figures 16 and 17. It should be noted that the acoustic motions in
the axial direction, although suggesting a 2L-mode structure as shown in figure 18,
are essentially travelling oscillations, because of the implementation of non-reflecting
boundary conditions at the chamber exit. Furthermore, owing to the large aspect ratio
of the chamber, the frequency of the mixed 1T/1R mode in the chamber, which has a
value of 3785 Hz, is only slightly less than that of the 2L/1T/1R mode. The acoustic
wave in the chamber is basically dominated by the mixed 1T/1R transverse mode
for the case with a low swirl number of S = 0.3. The acoustic field obtained from the
POD analysis was further compared with the acoustic modal analysis conducted with
the ANSYS as shown in figure 20. The mode shapes that are similar to the first POD
mode on the (x, r)-plane, and the second and third POD modes on the transverse
plane, are observed in the inlet duct and the dump chamber with an eigen-frequency
of 3982 Hz. Figure 20 reconstructs the global mode shape in three dimensions and
clearly shows that the acoustic mode in each part of the domain is identical to
our previous observation in POD analysis. The favourable comparison between the
ANSYS prediction and the LES results further corroborated the adequacy of the
approach adopted herein.

In general, the boundary conditions at the chamber outlet may significantly modify
the longitudinal acoustic motion inside the chamber. The effects of the outlet boundary
on the acoustic fields, however, are minor in the present study because the dominant
acoustic motions at both swirl numbers are transverse (such as tangential and radial)
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oscillations. The acoustic waves originating in the shear layers propagate to the down-
stream region and eventually exit from the chamber because of the implementation
of the non-reflecting boundary conditions at the exit.

5. Summary
Turbulent swirling flows injected into a dump chamber were numerically studied

by means of a large-eddy simulation technique. The work simulated the experiment
conducted by Favaloro et al. (1989). Good agreement was obtained between the
measurements and calculated results in terms of mean flow velocities and turbulence
properties. Various fundamental mechanisms dictating the flow evolution, including
vortex breakdown, Kelvin–Helmholtz instability, and helical instability, were examined
systematically for different swirl numbers. In particular, the mutual coupling between
the acoustic wave and vortical flow was explored in depth. The unsteady flow evolution
was further analysed using a proper-orthogonal-decomposition method and shear-
layer instability theories. The swirl number plays an important role in determining
vortical flow motions and ensuing acoustic oscillations. Vortex breakdown usually
occurs in strong swirling flows, and leads to the formation of a central toroidal
recirculation zone in the downstream region of the centrebody. The accompanying
shear layer can be easily coupled with the chamber acoustic field, providing a strong
stimulus for exciting tangential acoustic motions in both the main chamber and the
inlet duct. These two acoustic fields then interact with each other through nonlinear
gasdynamics to generate a subharmonic mode travelling longitudinally. The situation,
however, becomes drastically different at a low swirl number. Instead of the central
recirculating flow, the shear layer originating from the trailing edge of the backward-
facing step dominates the acoustic excitation in the chamber. The associated radial
velocity fluctuation in the shear layer tends to drive a mixed first tangential and first
radial mode of an acoustic wave in the chamber at a much higher frequency. The
result has been further corroborated by means of an acoustic analysis using ANSYS.

This work was sponsored by the NASA Glenn Research Center under Grant NAG
3-2151. The support and encouragement of Mr Kevin Breisacher is highly appreciated.
The authors also would like to thank Dr Danning You for her help with the acoustic
analysis using the ANSYS software. Xiyun Lu was partly sponsored by the National
Natural Science Foundation of China (Nos. 90405007 and 10125210).

REFERENCES

ANSYS, Inc. Corporate 2003 The ANSYS 7.1 Users Documents. http://www.ansys.com/services/
documentation/index.htm.

Apte, S. & Yang, V. 2001 Unsteady flow evolution in a porous chamber with surface mass injection,
I: free oscillation. AIAA J. 39, 1577–1586.

Berkooz, G., Holmes, P. & Lumley, J. L. 1993 The proper orthogonal decomposition in the
analysis of turbulent flows. Annu. Rev. Fluid Mech. 25, 539–575.

Billant, P., Chomaz, J.-M. & Huerre, P. 1998 Experimental study of vortex breakdown in swirling
jets. J. Fluid Mech. 376, 183–219.

Broda, J. C., Seo, S., Santoro, R. J., Shirhattikar, G. & Yang, V. 1998 An experimental study of
combustion dynamics of a premixed swirl injector. Proc. Combust. Inst. 27, 1849–1856.

DesJardin, P. E. & Frankel, S. H. 1998 Large eddy simulation of a nonpremixed reacting jet:
application and assessment of subgrid-scale combustion models. Phys. Fluids 10, 2298–2314.

Fabignon, Y., Beddini, R. A. & Lee, Y. 1997 Analytic evaluation of finite difference methods for
compressible direct and large eddy simulations. Aerospace Sci. Tech. 6, 413–423.



194 X. Lu, S. Wang, H.-G. Sung, S.-Y. Hsieh and V. Yang

Faler, J. & Leibovich, S. 1977a An experimental map of the internal structure of a vortex
breakdown. J. Fluid Mech. 86, 313–335.

Faler, J. & Leibovich, S. 1977b Disrupted states of vortex flow and vortex breakdown. Phys. Fluids
20, 1385–1400.

Favaloro, S. C., Nejad, A. S., Ahmed, S. A., Vanka, S. P. & Miller, T. J. 1989 An experimental and
computational investigation of isothermal swirling flow in an axisymmetric dump combustor.
AIAA Paper 89-0620.

Fureby, C. 1996 On subgrid scale modeling in large eddy simulations of compressible fluid flow.
Phys. Fluids 8, 1301–1311.

Germano, M., Piomelli, U., Moin, P. & Cabot, W. H. 1991 A dynamic subgrid-scale eddy viscosity
model. Phys. Fluids A 3, 1760–1765.

Grabowski, W. J. & Berger, S. A. 1976 Solution of the Navier-Stokes equations for vortex
breakdown. J. Fluid Mech. 75, 525–544.

Grinstein, F. F., Young, T. R., Gutmark, E. J., Li, G. Q., Hsiao, G. & Mongia, H. C. 2002 Flow
dynamics in a swirl combustor. J. Turbulence 3, paper 30.

Ho, C.-M. & Huerre, P. 1984 Perturbed free shear layers. Annu. Rev. Fluid Mech. 16, 365–424.

Huang, Y., Sung, H. G., Hsieh, S. H. & Yang, V. 2003 Large eddy simulation of combustion
dynamics of a lean-premixed swirl-stabilized combustor. J. Prop. Power 19, 782–794.

Huang, Y. & Yang, V. 2004 Bifurcation of flame structure in a lean-premixed swirl-stabilized
combustor: transition from stable to unstable flame. Combust. Flame 136, 383–389.

Jameson, A. 1983 The evolution of computational methods in aerodynamics. Trans. ASME: J. Appl.
Mech. 50, 1052–1070.

Kim, W. W., Menon, S. & Mongia, H. 1999 Numerical simulations of reacting flows in a gas turbine
combustor. Combust. Sci. Tech. 143, 25–62.

Leibovich, S. 1978 The structure of vortex breakdown. Annu. Rev. Fluid Mech. 10, 221–246.

Leibovich, S. 1984 Vortex stability and breakdown: survey and extension. AIAA J. 22, 1192–1206.

Lessen, M., Singh, P. J. & Paillet, F. 1974 The stability of a trailing line vortex. Part 1. Inviscid
theory. J. Fluid Mech. 360, 753–763.

Lilly, D. K. 1992 A proposed modification of the Germano subgrid scale closure method. Phys.
Fluids A 4, 633–635.

Lucca-Negro, O. & O’Doherty, T. 2001 Vortex breakdown: a review. Prog. Energy Combust. Sci.
27, 431–481.

Martin, J. E. & Meiburg, E. 1996 Nonlinear axisymmetric and three-dimensional vorticity dynamics
in a swirling jet model. Phys. Fluids 8, 1917–1928.

Martin, M. P., Piomelli, U. & Candler, G. V. 2000 Subgrid-scale models for compressible LES.
J. Theor. Comp. Fluid Dyn. 13, 361–376.

Moin, P., Squires, K., Cabot, W. & Lee, S. 1991 A dynamic subgrid-scale model for compressible
turbulence and scalar transport. Phys. Fluids A 3, 2746–2757.

Morse, P. M. & Ingard, K. U. 1986 Theoretical Acoustics. Princeton University Press.

Panda, J. & McLaughlin, D. K. 1994 Experiments on the instabilities of a swirling jet. Phys. Fluids
6, 263–276.

Paschereit, C. O., Gutmark, E. & Weisenstein, W. 1999 Coherent structures in swirling flows and
their role in acoustic combustion control. Phys. Fluids 9, 2667–2678.

Peckham, D. H. & Atkinson, S. A. 1957 Preliminary results of low speed wind tunnel tests on a
Gothic wing of aspect ratio 1.0. Aero. Res. Counc. CP 508.

Pierce, C. D. & Moin, P. 1998 Large eddy simulation of a confined coaxial jet with swirl and heat
release. AIAA Paper 98-2892.

Piomelli, U. 1999 Large-eddy simulation: achievements and challenge. Prog. Aerospace Sci. 35,
335–362.

Poinsot, T. J. & Lele, S. K. 1992 Boundary conditions for direct simulations of compressible
viscous flows. J. Comput. Phys. 101, 104–129.

Polifke, W. & Wall, C. 2002 Non-reflecting boundary conditions for acoustic transfer matrix
estimation with LES. Proc. 2002 Summer Program, CTR, Stanford University.

Rai, M. M. & Chakravarthy, S. 1993 Conservative high-order accurate finite difference method
for curvilinear grids. AIAA Paper 93-3380.

Salvetti, M. V. & Banerjee, S. 1995 A priori test of a new dynamic subgrid-scale model for
finite-difference large-eddy simulations. Phys. Fluids 7, 2831–2847.



Simulations of swirling flow injected into a dump chamber 195

Sarpkaya, T. 1971a On stationary and traveling vortex breakdown. J. Fluid Mech. 45, 545–559.

Sarpkaya, T. 1971b Vortex breakdown in swirling conical flows. AIAA J. 9, 1792–1799.

Sarpkaya, T. 1995 Turbulent vortex breakdown. Phys. Fluids 7, 2301–2303.

Sarpkaya, T. & Novak, F. 1998 Turbulent vortex breakdown experiments. IUTAM Symp. Dyn.
Slender Vortices (ed. E. Krause & K. Gersten), pp. 287–296. Kluwer.

Shtern, V. & Hussain, F. 1999 Collapse, symmetry breaking, and hysteresis in swirling flows. Annu.
Rev. Fluid Mech. 31, 537–566.

Smagorinsky, J. 1963 General circulation experiments with the primitive equations: I. The basic
experiment. Mon. Weather Rev. 91, 99–164.

Spall, R. E. 1996 Transition from spiral- to bubble-type vortex breakdown. Phys. Fluids 8, 2301–
2303.

Spall, R. E. & Gatski, T. B. 1991 Computational study of the topology of vortex breakdown. Proc.
R. Soc. Lond. A 435, 321–337.

Wang, S. 2002 Vortical flow dynamics and acoustic response of gas-turbine swirl-stabilized injectors.
PhD Thesis, Pennsylvania State University, University Park, PA, USA.

Wu, J. Z., Lu, X. Y., Denny, A. G., Fan, M. & Wu, J. M. 1998 Post-stall flow control on an airfoil
by local unsteady forcing. J. Fluid Mech. 371, 21–58.

Yoshizawa, A. 1986 Statistical theory for compressible turbulent shear flows, with the applications
to subgrid modeling. Phys. Fluids 29, 2152–2164.

Zang, T. A., Dahlburg, R. B. & Dahlburg, J. P. 1992 Direct and large-eddy simulations of
three-dimensional compressible Navier–Stokes turbulence. Phys. Fluids A 2, 127–140.




