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Effect of surfactants on the long-wave stability
of oscillatory film flow
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Effects of insoluble surfactants on the stability of film flow driven by an oscillatory
plate are investigated in the limit of long-wavelength perturbations. Two particular
Floquet modes are identified and the corresponding growth rates are obtained by
solving a quadratic equation. Results show that the oscillatory film flow can be
stabilized by surface surfactant in the sense of raising the critical Froude number and
narrowing the bandwidths of the unstable frequencies.

1. Introduction
The stability of film flow adjacent to walls is of considerable importance in a variety

of problems, such as coating, crystal growth and materials processing. However,
unsteadiness usually occurs and may not be neglected. Some relevant topics, e.g.
stability of a fluid layer driven by an oscillating plane, and stability of steady film
flow with surfactant, have been investigated and are briefly reviewed below.

Linear stability of a fluid layer driven by an oscillating plane was first studied
theoretically by Yih (1968), who proposed an analysis for two-dimensional, long-
wavelength disturbances based on Floquet theory. He found that the stability of
the flow depends on the Froude number and the frequency of oscillation, and the
long-wavelength instability can only exist for certain separated bandwidths of the
frequency. Or (1997) extended the analysis to investigate the same problem with
arbitrary wavenumbers and found that finite-wavelength instability occurs once the
imposed frequency exceeds a certain threshold. Further, Or & Kelly (1998) studied the
effects of both wall oscillation and themocapillarity on the instability of a fluid layer.

The stability of steady film flows in the presence of surfactants has been investigated
extensively. Insoluble surfactants may have either a stabilizing or a destabilizing
effect. In surfactant-laden flow down an inclined plane, Whitaker & Jones (1966) and
Lin (1970) found that the critical Reynolds number associated with the Yih mode
for long-wave instability increases with surfactant elasticity, indicating a stabilizing
influence of surfactants. In the limit of Stokes flow, Pozrikidis (2003) identified another
Marangoni mode due to the presence of surfactant, which is always damped even
though inertial effects are considered (Blyth & Pozrikidis 2004a). When an interfacial
shear is imposed, a falling film or a two-fluid flow system may be destabilized by
surfactants (Frenkel & Halpern 2002; Halpern & Frenkel 2003; Blyth & Pozrikidis
2004b; Wei 2005a). A unified view of the mechanisms of Marangoni effects was
proposed by Wei (2005b).
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Figure 1. Schematic of the flow configuration.

Little work has been performed on the stability of unsteady film flows with insoluble
surfactants to our knowledge. The main aim of the present paper is to study the effect
of surfactants on the long-wave stability of oscillatory film flow. Although we recog-
nize the limitation of the long-wave stability analysis (Or 1997) we nevertheless feel
that the analysis will be of help in revealing the complicated stability characteristics.

2. Flow configuration and the stability problem
Consider a horizontal layer of incompressible Newtonian fluid with density ρ and

viscosity µ on an infinite flat plate, as shown in figure 1. We use an asterisk to denote
dimensional variables. The plate located at y∗ = −d oscillates in the x∗-direction with
velocity U0 cos ωt∗, where ω is the modulation frequency and U0 is the amplitude.
The upper free surface of the film is described by y∗ = η∗(x∗, t∗), and is covered by a
monolayer of insoluble surfactant. Let u∗ and v∗ be the velocity components in the
horizontal and vertical directions, respectively. As in Halpern & Frenkel (2003), the
surfactant concentration Γ ∗(x∗, t∗) obeys the transport equation

∂(HΓ ∗)

∂t∗ +
∂

∂x∗ (HΓ ∗u∗) = Ds

∂

∂x∗

(
1

H

∂Γ ∗

∂x∗

)
, (2.1)

where H =
√

1 + η∗2
x∗ and Ds is the surfactant diffusivity, which is usually negligible and

is discarded below. For the linear stability problem considered, the relation between
the surface tension γ ∗ and the surfactant concentration Γ ∗ can be approximated as
γ ∗ = γ0 − E(Γ ∗ − Γ0), where E is the surface elasticity, and Γ0 is the basic value of
the surfactant concentration, corresponding to a uniform surface tension γ0.

The motion of the fluid is governed by the Navier–Stokes equation and the
continuity equation, together with the no-slip and no-penetration boundary conditions
at the wall. At the free surface, the kinematic condition ∂η∗/∂t∗ = v∗ − u∗∂η∗/∂x∗ and
the dynamic condition requires a balance among the hydrodynamic traction, the
surface tension and the Marangoni traction (e.g. Halpern & Frenkel 2003; Pozrikidis
2003; Blyth & Pozrikidis 2004a). We choose U0 as the characteristic scale of velocity,
the mean thickness of the film d as the scale of length, ω−1 as the scale of time,
ρU 2

0 as the scale of pressure. The surfactant concentration and surface tension are
normalized by Γ0 and γ0, respectively. Then, the dimensionless form of the basic
velocity profile is given by

U (y, t) = Re

[
coshBy

coshB
eit

]
, (2.2)
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where B = (1 + i)β and β =
√

ρωd2/2µ is the ratio of the mean thickness of the film
to the thickness of the Stokes layer induced by wall oscillation.

Since only two-dimensional perturbations are considered, we introduce a distur-
bance streamfunction ψ ′(x, y, t), related to the velocity perturbations (u′, v′) by
u′ = ψ ′

y , v′ = −ψ ′
x . The surfactant concentration Γ is perturbed as Γ (x, t) = 1 +

Γ ′(x, t). Since the basic state is independent of x, the disturbances ψ ′, Γ ′ and the
position of the perturbed surface η can be assumed to be of the form

[ψ ′(x, y, t), Γ ′(x, t), η(x, t)] = ε[φ(y, t), ξ (t), h(t)]eikx + complex conjugate, (2.3)

where |ε| � 1, k is real and denotes the streamwise wavenumber. Substituting
(2.3) into the governing equations and linearizing, we obtain the time-dependent
Orr–Sommerfeld equation(

2β2 ∂

∂t
+ ikRU

) (
∂2

∂y2
− k2

)
φ − ikRUyyφ =

(
∂2

∂y2
− k2

)2

φ, (2.4)

where R = ρU0d/µ is the Reynolds number. The boundary conditions at the wall
y = −1 satisfy

φ =
∂φ

∂y
= 0. (2.5)

The linearized conditions for the normal and tangential stresses at y = 0 are,
respectively,

2β2 ∂2φ

∂t∂y
−

(
∂2

∂y2
− 3k2 − ikRU

)
∂φ

∂y
+ ik

(
F −2R +

k2

Ca

)
h = 0, (2.6)

Uyyh +
∂2φ

∂y2
+ k2φ +

Ma

Ca
ikξ = 0, (2.7)

where the Froude number F , the Marangoni number Ma and the capillary number
Ca are defined as F −2 = gd/U 2

0 , Ma = EΓ0/γ0 and Ca = µU0/γ0. The linearized
kinematic boundary condition and transport equation for surfactant are expressed by

2β2 dh

dt
+ ikRUh + ikRφ = 0, (2.8)

2β2 dξ

dt
+ ikRUξ + ikR

∂φ

∂y
= 0, (2.9)

where φ, ∂φ/∂y and U are evaluated at y = 0.
The Floquet system (2.4) to (2.9) governs the linear stability problem. For finite-

wavelength instabilities, the differential system should be solved numerically, while
long-wavelength solutions can be analytically obtained by an expansion in k and will
be discussed in the following.

3. Long-wavelength stability analysis
Considering the limit of long waves, i.e. k � 1, the disturbances are assumed as

φ(y, t) = eµt [φ0(y, t) + kφ1(y, t) + k2φ2(y, t) + · · ·], (3.1a)

h(t) = eµt [h0(t) + kh1(t) + k2h2(t) + · · ·], (3.1b)

ξ (t) = eµt [ξ0(t) + kξ1(t) + k2ξ2(t) + · · ·], (3.1c)

µ = µ0 + kµ1 + k2µ2 + · · · , (3.1d)
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in which µ is the complex growth rate of the disturbance, φj , hj and ξj (j = 0, 1, 2, . . .)
are 2π-periodic in time. Substituting these expansions into (2.4) to (2.9), we obtain a
sequence of problems at each order of k. The purpose of this procedure is to find the
first non-zero µj , corresponding to exponential growth or decay of the disturbance.

At the leading order, O(1), the kinematic condition and the transport equation
are

dh0

dt
+ µ0h0 = 0,

dξ0

dt
+ µ0ξ0 = 0. (3.2)

The constraint that h0 and ξ0 are periodic in t leads to

µ0 = 0, h0 = const, ξ0 = const. (3.3)

Another possibility, µ0 �= 0 and h0 = ξ0 = 0, corresponds to damped Floquet modes
as demonstrated in Yih (1968), and is not of interest here. Then the leading-order
system for φ0 becomes

2β2 ∂3φ0

∂t∂y2
=

∂4φ0

∂y4
, (3.4)

φ0(−1, t) =
∂φ0

∂y
(−1, t) = 0, (3.5a, b)

∂3φ0

∂y3
(0, t) = 2β2 ∂2φ

∂t∂y
(0, t), Uyy(0, t)h0 +

∂2φ0

∂y2
(0, t) = 0. (3.5c, d )

This system admits the periodic solution

φ0 = h0Re

[
1 − coshB(y + 1)

cosh2 B
eit

]
. (3.6)

The associated flow field is identical with that of Yih (1968). It is shown that the
surface surfactant does not affect the velocity distribution at this order.

For the first-order approximation, O(k), (2.8) and (2.9) give

2β2

(
dh1

dt
+ µ1h0

)
+ iRU (0, t)h0 + iRφ0(0, t) = 0, (3.7)

2β2

(
dξ1

dt
+ µ1ξ0

)
+ iRU (0, t)ξ0 + iR

∂φ0

∂y
(0, t) = 0. (3.8)

Since φ0 and U0 are time periodic with a zero average, to obtain periodic solutions
h1(t) and ξ1(t), we must have

µ1 = 0, (3.9)

h1 = −Rh0

B2
Im

[
1

cosh2 B
eit

]
, (3.10)

ξ1 = −Rξ0

B2
Im

[
1

coshB
eit

]
+

Rh0

B2
Im

[
B sinhB

cosh2 B
eit

]
. (3.11)

The differential system for φ1 contains inhomogeneous terms which are products of
functions having a time dependence given by e±it . This leads to φ1(y, t) = φ

(s)
1 (y) +

φ̂1(y)e2it + φ̌1(y)e−2it with the superscript, (S), denoting the steady part. As will be

shown later, it is sufficient to solve for φ
(s)
1 (y) to obtain µ2 and hence to determine
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the stability of the flow. The corresponding time-independent system is

d4φ
(s)
1

dy4
= iRh0Re

[
2 coshBy cos B(y + 1) − coshBy

2B−2 cos2 B coshB

]
, (3.12)

φ
(s)
1 (−1) =

dφ
(s)
1

dy
(−1) = 0, (3.13a, b)

d3φ
(s)
1

dy3
(0) − iF −2Rh0 − iRh0Re

[
B sinB

2 cos2 B coshB

]
= 0, (3.13c)

d2φ
(s)
1

dy2
(0) + iRh0Re

[
1

2 cos2 B coshB

]
+

Ma

Ca
iξ0 = 0. (3.13d )

The solution to this system is represented by

φ
(s)
1 (y) = φ1c(y) − iRh0Re

[
2 coshBy + coshBy cosB(y + 1)

4B2 cos2 B coshB

]
, (3.14a)

in which φ1c is the complementary solution

φ1c(y) = A0 + A1y + A2y
2 + A3y

3. (3.14b)

Here these four coefficients can be determined by the boundary conditions and are
expressed as

A0 = − 1
3
iRF −2h0 − Ma

2Ca
iξ0 + iRh0Re

[
3 coshB − 3B sinhB

4B2 cos2 B coshB

]
,

A1 = − 1
2
iRF −2h0 − Ma

Ca
iξ0 − iRh0Re

[
3 sinhB

4B cos2 B coshB

]
,

A2 = − Ma

2Ca
iξ0, A3 = 1

6
iF −2Rh0.

Further, considering the O(k2) problem, the kinematic condition and the surfactant
transport equation can be written as

2β2

(
dh2

dt
+ µ2h0

)
+ iRU (0, t)h1 + iRφ1(0, t) = 0, (3.15)

2β2

(
dξ2

dt
+ µ2ξ0

)
+ iRU (0, t)ξ1 + iR

∂φ1

∂y
(0, t) = 0. (3.16)

Since h2(t) and ξ2(t) are periodic in t , it follows that

2β2R−1µ2h0 = −i [U (0, t)h1 + φ1(0, t)](s) , (3.17)

2β2R−1µ2ξ0 = −i

[
U (0, t)ξ1 +

∂φ̄1

∂y
(0, t)

](s)

. (3.18)

From (2.2), (3.10), (3.11) and (3.14), we obtain

[U (0, t)h1 + φ1(0, t)](s) = − 1
3
iF −2Rh0 − Ma

2Ca
iξ0 + iRh0I1, (3.19)

[
U (0, t)ξ1 +

∂φ̄1

∂y
(0, t)

](s)

= − 1
2
iF −2Rh0 − Ma

Ca
iξ0 + iRh0I2, (3.20)
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in which

I1 = Re

[
3 coshB − 3B sinhB

4B2 cos2 B coshB

]
, I2 = Re

[
3 sinB − 3 sinhB

4B cos2 B coshB

]
. (3.21)

Note that I1 and I2 only depend on β . Upon substituting (3.19) and (3.20) into (3.17)
and (3.18), we obtain two equations related to µ2, which can be written in the matrix
form ⎛

⎝I1 − 1
3
F −2 − 1

2
M

I2 − 1
2
F −2 −M

⎞
⎠

⎛
⎝h0

ξ0

⎞
⎠ =

2β2

R2
µ2

⎛
⎝h0

ξ0

⎞
⎠ , (3.22)

where M =Ma/RCa. Obviously, (3.22) is an eigenvalue problem, with 2β2µ2/R
2

being the eigenvalue and [h0, ξ0]
T the eigenvector. For clarity, let θ = 2β2µ2/R

2, then
θ can be obtained by solving the quadratic equation

θ2 + bθ + c = 0, (3.23a)

where the coefficients b and c are constants and can be obtained as

b = 1
3
F −2 + M − I1, c = 1

12
M(F −2 − 12I1 + 6I2). (3.23b)

When surfactant is absent, i.e. M = 0, only (3.17) is needed, which gives

θ = I1 − 1
3
F −2. (3.24)

Note that 3I1 is just a reformulation of the parameter L defined in Yih (1968), which
has also been numerically calculated by Or (1997). Equation (3.24) is identical with
the results obtained by Yih (1968) and the instability criterion for a clean surface, i.e.
3I1 >F −2, is reproduced. For a general case, there exist two roots, corresponding to
two Floquet modes, which are associated with the deformation of the interface and
the presence of surfactant. Since b and c are real, (3.23a) has two real or conjugate
complex roots, which can be expressed using the well-known formula. It is easy to
find that the neutral condition corresponds to the two possibilities c = 0, b � 0 and
b = 0, c � 0, which combine to yield, according to (3.23b),

F −2 = 3 max (4I1 − 2I2, I1 − M) . (3.25)

Obviously, no solution exists if the right-hand side of (3.25) is negative. The flow
parameters to determine the onset of the long-wavelength instability have been
reduced to F , M and β .

4. Results and discussion
First we consider a special case in the absence of gravity, i.e. F −2 = 0, which may

be useful in microgravity environments. This leads to the critical condition of the
instability only depending on M and β . According to (3.25), the neutral conditions
become max (4I1 − 2I2, I1 − M) = 0. In figure 2(a), the neutral stability curves are
plotted in the (β , M−1)-plane. For a clean surface at M = 0, the flow is unstable
only for certain intervals of β satisfying I1 > 0. When surfactant is introduced,
these unstable intervals of β , corresponding to the unstable frequencies of oscillation,
are narrowed and their width decreases as M increases, indicating a stabilizing effect
of surfactant. Further increasing M will result in the neutral curves becoming vertical
straight lines determined by 2I1 − I2 = 0, i.e. the criterion for the onset of instability
being independent of M and hence the surfactant elasticity. Note that, based on
previous work (e.g. Or 1997), the regions marked S for stable in figure 2(a) may not
be entirely stable if finite-wave disturbances are considered.
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Figure 2. (a) Stability limits in the (β , M−1)-plane in the absence of gravity. Stable and
unstable regions are denoted by S and U, respectively. (b) Variation of the real part of θ , θr ,
as a function of β for M−1 = 100 (solid line) and M = 0 (dashed line). Insets show the first
mode.

To deal with the behaviour of the growth rates of the two Floquet modes, figure 2(b)
exhibits the real part of θ , θr , as a function of β for a typical value M−1 = 100. The
clean-surface results, described simply by θ = I1, are also presented for comparison.
Clearly, the film flow is stabilized by surfactant since the growth rate of a contaminated
surface is lower than that of a clean surface for the parameters considered here. It
is also shown that both modes could be unstable. In most ranges of β , the Floquet
exponents are real, corresponding to standing wave modes, while for 1.92 < β < 2.53
approximately they are complex, and the corresponding curves merge together. These
complex eigenvalues are associated with travelling wave disturbances, one of which
propagates to the right along the interface with a phase velocity of O(k) and the other
one to the left. This is different from the clean-surface results, in which, according to
(3.24), only standing wave solutions exist. The maximum of the eigenvalues occurs
at β = 1.08 approximately, indicating that the flow is most unstable when the Stokes
layer thickness is close to the depth of the film, in accordance with Yih (1968) and Or
(1997). For high frequencies, typically β > 4, hence |I1|, |I2| � 1, and the eigenvalues
can be approximated as θ1 ≈ I1 − 1

2
I2 and θ2 ≈ −M + 1

2
I2. The first mode, as shown

in the insets in figure 2(b), results in the unstable regions bounded by the vertical
curves in figure 2(a), while the second mode is always stable. Note that the growth
rate of the unstable mode is exponentially small and the flow is only mildly unstable.

When the effect of gravity is involved, according to (3.25), it is convenient to plot the
neutral stability curves in the (β , F )-plane parameterized by the value of M . As shown
in Or (1997), the neutral curve for a clean surface is composed of several isolated open-
ended loops. When surfactant is introduced, each loop is modified to form a family
of neutral curves. Figure 3 shows the neutral curves for three families. The region
underneath each curve corresponds to stable modes, i.e. long-wavelength instability
disappearing in these regions. We consider the neutral curves in the first family in
figure 3(a). The neutral curves for M > 7.64 × 10−2 have the same shape, which is
described by F −2 = 6(2I1 − I2) and denoted by a thick line, and the corresponding
neutral modes are associated with standing wave perturbations. For a slight decrease
of M (e.g. M = 7 × 10−2), a dip occurs at the bottom of the thick curve around
β = 1.1; the corresponding neutral curve joins the thick curve with discontinuous
slope. Then, as M decreases gradually, the neutral curves branch off the thick curve
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Figure 3. The (a) first, (b) second and (c) third family of the neutral stability curves for the
long-wavelength instability in the (β , F )-plane for various values of M as labelled on the curves.
The region above (below) each curve is unstable (stable) to long-wavelength disturbances.

and extend to a wide range of β . The right-hand portions of these curves correspond
to travelling wave perturbations. Eventually, the neutral curve tends to the clean-
surface one as M → 0 (dashed curve). Further, as shown in figure 3(b), there exist
different features of the neutral curves in the second family. When M < 0.8857×10−5,
the neutral curves do not intersect the thick loop corresponding to M > 2.646 × 10−5.
When M > 0.8857×10−5, the neutral curves branch off the thick loop at a point which
moves to the left along the loop as M increases until M = 2.570 × 10−5, at which
the curve is divided into two loops. The left loop shrinks as M increases further and
disappears for M > 2.646 × 10−5, while the right one (i.e. the thick line loop) remains
unchanged. Similar behaviours are demonstrated for the neutral curves in the third
family in figure 3(c), except for higher values of F and smaller values of M . Since the
neutral curves lie in the interior of the regions bounded by the clean-surface curve,
the critical Froude number is raised, and long-wavelength instability for particular
frequencies is fully eliminated due to the presence of surfactant.

Previous studies for steady film flows mainly interpreted the mechanism of instability
based on Marangoni forces (Frenkel & Halpern 2002; Blyth & Pozrikidis 2004b) or
disturbance vorticity (Hinch 1984; Kelly et al. 1989; Charru & Hinch 2000; Wei
2005b). As indicated by Wei (2005b), only considering the effects of Marangoni
forces may result in an inconsistent interpretation, while the viewpoint of vorticity is
only appropriate when inertial effects are small, which is not the case in the present
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Figure 4. Sketch for the instability mechanism: (a) positive Q–η phase difference suppresses
the interfacial deflection. The large arrow represents the downward motion of the crest.
(b) Positive u–Γ phase difference smooths the surfactant distribution. The surfactant
concentration Γ is denoted by the width of the grey area and the large arrows represent
the decrease of the surfactant concentration.

study. The instability of oscillatory film flow can be straightforwardly explained by
considering the effects of the disturbance flow field. First, the disturbance velocity
causes a spatially distributed mass flow rate, related to the disturbance streamfunction,

Q(x, t) =

∫ η

−1

u dy =

∫ 0

−1

U (y, t) dy + ψ ′(x, 0, t) + U (0, t)η + O(ε2), (4.1)

which may induce the growth of the interface. Second, the surface velocity

u(x, η, t) = U (0, t) + u′(x, 0, t) + O(ε2) (4.2)

rearranges the distribution and causes local convergence of surfactant. The stability
of the flow system depends on the phase difference of the mass flow rate relative
to the interface as well as that between the interfacial velocity and the surfactant
concentration. As shown in figure 4(a), for a control volume enclosed by the vertical
lines and the interface, the net flow rate is negative since the flow entering the
volume, QIN, is less than that leaving it, QOUT, resulting in the decay of the interfacial
deformation. Thus, we can interpret that positive (negative) Q–η phase difference,
defined in the interval [−π, π], is associated with a stable (unstable) flow. A similar
result can be obtained from the relation between the u–Γ phase difference and the
stability, as shown in figure 4(b). Since we are concerned with the mean growth
of the flow, only the steady part of the disturbance flow, which determines the
phase difference, is relevant to the stability. The flow rate perturbation as well as
the interfacial velocity perturbation are induced by gravity, the Marangoni traction,
the flow due to inertia and the advective effects of the basic flow. It is clearly
indicated from (3.19) and (3.20) that the flow rate due to gravity leads η by a phase
π/2, indicating that gravity always plays a stabilizing role. Inertial effects together
with the advective effects of the basic flow are destabilizing (stabilizing) when I1 is
positive (negative), corresponding to the phase difference −π/2 (π/2). The effects of
Marangoni flow are determined by the argument of iξ0/h0, which is always positive
at the critical conditions based on our extensive calculations, indicating a stabilizing
effect of surfactant.

Finally, we emphasize that the instability in the present problem is due to the
interfacial deformation and the presence of surfactant, instead of the classical shear
modes associated with the basic velocity profile. For sufficiently high frequencies,
however, the shear modes may dominate the stability, and the stability characteristics
should tend to those of plane Stokes layers. The relevant critical Reynolds number
based on the thickness of flat Stokes layers has been studied by Blennerhassett &
Bassom (2002) and Gao & Lu (2006).
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5. Summary
The stability of film flow driven by an oscillatory plate and covered by an insoluble

surfactant has been studied analytically in the limit of long-wavelength perturbations.
An eigenvalue problem is derived through the asymptotic expansion of the differential
system governing the stability of the flow. Two Floquet modes are reported and both
could be unstable. In addition to standing wave modes, travelling wave modes are also
detected in certain regions of the parameters. The inertial instability is suppressed by
surfactant in the absence of gravity, while the unstable regions shrink due to the stabil-
izing effects of surfactant in the presence of gravity. We also find that the criterion of
instability does not change when the surfactant elasticity (i.e. M) exceeds a threshold.
The relevant instability mechanism is interpreted based on the disturbance flow rate.
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