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This paper provides an intuitive interpretation of the long-wave inertialess instability
of a two-layer film flow. The underlying mechanism is elucidated by inspecting the lon-
gitudinal perturbation velocity associated with the surface and interfacial deflections.
The velocity is expressed by the composition of three parts, related to the shear stress at
the free surface, the continuity condition at the interface, and the pressure disturbance
induced by gravity. The effect of each velocity component on the evolutions of the sur-
face and the interface is examined in detail. Specifically, the growth of the free surface
is caused by the continuity-induced first-order velocity disturbance associated with
an additional phase shift between the surface and interfacial waves, while the growth
of the interface is due to the pressure-driven flow. The proposed mechanism gives an
alternatively reliable prediction of the wave velocity and growth rate.

1. Introduction
The stability of multiple-layer film flows with a free surface is of considerable

interest since these flows occur in many industrial and engineering applications, such
as coating in photography (Weinstein & Ruschak 2004). Owing to the gravity-driven
flow down an inclined plane, multilayered films can give rise to instabilities in the
form of travelling surface and interfacial waves, resulting in undesirable variations
of film thicknesses. Thus, it is of significant importance to study the stability of such
flows as well as the underlying mechanisms.

A linear stability of two-layer film flows was first studied by Kao, who employed
a long-wave approximation to the Orr–Sommerfeld equation to resolve the stability
of the flow with density stratification (Kao 1965a , b), and subsequently extended
the work by including the effect of viscosity stratification (Kao 1968). He found
that there existed two competing travelling-wave modes, usually termed the surface
mode and the interface mode in later studies, responsible for the stability. Generally,
the interface mode dominates and can lead to an unstable flow at zero Reynolds
number. Since the instability associated with the interfacial mode does not rely on
fluid inertia, it is referred to as inertialess instability. Loewenherz & Lawrence (1989)
carried out a finite-wavelength stability analysis of the flow with matched densities as
well as negligible surface/interfacial tension and fluid inertia, focusing primarily on
the role of viscosity stratification. Their results showed that the inertialess instability
occurs when the fluid in the upper layer is more viscous than the lower layer, and the
most dangerous mode has a finite wavelength comparable with the film thickness; in
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contrast, the flow configuration with the more viscous layer adjacent to the wall is
stable for all wavenumbers. Chen (1993) considered the stability of the two-layer
flow with the influence of inertia by numerically solving the Orr–Sommerfeld
equation for finite Reynolds numbers, and found that the flow can only be stable
when the inertial effect is small enough. In addition, he also demonstrated that the
role of uniform surface and interfacial tensions is stabilizing for finite-wavelength
disturbances and negligible for long waves. If the surface and interfacial tensions
are modified by the presence of insoluble surfactants, the inertialess instability can
be significantly weakened or enhanced (Gao & Lu 2007). By extending the work
of Loewenherz & Lawrence (1989), Hu et al. (2006) performed a spatio-temporal
stability analysis of the flow with combined effects of density and viscosity
stratification, again for disturbances with finite wavelength and in the limit of Stokes
flow.

Similar inertialess instability has also been encountered in film flows with a
configuration of more than two layers. In this situation, there are several modes with
the number equal to the number of the interfaces and one mode associated with the
presence of the free surface. Wang, Seaborg & Lin (1978) formulated the problem of
the stability of a general n-layer liquid film flow and specifically performed a long-
wave stability analysis of a five-layer film. They found that the inertialess instability
can occur in a flow with a downward step decrease in viscosity. A linear stability
of a three-layer film in the limit of long waves was investigated by Weinstein &
Kurz (1991). The growth of long waves is associated with the presence of complex
conjugate wave velocities, which occur when the internal layer is relatively thin, and
can persist into the finite wavelength domain (Weinstein & Chen 1999). The growth
rates of the interfacial waves are much larger than those in two-layer film. The origin
and evolution of the inertialess instability of a three-layer film were examined by Jiang
et al. (2005) using analytical, numerical and experimental techniques. In particular,
they performed an energy analysis and revealed the important role of the interfacial
shear on the instability. Weakly nonlinear evolutions of the inertialess instability
of three-layer flows have been studied by Kliakhandler & Sivashinsky (1997) and
Kliakhandler (1999).

Although the inertialess instability of multiple-layer films has been extensively
studied, the underlying mechanism seems not to have been completely elucidated.
Chen (1993) conjectured that the inertialess instability of a two-layer film results
from a kind of resonance between the free surface and the interface. This is
reasonable since the inertialess instability does not occur when the interface is
absent, corresponding to a single-layer falling film (Benjamin 1957; Yih 1963), or
when the free surface is replaced with a rigid plate, corresponding to a two-layer
channel flow (Yih 1967; Renardy 1985). However, the details of the resonance
are still unclear. For the energy budget, Jiang, Helenbrook & Lin (2004) found
that the inertialess instability of a two-layer film is caused by the interfacial shear
work, though the origin of the work was not addressed. Huang & Khomami (2001)
mentioned that the combined effects of the hydrostatic pressure and the disturbance
vorticity lead to the instability; the interpretation seems to be inconsistent and
questionable.

The primary purpose of this paper is to provide an intuitive and complete inter-
pretation of the mechanism of the inertialess instability. We focus mainly on two-layer
film flows because of their simplicity and rich dynamics. For convenience, only long
waves will be considered here, allowing us to grasp the essential mechanism.
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Figure 1. Schematic illustration of the two-layer flow down an inclined plane.

2. Long-wave instability mechanism of a two-layer film
2.1. Problem statement and the basic flow

Consider the gravity-driven film flow of two-fluid layers down an inclined plane which
is tilted at an angle θ with respect to the horizontal direction. The flow configuration
and the coordinate system are shown in figure 1. The fluids are assumed to be
incompressible and Newtonian. The upper layer is occupied by fluid 1 with mean
thickness d1 and dynamic viscosity μ1, and the lower layer by fluid 2 with mean
thickness d2 and viscosity μ2. For simplicity, we assume that the two fluids have the
same density ρ. To non-dimensionalize the system, we use d2 as the scale of length,
and define the characteristic velocity as

Û = ρgd2
2 sin θ/μ2,

where g is the acceleration due to gravity. The time and pressure are scaled by d2/Û

and μ2Û/d2, respectively. Then, the dimensionless forms of the basic velocity profile
and the pressure distribution are

U1(y) = m−1
(
δy − 1

2
y2

)
+ δ + 1

2
, (2.1a)

U2(y) = δy − 1
2
y2 + δ + 1

2
, (2.1b)

P1(y) = P2(y) = (δ − y) cot θ, (2.1c)

where m and δ are, respectively, the ratios of viscosities and thicknesses of the two
layers, defined by

m =
μ1

μ2

, δ =
d1

d2

.

2.2. Disturbances of the flow field

We introduce infinitesimally small velocity perturbations uj (x, y, t), vj (x, y, t) and
pressure perturbations pj (x, y, t) for j = 1, 2, and let h1(x, t) and h2(x, t) denote
the departures of the perturbed free surface and fluid–fluid interface from their
mean locations. Further, we focus on long-wave perturbations associated with the
inertialess instability, i.e. the wavenumber k � 1 and the fluid inertia being negligible.
These assumptions allow us to identify each factor leading to the disturbance flow
field and to consider the relevant contributions to the instability. The longitudinal
velocity perturbations uj can be divided into three parts, related to the shear stress at
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Figure 2. Sketch illustrating the non-zero shear at the perturbed free surface and the
discontinuity at the perturbed interface of the basic velocity profile for m< 1. The dashed
lines indicate the slope of the velocity profile at the free surface.

the free surface, the continuity condition at the interface and the pressure disturbance
induced by gravity, which will be described below.

A constraint for free-surface film flows is that the shear stress at the surface
vanishes. At the perturbed free surface with a displacement h1, the shear stress of the
basic flow (2.1a) is non-zero owing to the curvature of the basic velocity profile, as
shown in figure 2. Thus, a perturbation shear stress, equal to −U ′′

1 (δ)h1, develops to
satisfy the free-surface condition. This viewpoint was also discussed by Kelly et al.
(1989) and Smith (1990) in explaining the instability mechanism of a single-fluid film
flow. For Stokes flow and long waves, the perturbation shear stress drives a linear
shear flow, u(s), in both fluid layers,

u
(s)
1 = −U ′′

1 (δ)h1(y + m) =

(
y

m
+ 1

)
h1, (2.2a)

u
(s)
2 = −mU ′′

1 (δ)h1(y + 1) = (y + 1)h1. (2.2b)

The profile of this perturbation flow field is shown in figure 3(a). Note that the slope
difference of u(s) is due to the viscosity stratification of the two layers, and figure 3(a)
shows the case of m < 1.

At the perturbed interface y = h2, the velocity of the two fluids must be continuous.
However, the basic velocities of the two layers are not continuous owning to the
viscosity stratification of the flow (see also figure 2). As a result, an additional dis-
turbance flow, denoted by u(c), arises to make the overall velocity continuous at the
interface. Taking into account the no-slip condition at the wall and the zero-shear
condition at the free surface, the disturbance velocities resulting from the continuity
condition have the form

u
(c)
1 = [U ′

2(0) − U ′
1(0)]h2 = δ

(
1 − 1

m

)
h2, (2.3a)

u
(c)
2 = 0. (2.3b)

It can be seen that this flow occurs only in the upper fluid and remains uniform
across the layer. The velocity u(c) is different from the counterpart of a two-layer
channel flow, in which the continuity-induced disturbance flow is linear in both fluids
at the leading order (Charru & Hinch 2000) owing to the no-slip conditions at the
two walls. A typical profile of u(c) for m < 1 is shown in figure 3(b), while the velocity
for m > 1 is reversed.

The third part of the disturbance velocity is related to the presence of a gravity
component perpendicular to the wall, which, together with a perturbed free surface,
causes a hydrostatic pressure disturbance p1 = p2 = p ≡ h1 cot θ in both fluids. Note
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Figure 3. The longitudinal velocities for m< 1 generated by (a) the perturbation shear stress
at the free surface, (b) the continuity of velocity at the perturbed interface, and (c) the
disturbance pressure p. The regions of p > 0 and p < 0 are indicated by ⊕ and �, respectively.

that the pressure disturbance is constant in the y-coordinate and slowly varying in
the x-coordinate since only long waves and matched densities are considered. The
pressure is in phase with the surface deflection; that is, as shown in figure 3(c), the
pressure distribution attains its maximum (or minimum) under the crest (or trough)
of the surface wave. As a result, a parabolic flow, u(p), will be driven by the pressure
gradient ∂p/∂x and reads

u
(p)
1 =

(
1

2m
y2 − δ

m
y − δ − 1

2

)
∂h1

∂x
cot θ, (2.4a)

u
(p)
2 =

(
1

2
y2 − δy − δ − 1

2

)
∂h1

∂x
cot θ. (2.4b)

Note that the magnitude of u(p) is O(k) higher than those of u(s) and u(c). This
pressure-driven flow serves to push the fluid away from the crest to the trough of the
free surface in both the layers, and hence tends to stabilize the surface. The effect
of u(p) on the growth of the interface depends on the phase difference between the
surface and interfacial waves, and will be discussed later.

In view of (2.2)–(2.4), the total velocity disturbances,

uj = u
(s)
j + u

(c)
j + u

(p)
j , (2.5)

are directly expressed in terms of the qualities associated with the surface and
interfacial deflections. The disturbance flow field may alternatively be obtained by
solving the Stokes equation similarly to Wei (2005), but it is difficult to identify the
individual flow components.
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2.3. Normal-mode solutions of disturbances

To satisfy the mass conservation in both fluid layers, the velocity fields derived above
will lead to wave motions and exponential growth of the free surface and the interface.
We consider the normal-mode form of the surface and interfacial deflections,

h1(x, t) = h̃1 cos[k(x − ct)] exp(k2σ t), (2.6a)

h2(x, t) = h̃2 cos[k(x − ct − ϕ)] exp(k2σ t), (2.6b)

where k is the wavenumber and is assumed to be small for long waves as mentioned
earlier, c is the wave velocity, kϕ is the phase shift of O(k), and s = k2σ is the growth
rate of disturbances, which is expected to be O(k2) according to Kao (1968). The
normal-mode form of the velocity components can be easily obtained according to
(2.2)–(2.4).

The unknowns in (2.6) can be determined by analysing the mass conservation in
the control volumes V1: [0 � x � λ/2, −1 � y � δ + h1] and V2: [0 � x � λ/2,
−1 � y � h2], with λ= 2π/k being the wavelength, according to

dVj

dt
+ Qnet out

j = 0, (j = 1, 2), (2.7)

where Vj denotes the time-dependent volume of Vj and Qnet out
j is the net volume

flux leaving the control volume. Take the control volume V1 as an example,

V1 =

∫ λ/2

0

(1 + h2) dx, Qnet out
1 =

∫ h2

−1

(U2 + u2) dy

∣∣∣∣
λ/2

x=0

. (2.8)

Upon substituting the corresponding qualities into (2.7) and neglecting terms of O(k2),
we obtain, [

1
2
h̃1 + (UI − c)h̃2

]
cos(kct)

= k
[(

1
2
δ + 1

3

)
h̃1 cot θ + σ h̃2 + ϕ(UI − c)h̃2

]
sin(kct), (2.9a)

[
(2US − c)h̃1 + δ2

(
1 − 1

m

)
h̃2

]
cos(kct)

= k

[(
δ3

3m
+ δ2 + δ + 1

3

)
h̃1 cot θ + σ h̃1 + δ2

(
1 − 1

m

)
ϕh̃2

]
sin(kct), (2.9b)

where

US =
δ2

2m
+ δ + 1

2
, UI = δ + 1

2
, (2.10)

are the basic surface and interfacial velocities, respectively. To assure the validation
of (2.9) at arbitrary time t , the four coefficients of cos(kct) and sin(kct) must vanish.
We thus arrive at four equations, with two of them written in matrix form as⎡

⎣2US δ2

(
1 − 1

m

)
1
2

UI

⎤
⎦[

h̃1

h̃2

]
= c

[
h̃1

h̃2

]
, (2.11)

and the other two as⎡
⎢⎣

h̃2/h̃1 (UI − c)h̃2/h̃1

1 δ2

(
1 − 1

m

)
h̃2/h̃1

⎤
⎥⎦

[
σ

ϕ

]
= −

⎡
⎢⎣

(
1
2
δ + 1

3

)
cot θ(

δ3

3m
+ δ2 + δ + 1

3

)
cot θ

⎤
⎥⎦ . (2.12)
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Based on these equations, the unknown qualities of the normal modes can be readily
obtained. Obviously, (2.11) and (2.12) are decoupled, and hence the phase velocity c

can be solved separately from (2.11). Note that this convenience is attributed to the
long-wave approximations, under which the travelling-wave motions and the growth
of perturbations can be separated; for finite-wavelength perturbations, we have to
return to solve a more general eigenvalue problem with a strong coupling between
the phase velocity and the growth rate.

System (2.11) is merely an eigenvalue problem with the phase velocity c being
the eigenvalue and [h̃1, h̃2]

T the eigenfunction. After some manipulations, the two
eigenvalues can be written as

c± = US + 1
2
UI ± K

4m
, (2.13)

where

K =
√

4δ4 + 4mδ2(2δ − 1) + m2(12δ2 + 4δ + 1).

The two normal modes associated with c+ and c− are, respectively, referred to as
‘surface mode’ and ‘interface mode’, corresponding to travelling surface and interfacial
waves. In a reference moving downstream with velocity US + UI/2, the surface-mode
waves will propagate downward and the interface-mode waves propagate upward
with the same phase velocity K/4m. The eigenfunctions associated with the surface
and interface modes are (

h̃2

h̃1

)+

=
2m

m + 2mδ + 2δ2 + K
, (2.14a)

(
h̃2

h̃1

)−

=
m + 2mδ + 2δ2 + K

4(1 − m)δ2
. (2.14b)

The values of σ and ϕ corresponding to the modes can be expressed in terms of
c and h̃2/h̃1 according to the linear system (2.12). Substitution of (2.13) and (2.14)
yields two groups of solutions, i.e.

σ+ = − J

6m
cot θ, (2.15a)

ϕ+ =
δ(1 + δ)(m + 3mδ + 2δ2)2(m + 2mδ + 2δ2 + K)

3JK2
cot θ, (2.15b)

for the surface mode, and

σ − =
2δ3(m − 1)(1 + δ)(m + 3mδ + 2δ2)

2

3JK2
cot θ, (2.16a)

ϕ− =
2J

3(m + 2mδ + 2δ2 + K)
cot θ, (2.16b)

for the interface mode. Here

J = m + 3mδ + 3mδ2 + δ3 + K−1[2δ5 + mδ2(8δ2 + δ − 2) + m2(12δ3 + 13δ2 + 5δ + 1)].

The phase velocities and growth rates derived above are in exact agreement with the
long-wave results of Kao (1968) in the absence of density stratification. Compared
with Kao (1968), the results in the present paper have the advantage that the
stability characteristics of the flow can be readily identified just from inspecting the
formulations, instead of presenting a series of figures.
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Figure 4. Stability diagram when the surface and interfacial waves are nearly in phase,
corresponding to the surface mode for all m and the interface mode for m< 1. (a) The
combined effects of u(p) and �u(c) result in a downward motion of the surface crest. Note that
the profile of �u(c) is for m< 1, whereas the velocity is reversed for m> 1. (b) The
pressure-driven velocity u(p) leads to a downward motion of the interfacial crest.

The stability or instability of the flow is determined by the sign of σ . It can be
proved that for the parameters considered (δ > 0, m > 0), the values of K and J are
always positive. Thus, the surface mode is stable since the corresponding growth
rate, k2σ , is always negative in view of (2.15a). The associated surface and interfacial
waves are in phase at the leading order according to (2.14a). Different from the
surface mode, (2.16a) shows that the stability of the interface mode depends on the
sign of m − 1. When the lower layer is more (or less) viscous, i.e. m < 1 (or m > 1),
the growth rate of the interface mode is negative (or positive) and hence the mode is
stable (or unstable). At the leading order, the corresponding surface and interfacial
waves are in phase for the stable case, similar to the surface mode, and are out of
phase by π for the unstable case, as indicated by (2.14b).

2.4. Instability mechanism

The evolution of small disturbances can be divided into a travelling-wave motion and
a growth motion, similar to Smith (1990) and Charru & Hinch (2000). It is of interest
to investigate the detailed instability mechanism, especially the contribution of each
velocity component presented in §2.2 to the surface and interfacial growth.

Since ϕ is non-zero, the phase difference between the surface and interfacial waves
are not exactly in phase or out of phase by π up to the O(k) approximation. It is
helpful to approximate the interfacial deflection h2 as

h2 ≈ h̄2 + �h2, (2.17a)

with

h̄2 = h̃2 cos[k(x − ct)] exp(k2σ t), (2.17b)

�h2 = kϕh̃2 sin[k(x − ct)] exp(k2σ t), (2.17c)

according to (2.6b). In fact, h̄2 is the leading-order position of the interface and �h2 is
a correction of O(k). Physically, the effect of �h2 can also be equivalently regarded as
a shift of the interface related to its leading-order position, and the physical meaning
of ϕ is the translational distance of the interface, as indicated in figures 4(b) and 5(b).
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Figure 5. Stability diagram when the surface and interfacial waves are nearly out of phase by
π, corresponding to the interface mode for m> 1. (a) The combined effects of u(p) and �u(c)

result in an upward motion of the surface crest. (b) The pressure-driven velocity u(p) leads to
a downward motion of the interfacial trough.

Note that the interfacial wave is always shifted downstream since ϕ is always positive
in view of (2.15b) and (2.16b). By substituting (2.17) into (2.3), the velocity field due
to the continuity condition at the interface, u(c), can also be decomposed as

u(c) ≈ ū(c) + �u(c). (2.18)

The expressions of ū(c) and �u(c) are similar to (2.3) except that h2 is replaced with
h̄2 and �h2, respectively. In particular,

�u
(c)
1 = δ

(
1 − 1

m

)
�h2, (2.19a)

�u
(c)
2 = 0. (2.19b)

Obviously, �u(c) is of O(k), and attains its maximum at the midpoints of the surface
and interfacial waves.

The mechanism of the travelling-wave motions of the surface and interface is
relatively simple; it is caused by the leading-order perturbation velocities, i.e. u(s) and
ū(c). The magnitudes of u(s) and ū(c) attain their maxima under the crest or trough of
the surface and the interface, and vanish at the midpoints. The volume fluxes induced
by the leading-order velocities are thus balanced by a shift of the surface and the
interface, resulting in motions of perturbations in the form of travelling waves, as is
well known. By applying the mass conservation condition (2.7) to the control volumes
V1 and V2 and considering only the influences of u(s) and ū(c), we can simply obtain
trivial solutions of the growth rates, while the eigenvalue problem (2.11) gives the
phase velocities and the amplitude ratios of the deflections.

The growth of the surface and interfacial waves is induced by the first-order flows,
i.e. the pressure-driven velocity u(p) and the velocity correction �u(c) associated with
the presence of the interfacial shift ϕ. According to the linear stability results, the sur-
face and interfacial waves are stable (or unstable) when the leading-order phase
difference between them is zero (or π). This conclusion is valid for both the surface



388 P. Gao and X.-Y. Lu

mode and the interface mode. We thus discuss the growth mechanism by considering
separately the stable case and the unstable case rather than the two modes.

First we consider the stable case, in which the surface and interfacial waves are
nearly in phase, as shown in figure 4. This case corresponds to the surface mode
for all m and the interface mode for m < 1. To study the evolution of the surface
and interface, we investigate the mass conservation of fluids in two control volumes
denoted by the grey areas in figure 4. Note that these control volumes are different
from V1 and V2 defined above, and have the advantage that the net fluxes due to
the basic velocity profile vanish, since the edges of the control volumes correspond
to the midpoints of the surface and interfacial waves. As shown in figure 4(a), the
pressure-drive flow, u(p), moves fluid away from the surface crests and towards the
surface troughs in both fluid layers, and hence plays a stabilizing role in the surface
deformation. The effect of �u(c) depends on the viscosity ratio m. When the lower
fluid is more viscous (m < 1), the velocity �u(c) drives the fluid in the upper layer
away from the trough to the crest of the surface and hence tends to stimulate the
surface growth, in contrast to the pressure-driven flow. However, this growth is not
greater than the surface decay caused by the disturbance pressure and so the flow
is stable. When the lower fluid is less viscous (m > 1), the velocity of �u(c) shown in
figure 4(a) is reversed; the in-phase configuration is now related just to the surface
mode. Clearly, both �u(c) and u(p) give rise to a downward motion of the surface crest
and are stabilizing. The decay mechanism of the interface is shown in figure 4(b).
Within the control volume considered, the pressure-driven flow u(p) produces a loss
of mass, which is balanced by a decrease of the interfacial deformation. Note that
�u(c) does not directly contribute to the motion of the interface, since it occurs only
in the upper layer.

The unstable case corresponds to the interface mode for m > 1 and can be similarly
explained. The surface and interfacial waves are out of phase at the leading order,
as shown in figure 5. The effect of the pressure-driven flow on the free surface is
again stabilizing since u(p) corresponds to fluid motions from the trough to the crest
of the surface. On the contrary, the flow of �u(c) tends to destabilize the free surface.
Different from the stable case, this destabilizing effect is strong enough to compete with
the pressure-induced surface decay and leads to a net upward motion of the surface
crest, corresponding to an increase of the surface deformation (figure 5a). The
disturbance pressure in the lower layer is positive (or negative) around the regions
under the interfacial trough (or crest). Therefore, the produced flow u(p) is now related
to fluid motions in the lower layer from the trough to the crest of the interface, as
shown in figure 5(b), leading to a downward motion of the interfacial trough. Thus,
the pressure-driven flow plays a destabilizing influence on the interfacial wave and
the interface deformation is also amplified.

3. Concluding remarks
We have provided an explanation of the underlying mechanism for the long-

wave inertialess instability of a two-layer film flow by extending the work of Smith
(1990) for a single-layer film and of Charru & Hinch (2000) for a two-layer channel
flow. Mechanisms of both the surface and interface modes are interpreted in the
same framework. The initiating mechanism is associated with the fact that the basic
velocities do not satisfy the zero-shear condition at the perturbed free surface and
the continuity condition at the perturbed interface. When the surface is disturbed, a
disturbance shear stress develops and drives a linear longitudinal flow in both fluids. In
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addition, to maintain the continuity of the fluids at the deformed interface, a uniform
flow in the upper layer must occur. At the leading order, the influence of these flows
is to induce the travelling-wave motions of the surface and interface to ensure mass
conservation. The propagations of the surface and interfacial waves depend on each
other, and they are either in phase or out of phase by π at the leading order.

The growth mechanism of the inertialess instability is associated with a pressure-
driven flow and an extra phase shift between the surface and the interface. The
component of gravity perpendicular to the wall induces a disturbance pressure field,
which is uniform across both the layers and slowly varying in the longitudinal
direction. The flow driven by this pressure acts to reduce the surface deformation,
reflecting the well-known stabilizing effect of gravity. The same effect also holds on
the interface when it is in phase with the surface at the leading order. When the
surface and interface are out of phase at the leading order, the pressure-driven flow
has a destabilizing influence on the interfacial wave, opposite to that on the surface
wave. However, the instability cannot be completely explained by considering only the
disturbance pressure. In the upper layer, the interfacial shift ϕ produces a first-order
flow �u(c), which, together with the pressure-driven flow, gives rise to the exponential
growth of both the surface and the interface. The stability or instability can again
be identified from mass conservation. In particular, for the interfacial mode at m > 1,
the phase-shift-induced flow tends to destabilize the free surface, overwhelming the
stabilizing effect of gravity. Note that the importance of the additional phase shift of
the interface on the instability seems to have been overlooked in previous studies. The
presented mechanisms not only serve as a complete physical interpretation, but also
provide an alternative way of predicting the growth rates and wave velocities, com-
plementing previous linear analyses (e.g. Kao 1968; Loewenherz & Lawrence 1989).

In contrast to the two-layer film flow, a single-layer falling film is stable at zero
Reynolds number. Physically, as in the two-layer film, the decay of the free surface is
due to the stabilizing effect of the normal component of gravity (Smith 1990). This
stabilizing effect dominates the stability of the single-layer film, since there is a lack of
mechanism to generate a flow exciting the surface growth when inertia is negligible.
If the free surface of the two-layer film is replaced with a rigid wall, we obtain a
two-layer channel flow, which is neutral in the limit of Stokes flow. The instability
of this flow relies on the fluid inertia and the occurrence of lubrication pressure,
and is independent of gravity (e.g. Yih 1967; Charru & Hinch 2000); the instability
mechanism is quite different from the counterpart in the two-layer film.

The contribution of the pressure disturbances to the inertialess instability of a two-
layer falling film was also mentioned by Huang & Khomami (2001); however, their
interpretation seems to be questionable. In particular, the pressure was predicted to
attain its maximum under the trough of the free surface for m > 1. More importantly,
it is impossible to give a reasonable explanation of the growth of the free surface
for m > 1 by considering only the pressure-driven flow. Based on the present analysis,
this inconsistency is overwhelmed by the presence of an additional first-order flow,
associated with the fact that the surface and interfacial waves are not exactly in
phase or out of phase by π. The combined influence of the pressure-driven flow and
this additional flow can make the surface and interfacial waves evolve with identical
growth rates, which is of interest in the linear stability based on normal modes. The
requirement of identical growth rates for both the waves in the two-layer film is
similar to the constraint of no net mass flux for the disturbances in a two-layer pipe
or channel flow, which is satisfied by the development of lubrication pressure (Smith
1989; Charru & Hinch 2000; Wei 2005). However, owing to the presence of the free
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surface of the two-layer film, no such mechanism exists to induce lubrication pressure.
Alternatively, the constraint is satisfied by the development of an additional phase
shift of the surface and the interface, as discussed above. Note that the equality of
growth rates of the surface and the interface is not necessarily true in general, but it
is true for normal modes under consideration here.

Finally, although only two-layer film flows have been considered in the present
study, we anticipate that the proposed mechanism should be quite common and
can be extended to film flows with configuration of more than two layers, in which
inertialess instability has been widely detected (Wang et al. 1978; Weinstein & Kurz
1991; Weinstein & Chen 1999). In addition, the mechanism of the instability of an
oscillatory film with or without surfactants (Yih 1968; Gao & Lu 2006, 2008) can be
interpreted in a similar way.
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