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Locomotion of a passively flapping flat plate has been studied numerically by means
of a multiblock lattice Boltzmann method. A flexible plate is modelled by a rigid
plate with a torsion spring acting about the pivot at the leading edge of the plate. A
dynamic model of this kind is called a lumped-torsional-flexibility model. When the
leading edge is forced to heave sinusoidally, the plate pitches passively and propels
itself in the horizontal direction as a result of the fluid–plate interaction. We have
investigated various aspects of the mechanics behind the behaviour of the flapping
plate, including the periodic- and non-periodic-flow states, the spontaneous motion
of the plate, vortical structure and how they compare to similar propulsion systems
in animals. In the periodic-flow regime, two dynamical responses of the passively
pitching plate (forward and backward movements) are observed. Which movement
will occur depends only on the frequency ratio F of the natural frequency of the
system and the heaving frequency associated with the lumped torsional flexibility. It is
found that the plate will select the forward movement when F > 1 and the backward
movement when F � 1. In the forward-movement regime, analysis of the dynamical
behaviours and propulsive properties of the passively pitching plate indicates that the
torsional flexibility can remarkably improve the propulsive performance. In addition,
four kinds of vortex structures in the near wake are identified, which mainly depend
on the forward speed of the plate. Finally the forward movement is compared to the
flapping-based locomotion of swimming and flying animals. The results obtained in
this study are consistent with the observations and measurements of swimming and
flying animals; thus, they may provide physical insights into understanding of the
propulsive mechanisms of the flapping wings and fins of animals.
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1. Introduction
A common strategy of flying or swimming animals for locomotion through a fluid

is to use appendages such as wings or fins to make flapping and pitching motions
(Childress 1981; Alexander 1993; Vogel 1994). Real wings and fins of animals possess
flexibility (e.g. Blake 1983; Videler 1993; Brodsky 1994; Wootton 1999; Combes &
Daniel 2001, 2003a ,b). The flapping flight or swimming is usually accompanied by the
obvious bending of the flexible wings and fins. The instantaneous shape of the wings
or the fins has, in turn, a profound influence on the fluid dynamic forces. It has been
found that the flexibility may significantly improve the flapping-based locomotion
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(e.g. Combes & Daniel 2001; Ishihara, Horie & Denda 2009; Vanella et al. 2009). In
order to further understand the role of flexibility in the flapping of wings and fins in
animal locomotion, it is necessary to carry out relevant studies in detail.

It has been identified that insect wings undergo various modes of deformation
during flapping motions, and this may affect many aspects of locomotion. Usually,
the deformation of the insect wings during flapping is generated by aerodynamic
forces, elastic forces and inertial forces due to the accelerations. The wings have
complex structural behaviours which mainly depend on the internal distribution of
the compliant components (Wootton 1999). Because the insect wings lack internal
muscles, there exist no actuators to realize internal control forces (Wootton et al. 2003).
Consequently, the wings can be twisted easily to have a passive change in the angle of
attack (Ennos 1987) or a passive pitching motion. Combes & Daniel (2003a ,b) have
addressed the relationship between venation pattern and wing flexibility by measuring
the flexural stiffness of wings and quantifying the wing venation. These behaviours
also provide a physical basis for building up a reliable model in experimental and
numerical investigations.

The deformations of the insect wing during flapping motion are largely passive and
are controlled primarily by their architectural and material properties. Combes &
Daniel (2003a ,b) have estimated the flexural stiffness variation in the hawkmoth
(Manduca sexta) and the dragonfly (Aeshna multicolor). They found that flexural
stiffness declines sharply from the wing base to the tip, and from the leading edge
to the trailing edge, and this variation can be approximated by an exponential
decrease. As the high flexibility of wings is mainly concentrated on the narrow-basal
and short-root regions, the torsional flexibility may be reasonably assumed to be
lumped together and be modelled by an elastic spring (Ishihara et al. 2009; Vanella
et al. 2009). The lumped-torsional-flexibility models have been used to investigate
the influence of flexibility of wings on the insect hovering flight. The results obtained
have showed that the flexibility can improve aerodynamic performance (Ishihara et al.
2009; Vanella et al. 2009), which indicates the importance of considering nonlinear
resonances for enhancing aerodynamic performance.

On the other hand, flapping-based locomotion has attracted much attention
because of the fundamental principles involved and their potential applications.
Extensive investigations have been performed experimentally (e.g. Gopalkrishnan
et al. 1994; Ellington et al. 1996; Dickinson, Lehmann & Sane 1999; Triantafyllou,
Triantafyllou & Yue 2000; Birch & Dickinson 2001) and numerically (e.g. Liu et al.
1998; Wang 2000; Ramamurit & Sandberg 2002; Sun & Tang 2002; Wang, Birch &
Dickinson 2004; Wang 2005; Gao & Lu 2008). Much has been studied in detail
in these works: the leading-edge vortex which induces high lift due to the delayed
stall, the lift enhancement due to the rotational effect and the wake capture over a
flapping insect wing, the reverse von Kármán vortex street which generates thrust for
a flapping wing in a uniform flow, etc. However, we would like to point out that in all
of these studies the wing was rigid rather than flexible and its motion was prescribed
rather than being passive.

When an animal takes a steady free-flight or swims, the thrust generated will balance
resistance. Thus, it is desired to deal with the dynamical behaviours relevant to self-
propulsion. When a wing or a fin is flapped in one direction, thrust can be generated
in the perpendicular direction (von Kármán & Burgers 1935). Based on this idea,
some work has been performed to study the dynamics and mechanisms in flapping
free-flight. Vandenberghe, Zhang & Childress (2004) and Vandenberghe, Childress &
Zhang (2006) experimentally investigated the dynamics of a rigid, symmetric wing
that was flapped vertically in a fluid and moved freely in the horizontal direction.
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Figure 1. Sketch of a simple model for a passively pitching flat plate with torsional flexibility.
The flexibility of a plate is simulated by a torsion spring at the plate edge pivot O . When the
edge is forced to heave vertically sinusoidally, the plate pitches passively and is free to move
horizontally. A Cartesian coordinate system (x, y) with the origin at the edge O is used.

They found that above a critical flapping frequency, forward flight arises as the
wing accelerates to a terminal state of constant speed. The wing can move in either
direction; once the direction is chosen, it does not change. The dynamics of a two-
dimensional flapping body in a viscous fluid were investigated numerically by Alben &
Shelly (2005) and Lu & Liao (2006). However, these investigations only considered
the heaving motion rather than the passively pitching motion caused by the torsional
flexibility. Very recently, the dynamics of a heaving foil with passive pitching were
investigated experimentally (J. Zhang, private communication, 2008) and numerically
(Spagnolie 2008) to understand the role of flexibility in flapping locomotion. However,
the various underlying mechanisms and the intrinsic connections to animal locomotion
are still not well understood.

In this study, the locomotion of a passively flapping plate is investigated by solving
the Navier–Stokes equations using a multiblock lattice Boltzmann method (LBM)
(Yu, Mei & Shyy 2002; Peng et al. 2006; Gao & Lu 2008). The flexibility of the plate
is simulated by a torsion spring acting about the pivot at the leading edge of the plate
which is used to allow a passive flapping motion of the plate. The purpose of this
study is to achieve a greater understanding of some of the fundamental phenomena
involved in this spring-loaded passively flapping plate, including the periodic- and
non-periodic-flow states, the spontaneous motion of the plate, the vortical structures
and the intrinsic connections to animal locomotion.

This paper is organized as follows. The physical problem and mathematical
formulation are described in § 2. The numerical method and validation are given
in § 3. Detailed results are discussed in § 4 and concluding remarks are made in § 5.

2. Physical problem and mathematical formulation
To understand the role of flexibility in flapping wings and fins in animal locomotion,

a lumped-torsional-flexibility model is built based on the material and structure of
real wings/fins. A diagram is shown in figure 1. The flexibility of a plate is modelled
by a torsion spring at the leading edge of the plate O . When the edge is forced to
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heave sinusoidally in the vertical direction, the plate pitches passively and propels
itself in the horizontal direction due to the fluid–plate interaction. We are aware of
the limitations of this simple model; nevertheless, we feel that the results obtained
from this model will be helpful in physical understanding of the mechanisms of
flapping-based locomotion by the animal’s flexible wings/fins.

The incompressible Navier–Stokes equations are used to describe the flow dynamics
and are given as

∂u
∂t

+ u · ∇u = − 1

ρ
∇p +

µ

ρ
∇2u, (2.1)

∇ · u = 0, (2.2)

where u is the velocity, p the pressure, ρ the density of the fluid and µ the dynamic
viscosity.

Based on the model in figure 1, the edge O of the plate is driven sinusoidally in
the vertical direction and is described as

yb(t) = −Ā cos(2πf t), (2.3)

where Ā and f are the flapping amplitude and frequency, respectively. A flapping
Reynolds number is defined as Ref = ρf Āc/µ, where c is the length of the plate, and
a frequency Reynolds number is defined as β = ρf c2/µ (Alben & Shelly 2005; Lu &
Liao 2006). The two Reynolds numbers are related by the equation Ref = βA, with
the non-dimensional flapping amplitude A= Ā/c.

The pitching motion of the plate with a torsion spring is governed by

I
d2θ

dt2
= −kθ + Tr, (2.4)

where θ is the pitching angle, k is the spring stiffness and I and Tr are the moment
of inertia of the plate and the fluid moment with respect to the edge O . The natural
frequency of the oscillating plate system is defined as fn = {1/(2π)}

√
k/I .

The horizontal motion of the plate is not specified, but is rather determined by the
fluid force through Newton’s second law:

m
d2xb

dt2
=Fx, (2.5)

where xb is the horizontal location of the plate, m is the plate mass given by m = ρlc

where ρl is the linear density of the plate and Fx is the horizontal force component
due to the pressure and friction forces exerted on the plate by the surrounding fluid.
Then, the horizontal speed Ub is calculated by

Ub(t) =
dxb

dt
. (2.6)

Finally, we summarize the governing parameters in this problem. Based on the
non-dimensionalized analysis, there exist four parameters: the dimensionless flapping
amplitude A, the frequency Reynolds number β , the linear density ratio of the plate
and the fluid D = ρl/ρc and the frequency ratio of the natural frequency and the
flapping frequency F = fn/f , which is related to the plate torsional flexibility (Ishihara
et al. 2009; Vanella et al. 2009). In addition, a movement Reynolds number is defined
as ReU = ρUc/µ (Lu & Liao 2006), which is used to characterize the mean horizontal
speed U after the plate begins its steady movement.
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3. Numerical method and validation
3.1. Numerical method

The LBM is an approach to solve fluid dynamics problems by mesoscopic kinetic
models. The LBM avoids treating the nonlinear convective term and solving the
Poisson equation for the pressure, which are usually needed in conventional numerical
schemes based on discretizations of the incompressible Navier–Stokes equations. Some
advantages of the LBM include high computational efficiency and low numerical
dissipation (Chen & Doolen 1998; Yu et al. 2003). Moreover, it is convenient for
treating moving bodies (e.g. Aidun, Lu & Ding 1998; Xia et al. 2009). In this study,
a multiblock LBM technique (Yu et al. 2002; Peng et al. 2006) is employed to solve
our problem. It is described as follows.

3.1.1. Lattice Boltzmann model

The lattice Boltzmann equation (LBE) with the single-relaxation-time approxi-
mation is written as

fi(x + ei�t, t + �t) − fi(x, t) = −1

τ

[
fi(x, t) − f

eq
i (x, t)

]
, (3.1)

where τ is the relaxation time, �t is the time increment and fi(x, t) is the distribution
function for particles with velocity ei at position x and time t . The LBE is usually
solved in the following two steps, i.e. collision and streaming:

f̃ i(x, t + �t) = fi(x, t) − 1

τ

[
fi(x, t) − f

eq
i (x, t)

]
, (3.2)

fi(x + ei�t, t + �t) = f̃ i(x, t + �t), (3.3)

where f̃ i denotes the post-collision state of the distribution function. The D2Q9
model (Qian, d’Humieres & Lallemand 1992) is used in the present computation, and
the equilibrium distribution function f

eq
i is defined as

f
eq
i = ωiρ

[
1 +

ei · u
c2
s

+
uu: (eiei − c2

s I)

2c4
s

]
, (3.4)

where ωi is the weighting factor, cs is the speed of sound and ρ and u are the fluid
density and velocity, respectively, which can be obtained by the distribution function:

ρ =
∑

i

fi, (3.5)

ρu =
∑

i

eifi . (3.6)

3.1.2. Boundary conditions

To treat the boundary conditions on the moving boundaries, an interpolation
bounce-back scheme (Lallemand & Luo 2003) is used and a diagram is given in
figure 2. The parameter q represents the fraction of an intersected link on the same
side of the wall as the fluid node at xf , and is given by q = |xf − xw|/δx . The
distribution function fī(xf , t) of velocity eī , where eī ≡ −ei , can be determined by
taking the moving-wall effect into account and is given as

fī(xf , t) = q(1 + 2q)fi(xf + ei�t, t) + (1 − 4q2)fi(xf , t)

− q(1 − 2q)fi(xf − ei�t, t) + 2ωiρw

(ei · uw)

c2
s

, q < 1/2, (3.7)
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Figure 2. Illustration of the boundary conditions for a rigid wall located between two grid
sites in the direction of the motion of the particle that is rebounded. The symbol � represents
fluid nodes, � the interstitial position of the particle that has rebounded and � the ghost
nodes.

fī(xf , t) =
1

q(2q + 1)
fi(xf + ei�t, t) +

(2q − 1)

q
fī(xf − ei�t, t)

− (2q − 1)

(2q + 1)
fī(xf − 2ei�t, t) + 2ωiρw

(ei · uw)

q(2q + 1)c2
s

, q � 1/2, (3.8)

where uw is the velocity of the moving wall at position xw and ρw is the fluid density
at the wall that can be specified by ρw = ρ(xf ) since the flow is nearly incompressible
(Yu et al. 2003).

Due to the movement of the plate over the lattice, certain fluid nodes will move
across the plate from one side to another. When such a fluid node is detected,
the distribution function at this node, xa , is reconstructed to be the average of the
extrapolated-distribution-function values from a second-order extrapolation scheme
over all the possible directions (Fang et al. 2002; Connington et al. 2009). A possible
direction is any direction ek , where both xa + ek�t and xa +2ek�t are the fluid nodes
(excluding the reconstructed nodes on the same side of the plate as the node xa). The
extrapolation is given by

fi(xa) =

∑
k∈S

{2fi(xa + ek�t) − fi(xa + 2ek�t)}

NS

∀ i, (3.9)

where S is the set of all possible directions and NS is the number of elements in S.
Fang et al. (2002) have indicated that the mass is approximately conserved at the
boundaries.

In this study, a finite moving computational domain with a sufficiently long section,
both upstream and downstream of the plate, is used (Aidun et al. 1998; Aidun & Ding
2003). The inlet boundary of the domain, where a zero velocity is taken uniformly, is
30c away from the plate edge O , whereas the outlet boundary is 30c away from the
edge O . The normal derivative of velocity is set to zero at the outlet boundary. Every
time the plate moves one lattice unit on the coarse grid in the horizontal direction,
the computational domain is shifted, i.e. adding one ‘layer’ at the inlet and removing
one ‘layer’ at the outlet (Xia et al. 2009).
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Figure 3. Time-dependent (a) horizontal speed Ub(t) and (b) pitching angle θ (t) calculated
under different computational conditions for F = 1.05, β =80, A =0.5 and D =2. Solid lines:
the finest lattice spacing �x = 0.005c, time step �t = 0.0005T , with T being the flapping period,
and computational domain −30c � x � 30c and −15c � y � 15c; dashed lines: �x = 0.01c,
�t = 0.001T and −20c � x � 20c and −10c � y � 10c.

3.1.3. Force calculation on plate surface

The momentum-exchange method is employed to evaluate the fluid force and
moment exerted on the plate (Mei et al. 2002; Lallemand & Luo 2003; Connington
et al. 2009). For each link connecting a fluid node to the moving plate, the fluid exerts
a force on the plate in that link direction, realized as an instantaneous momentum
exchange between the fluid and the plate. Using the terminology of figure 2, the force
exerted on the plate along a relevant direction ei connecting a fluid node at xf to the
position of the wall at xw is

F (xw, ei) = ei(fi(xf , t) + fī(xf , t)), (3.10)

where fī(xf , t) is computed by (3.7) or (3.8). The total fluid force on the plate is the
sum of the forces computed from each relevant link connecting a fluid node to the
plate. The total fluid moment on the plate can be obtained using this information
(Mei et al. 2002; Lallemand & Luo 2003; Connington et al. 2009).

3.2. Validation

To validate the method, convergence checks have been performed. As a typical case,
the time-dependent horizontal speed Ub(t) and pitching angle θ(t) calculated by
different lattice spacings and different sizes of the computational domain are shown
in figure 3. The results from these different computations agree well with each other.
It is confirmed that the computed results are independent of the lattice spacing and
computational domain size. Convergence studies indicate that the LBM method used
in our study is second-order accurate in L∞ and L2 norms for variables such as the
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Figure 4. Comparison of the present result and previous data (Alben & Shelly 2005) for
the forward Reynolds number ReU versus the flapping Reynolds number Ref during steady
locomotion for flapping flight of an elliptic foil with the thickness ratio 0.1, the flapping
amplitude 0.5 and the density ratio 32, where � with the solid line denotes the present results
and � the previous data (Alben & Shelly 2005).

plate speed, the pitching angle and the flow velocity. This is consistent with previous
convergence checks (e.g. Bouzidi, Firdaouss & Lallemand 2001; Yu et al. 2003).

The results given below were calculated on the finer grid and the larger domain.
The computational domain is chosen as −30c � x � 30c and −15c � y � 15c, with the
finest lattice spacing of 0.005c in the region of the plate and the coarsest spacing of
0.04c near the top and bottom boundaries. The time step is 0.0005T , with T being
the flapping period. The time-averaged quantities are calculated after elimination of
the transition in their time-dependent variations.

To perform quantitative comparison with existing results in the literature, we
consider an elliptic foil being flapped vertically within a viscous fluid and moving freely
in the horizontal direction which has been well studied experimentally (Vandenberghe
et al. 2004, 2006) and numerically (Alben & Shelly 2005; Lu & Liao 2006). Actually,
this problem corresponds to the limiting case in our current study where the spring
stiffness in (2.4) or the natural frequency of the fluid–plate system approaches infinity.
Figure 4 shows some typical results of the mean horizontal speed during steady
locomotion characterized by ReU versus the flapping Reynolds number Ref for an
elliptic foil with thickness ratio 0.1, flapping amplitude 0.5 and density ratio 32.
Note that this density ratio is different from the linear density ratio used in the
present study. It is seen that our calculated results agree well with the numerical
data computed by the ‘vorticity–streamfunction’ formulation of the Navier–Stokes
equations (Alben & Shelly 2005).

In addition, the code used here for our current study has been validated carefully
in our previous work (e.g. Peng et al. 2006; Gao, Tseng & Lu 2007; Gao & Lu
2008). The numerical method has also been applied with success to a wide range
of flows such as insect normal hovering flight with ground effect (Gao & Lu 2008),
the aerodynamic performance due to forewing and hindwing interaction in gliding
dragonfly flight (Zhang & Lu 2009) and the transition from steady to chaotic state
for a viscous flow past an inclined flat plate (Zhang, Liu & Lu 2009).
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4. Results and discussion
In this section, we present some typical results of the dynamical behaviours

and propulsive properties of the passively pitching plate due to the fluid–plate
interaction, and we discuss the intrinsic connections of our results to the flapping-
based locomotion of swimming and flying animals. Motivated by the measurements
of animal locomotion (e.g. Richard 1958; Ellington 1984a ,b; Fish 1993; Drucker &
Lauder 2001; Taylor, Nudds & Thomas 2003; Fish 2004), the governing parameters
used in this study are chosen as follows: the frequency ratio F =0.5–10, the linear
density ratio D = 0.2–10, the flapping amplitude A= 0.2–1 and the frequency Reynolds
number β =20–120.

4.1. Periodic- and non-periodic-flow states

Based on a series of simulations over a wide range of the parameters, we find that
there exist two typical flow states in this fluid–plate interaction system: a periodic- and
a non-periodic-flow state. The boundary between these two flow states is determined
approximately. The details are discussed below.

To summarize our findings on the two flow states, an overview of the periodic and
non-periodic regions in the (F , D) plane is shown in figure 5 for several values of
β and A. The non-periodic region (i.e. region I) shrinks somewhat as D increases.
Comparing the boundaries shown in figures 5(a)–5(c) for β =20, 80 and 120, we can
see that the boundary moves towards the higher frequency ratio with the increase in
β . Furthermore, as typically shown in figure 5(b), for the boundaries at A= 0.3, 0.5
and 0.7, the non-periodic region becomes larger with the increase of A.

To understand the flows in the periodic- and non-periodic-flow regimes, the time-
dependent horizontal speed Ub(t) and pitching angle θ(t) are shown in figure 6 for
three typical frequency ratios: F = 0.7, 0.95 and 1.05. The corresponding power spectra
of Ub(t) and θ(t), and the instantaneous vortical structures are shown in figure 7. At
F = 0.7, in the non-periodic-flow region of figure 5(b), the non-periodic variations of
Ub(t) and θ(t) in figures 6(a) and 6(b) are obvious. The power spectra of Ub(t) and
θ(t) are also shown in figure 7(a), and the broadband continuous spectrum clearly
shows the non-periodic behaviour. The corresponding vortex structures in figure 7(d )
illustrate the complex non-periodic interactions in the near wake.

As F increases, the flow state switches from the non-periodic to the periodic regime
in figure 5. For F = 0.95 and 1.05, lying in the periodic-flow region in figure 5(b), all
the curves of Ub(t) and θ(t) in figure 6 and their power spectra in figures 7(b) and 7(c)
indicate the periodic behaviour. Although the plate can move freely in the horizontal
direction, it does not mean that the net horizontal force is zero at any moment. The
force is typically oscillatory, resulting in periodic acceleration and deceleration of the
plate. Thus, when the plate has a pitch-up or a pitch-down motion, as typically shown
in figure 3, the plate will undergo accelerating and decelerating motions. Therefore,
as shown in figures 7(b) and 7(c), it is reasonable that the primary frequency of Ub(t)
corresponding to the peak of the power spectrum is twice that of θ(t).

Moreover, as the plate moves spontaneously in the horizontal direction, vortex
shedding occurs with a reverse von Kármán vortex street exhibited in figures 7(e) and
7( f ). This behaviour is consistent with the experimental and numerical findings for
a vertical flapping wing (e.g. Vandenberghe et al. 2004; Alben & Shelly 2005; Lu &
Liao 2006; Vandenberghe et al. 2006). Detailed discussion on the vortex structures in
the wake will be given in § 4.4.
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Figure 5. Classification of the flow state in the (F , D) plane for different values of β: (a) 20,
(b) 80 and (c) 120. Solid line (fitting curve) denotes the boundary between the non-periodic-flow
(region I) and periodic-flow (region II with shading for F � 1 and region III for F > 1) states
at A = 0.5, where I is the non-periodic region, II the periodic backward-movement region and
III the periodic forward-movement region. Symbols � and �, corresponding to some typical
cases calculated here, represent the non-periodic- and periodic-flow states, respectively. The
boundaries between the non-periodic and periodic states for A = 0.3 (dashed line) and A = 0.7
(dashed–dotted line) are also drawn in (b).
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Figure 6. Time histories of (a) horizontal speed Ub and (b) passive pitching angle θ at three
typical frequency ratios F = 0.7, 0.95 and 1.05 for β = 80, A = 0.5 and D = 2.

The influence of flapping amplitude A on the boundary between the periodic- and
non-periodic-flow regions is given in figure 5(b). To demonstrate the periodic- and
non-periodic-flow behaviours, figure 8 shows the time-dependent horizontal speed
Ub(t) for A= 0.3 and 0.7, with three typical frequency ratios as in figure 5(b). Similar
to the analysis of the results shown in figure 6, the non-periodic-flow state is observed
clearly for A= 0.3 and F =0.35 in figure 8(a) and A= 0.7 and F = 0.9 in figure 8(b).
On the other hand, the periodic state is observed for A= 0.3 with F = 0.7 and 1.05
in figure 8(a) and A= 0.7 with F =1.0 and 1.05 in figure 8(b).

4.2. Forward and backward movements in the periodic regime

The plate movements as a result of the fluid–plate interaction are closely related to
the flapping-based locomotion of swimming and flying animals. The behaviours in
the periodic regime are now discussed further. We have noticed that there exist two
dynamical responses of the passively pitching plate in the periodic regime (forward
or backward moment). Furthermore, we find that the moving direction depends only
on the frequency ratio F .
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angle θ exhibited in figure 6 (a–c) and the corresponding instantaneous vorticity contours
(d–f ) for F = (a, d ) 0.7, (b, e) 0.95 and (c, f ) 1.05. In PSDs (a–c), solid line represents the PSD
of Ub and dashed lines the PSD of θ . In vorticity contours (d–f ), solid lines denote positive
values and dashed lines negative values.

As typically shown in figures 6(a) and 8, we can identify that the plate lies in the
backward-movement regime with Ub(t) < 0 or its mean value U < 0 after the plate
reaches a steady movement (corresponding to region II with F � 1 in figure 5), and
the plate lies in the forward-movement regime with Ub(t) > 0 or its mean value U > 0
(corresponding to region III with F > 1 in figure 5). On examining the evolution of
vortex structures and the plate motion during the initial cycles, it is found that the
moving direction of the plate can be determined after a few flapping cycles, as shown
in figures 6(a) and 8, and is dependent on F , i.e. F � 1 for the backward movement
and F > 1 for the forward movement. The dynamical responses found here differ from
those of a symmetric wing that is flapped vertically in a fluid where the wing can
move in either direction independent of the flapping frequency (Vandenberghe et al.
2004; Alben & Shelly 2005; Lu & Liao 2006).

We further discuss the flow behaviours in the region of small linear density ratio
(D ∼ 1) based on the results in figure 5. As β increases, the flow state may directly
change from the periodic forward motion in region III to the non-periodic motion in
region I. A similar switch occurs if the flapping frequency increases or F decreases.
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Figure 8. Time histories of horizontal speed Ub for three typical values of F with β = 80,
D = 2 and A = (a) 0.3 and (b) 0.7.

Thus, the dynamical phenomena found here are consistent with the experimental
findings (J. Zhang, private communication, 2008).

The phase shift ϕ between the vertical oscillation yb(t) in (2.3) and the passive
pitching motion characterized by the pitching angle θ(t) is an important parameter
(e.g. Anderson et al. 1998; Dickinson et al. 1999) for understanding the mechanisms
related to the forward and backward movements. Figure 9 shows the variations of
yb(t) and θ(t) in one cycle for F = 0.95 and 1.05, corresponding to the cases in
figures 6(a) and 6(b). A delayed phase shift of θ(t) with respect to yb(t) occurs in
figure 9(a) for F = 0.95 and is associated with the backward movement, while an
advanced phase shift exists in figure 9(b) for F =1.05 and is associated with the
forward movement.

An overview of the phase shift ϕ on the (ϕ, F ) and (ϕ, U ) planes is shown
in figure 10 for the chosen parameters. Consistent with the above analysis of
figure 9, we can obtain a relationship among ϕ, F and U , which reveals that ϕ > 0
corresponds to the forward movement (U > 0) with F > 1 and ϕ < 0 corresponds to the
backward movement (U < 0) with F � 1. As the forward movement is related to the
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steady state of movement for β = 80, D =2, A = 0.5 and F = (a) 0.95 and (b) 1.05.

flapping-based locomotion of swimming and flying animals, we will pay more
attention to the underlying mechanisms in the forward-movement regime.

4.3. Dynamical behaviours and propulsive properties

The dynamical behaviours and propulsive properties of the passive pitching plate in
the periodic regime are further analysed in terms of some typical quantities such as the
mean horizontal speed, the pitching angle, the Strouhal number and the propulsive
parameter for a self-propelled body.

In order to understand the effect of the frequency ratio F on the dynamical
responses of the plate, figure 11 shows the mean horizontal speed and the root-mean-
square (r.m.s.) value of the pitching angle (i.e. θrms ) for several values of β and A. For
each pair of β and A under examination in figure 11(a), the forward speed U increases
as F increases from 1, reaches a maximum in the range of F = 1.5–3.5 (e.g. F = 1.5
for β =20 and A= 0.5; F = 3.5 for β =80 and A= 0.7) and approaches a constant
as F increases further. The increase of F means that the spring becomes stiffer in the
system (2.4). Thus, the motion of the passively pitching plate tends to the rigid case at
a large value of F , e.g. F = 10. As an example, one may see the results for β =80 and
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A = 0.5 in figure 11(a): the largest forward speed is approximately 8.12 at F 
 2.25,
which is increased by 179 % with respect to the forward speed of the rigid model
which is approximately 2.91. Thus, the torsional flexibility can remarkably improve
the propulsive performance.

As shown in figure 11(b) for θrms , a peak occurs at F =1 due to the resonance
effect. Although synchronous vibration and large pitching angle occur, the plate still
moves backwards at a low speed. The pitching angle decreases monotonically with
the increase of F . In the range of F = 1.5–3.5 with relatively large forward speed, the
amplitude of the pitching angle θm is approximately 5◦–25◦.

From the results in figure 11, we can further discuss the effects of β and A on
the forward speed and the pitching angle. A careful examination of the results for
β = 20–120 with A= 0.5 shows that the forward speed increases substantially and the
pitching angle decreases somewhat with the increase of β . To clearly show the effect
of A on the dynamical responses of the plate, as typically shown in figure 12, the
case where the forward/backward speed and the pitching angle increase with A is



58 J. Zhang, N.-S. Liu and X.-Y. Lu

U

0 2 4 6 8 10

F

0 2 4 6 8 10

–5

0

5

10

15

(a)

(b)

θ r
m

s

10

20

30

40
β = 20,
β = 40,
β = 80,
β = 120,
β = 80,
β = 80,

A = 0.5
A = 0.5
A = 0.5
A = 0.5
A = 0.3
A = 0.7
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pitching angle θrms versus the frequency ratio F .

considered in this study. We would like to point out that the parameters considered
here lie in the periodic regime. When A increases further for F = 0.9, the flow state
will enter the non-periodic regime.

Figure 13 exhibits some calculated results in region III on the (Ref , ReU ) plane. The
forward Reynolds number ReU basically increases with the flapping Reynolds number
Ref . The kinematics of the wing or tail-fin of swimming and flying animals are usually
well described by the Strouhal number, which is defined as St = Awf/U , where Aw is
the width of the wake, assumed to be the maximum excursion of the plate trailing
edge or double amplitude Aw = 2Ā (Triantafyllou, Triantafyllou & Gopalkrishnan
1991; Lu & Liao 2006). By the definitions of the forward and flapping Reynolds
number, the Strouhal number can be expressed as St = 2Ref /ReU . As shown in
figure 13, we can obtain the distribution of St . Moreover, the Strouhal number is
known to describe a well-defined series of vortex growth and shedding regimes for a
flapping body, which will be discussed in § 4.4 for the vortical structures.

In the forward-movement regime, the plate propels itself in the horizontal direction.
We suggest that confusion that the drag and thrust cannot be separated in studies of
fish swimming (e.g. Lighthill 1975; Fish 1993) arises. Consider a self-propelled ship,
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where thrust is attributed to the propeller and drag to the ship’s body. Hence, it is
reasonable to calculate the thrust and drag for the propeller. However, the thrust
and drag for the ‘combination’ of the propeller and the ship are both zero at steady
state. The spontaneous motion of the plate is such a combination (Schultz & Webb
2002). To characterize the propulsive efficiency of a self-propelled body, the ratio of
the kinetic energy of the forward motion of the body and the work used by the
deforming body over one undulation cycle was proposed by Kern & Koumoutsakos
(2006). The amount of the work is computed as a time integral of the power output
of the surface of the body on the surrounding fluid (Kern & Koumoutsakos 2006).
Following their idea, we introduce a propulsive parameter defined as fη = E/W ,

where E = (1/2)msU
2 and W =

∫ t+T

t
Fy(dyb/dt)dt +

∫ t+T

t
Tr (dθ/dt)dt , with ms being

the specific mass of the plate and Fy the vertical force component exerted on the
plate.

Figure 14 shows the profiles of the forward propulsive parameter. The high
propulsive parameter for several pairs of β and A under examination lies in the
range of St = 0.15–0.35 in figure 14(a), which is consistent with the regime selected by
flying and swimming animals in nature (Taylor et al. 2003). Similarly, corresponding
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kinds of vortex structures in the wake of the flapping plate.

to the high propulsive parameter, the phase shift is in the range ϕ =60◦–90◦ in figure
14(b) and the pitching angle θm = 10◦–25◦ in figure 14(c) may also be related to high
propulsive efficiency adopted by swimming and flying animals (e.g. Ennos 1988b,
1989; Fish 1993). This will be discussed in § 4.5 in detail.

4.4. Vortical structures for the forward movement

The vortical structures in the wake are related to the propulsive properties of a
flapping wing (von Ellenrieder, Parker & Soria 2003; Dong, Mittal & Najjar 2006;
Buchholz & Smits 2008). The forces on the body are mainly dependent on the
vortical structures near the body (Wu, Lu & Zhuang 2007). Therefore, they are
discussed further here. Based on our careful examination, it is found that the vortex
structures depend mainly on the forward Reynolds number ReU and there exist four
kinds of vortex structures in the near wake. The corresponding ReU range for the
vortex structures is given by the four regions (i.e. A–D) in figure 13.

The instantaneous vorticity contours for the four wake patterns are shown in
figures 15(a)–15(h). When the plate moves forward, a shear layer is generated along
the surface and is gradually shed into the downstream to form concentrated vortices.
As shown in figures 15(a) and 15(e) for ReU in region A, there are two vortices, with
opposite signs, shed downstream during one flapping cycle. Finally, a reverse von
Kármán vortex street forms in the wake of the plate. This type of vortex structure is
named pattern A. Similar vortical structures behind a flapping flight foil have been
observed experimentally (e.g. Vandenberghe et al. 2004, 2006; Godoy-Diana et al.
2009) and numerically (e.g. Lewin & Haj-Hariri 2003; Alben & Shelly 2005; Lu &
Liao 2006).

When the plate moves with a greater speed in region B, as shown in figures 15(b)
and 15(f ), two vortices with the same sign are shed downstream in one half-cycle,
and the other two oppositely rotating vortices are formed in the following half-cycle.
Such vortical structures are seen experimentally as well in a flapping foil (Schnipper,
Andersen & Bohr 2009). The two same-sign vortices coalesce when they evolve
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downstream. In the downstream region, a reverse von Kármán vortex street develops
gradually. The vortical structure is called pattern B (see figures 15b and 15f ).

As the forward speed increases further, typical vortex structures are shown in
figures 15(c) and 15(g), and 15(d ) and 15(h), corresponding to regions C and D,
respectively. The shear layer shed from the plate becomes unstable due to the Kelvin–
Helmholtz instability and gradually rolls up to form a series of eddies in the near
wake, which are similar to the vortex patterns for a flow past a flexible filament (e.g.
Zhang et al. 2000; Shelley, Vandenberghe & Zhang 2005). Figures 15(c) and 15(g)
exhibit that three vortices with the same sign are shed downstream per half-cycle, and
this vortical structure is called pattern C. It is also observed that four or even more
vortices with the same sign occur per half-cycle, which is called pattern D (see figures
15d and 15h). Farther downstream, the same-sign vortices coalesce when they evolve.
As the Strouhal number St becomes smaller, e.g. in regions C and D of figure 13,
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more vortices shed downstream during one cycle form complex vortex structures in
the wake, which is consistent with experimental findings in the wake of a flapping
foil (Schnipper et al. 2009).

In addition, when the parameters lie in the non-periodic regime, i.e. region I in
figure 5, as typically shown in figure 7(d ), a complex vortex pattern occurs.
Furthermore, when the parameters lie in region II, the plate moves backwards and
the vortical structures in the near wake are similar to those in figure 15 except that
now the incoming flow is from the opposite direction.

4.5. Connections to the flapping-based locomotion of swimming and flying animals

Swimming and flying animals usually utilize flapping-based locomotion (e.g. Childress
1981; Blake 1983; Videler 1993; Brodsky 1994; Vogel 1994). In terms of some typical
quantities (frequency ratio F , phase shift ϕ, pitching angle θ and Strouhal number
St), we further discuss how these parameters are related to animal locomotion.

We first discuss the frequency ratio F . As F is associated with the torsional
flexibility, we need to obtain the material behaviour of appendages. Ishihara et al.
(2009) provided a method to calculate the natural frequency of the lumped-torsional-
flexibility wing model. They considered the wing of a crane fly (Tipula obsoleta)
with the Young’s modulus Es = 6.1 GPa and a flapping frequency of 45.5 Hz. They
calculated the natural frequency of the wing (148 Hz), which gave the frequency ratio
F 
 3.25.

We have also estimated the frequency ratio of the wing of a dragonfly (Aeschna
juncea) and the tail-fin of a goldfish (Carassius auratus) by the method used by
Ishihara et al. (2009). Based on the morphological characteristics of the dragonfly
(A. juncea) measured by Ellington (1984a ,b), the natural frequency of the forewing or
hindwing of a dragonfly is estimated as 100 Hz, and the wing’s flapping frequency is
approximately 36 Hz (Norberg 1975). This results in a frequency ratio F 
 2.8. For the
tail-fin of the goldfish (C. auratus), we have measured the Young’s modulus Es of the
spine ray in the tail-fin by nanoindentation testing and obtained Es = 5.23–6.89 GPa.
Thus, the natural frequency of the tail-fin is estimated as 30 Hz using the mean value
of Es. The frequency of goldfish’s tail-beat was measured in the range of 5–15 Hz
(Richard 1958). We then have the frequency ratio F =2–6.

Through the above analysis, we learn that the frequency ratio of the real wings and
tail-fins in flying and swimming animals is always greater than 1, which is consistent
with our result that the forward movement of a passively pitching plate must have
F > 1 (see figure 5). Furthermore, as shown in figure 11(a), the large forward speed for
the given flapping frequencies and amplitudes corresponds to the range of F =1.5–3.5,
which is in good agreement with the values obtained above for the real wings and
tail-fins.

We now move on to the phase shift ϕ. To mimic the locomotion of tail-fins
in swimming animals (e.g. Anderson et al. 1998; Triantafyllou et al. 2000), the
propulsive efficiency of a harmonically oscillating foil in uniform flow was investigated
experimentally. When the reference point for heave motion is at the one-third
chord length from the leading edge, it was revealed that the phase shift with the
optimum propulsive performance is approximately 75◦ (Anderson et al. 1998), which
is consistent with our prediction that the high propulsive parameter corresponds to
ϕ = 60◦–90◦ (see figure 14b).

The measurements on the kinematic data of the free flight of a dragonfly (Anax
parthenape julius) and a damselfly (Ceriagrion melanurum) were performed by the local
circulation method (Azuma & Watanabe 1988; Sato & Azuma 1997). Based on the
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analysis of the flight performance, it was found that the phase shift ϕ of the flapping
and feathering motion projecting onto the wing section lies in the range 70◦–90◦, which
is considered to be optimal for efficiency at low beating frequency. Consistently, the
large forward speed in figure 10(b) and the high value of the propulsive parameter in
figure 14(b) exist within the range of ϕ = 70◦–90◦ in our study.

In addition, the phase shift ϕ versus the frequency ratio F in figure 10(a) can
provide some physical insight into understanding of the tip-to-base torsion wave
observed in the dipteran (e.g. Eristalis tenax and Calliphora vicina) flight (Ennos
1988a ,b). The wing mass from the base to the tip of the wing becomes lighter (Ennos
1989) and the natural frequency becomes larger (Ishihara et al. 2009). As shown in
figure 10(a), ϕ increases as F increases in region III for the given parameters. Thus,
we can reasonably infer that the phase shift becomes larger from the base to the
tip of the wing. This phase-shift variation along the spanwise direction occurs as the
torsion wave in the three-dimensional wing identified in the dipteran flight by Ennos
(1988a ,b).

We now address θm. As discussed earlier, the range of θm = 5◦–25◦ in figure 11
is related to large forward speed and corresponds to high propulsive parameter
in figure 14(c). In contrast, Anderson et al. (1998) found that the pitching angle
with optimum propulsive performance of a harmonically oscillating foil was within
15◦–25◦. Fish (1993) filmed the swimming motions of bottlenose dolphins (Tursiops
truncatus) and investigated the angle between the tangent of the flukes’ path and the
axis of the flukes. It was found that the maximum angle of attack of the flukes ranged
from 5◦ to 30◦ during cruise swimming. This is consistent with our numerical data.

Finally, we discuss the relationship between the Strouhal number St and the
animal locomotion. Usually, St is referred to as an appropriate parameter governing
propulsive performance. Optimal St depends subtly on kinematic parameters,
including the flapping angle, the amplitude and the phase shift. For any given
motion, the efficiency is higher over the range of 0.2 <St < 0.4 (e.g. Triantafyllou
et al. 1991; Anderson et al. 1998; Triantafyllou et al. 2000). Based on the studies of
42 species (birds, bats, insects, sharks, bony fish and dolphins) in their cruise motions
(Taylor et al. 2003 and the references therein), the value of St was found to lie in
the interval 0.15 <St < 0.5. Within this range, the cruise of the flying and swimming
animals driven by the wing or tail is likely to have high propulsive efficiency. In
contrast, our present numerical studies indicate that the high propulsive parameter
(see figure 14a) occurs for St = 0.15–0.35 approximately. In addition, St is also known
to govern a well-defined series of vortex growth and shedding regimes for a flapping
wing. With St = 0.15–0.35, a reverse von Kármán vortex street in the wake occurs
(see figures 15a and 15e, and 15b and 15f, patterns A and B), which is associated
with thrust production in animal locomotion.

5. Concluding remarks
The locomotion of a passively flapping plate has been studied using a multiblock

LBM. Based on our calculations in a wide range of parameters, various aspects of
the mechanics behind the behaviour of a flapping plate are investigated. Here, we
briefly summarize the results obtained and discuss the mechanisms relevant to the
flapping-based locomotion of swimming and flying animals.

We have found that there exist two typical flow states, i.e. a periodic- and a non-
periodic-flow state in a fluid–plate system. The boundary between the two flow states
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depends on the governing parameters and is determined on the (F , D) plane. The
non-periodic region shrinks somewhat as the linear density ratio D increases, and
expands with the increase of the frequency Reynolds number β and the flapping
amplitude A.

In the periodic-flow regime, we have observed that there exist two typical dynamical
responses of the passively pitching plate. Because of dynamic forces exerted on the
plate by the surrounding fluid, the plate will propel itself in the horizontal direction.
We have found that the movement direction depends only on the frequency ratio F ,
which is associated with the lumped torsional flexibility. The plate will move forwards
when F > 1 and backwards when F � 1. The phase shift ϕ between the heaving and
the passive pitching motion is an important parameter related to the forward and
backward movements. Based on the numerical analysis, we have obtained that ϕ > 0
corresponds to the forward movement (i.e. U > 0) with F > 1 and ϕ < 0 corresponds
to the backward movement (U < 0) with F � 1. This indicates the connection between
the forward movement of the plate and the flapping-based locomotion of swimming
and flying animals.

The dynamical behaviours and propulsive properties of the passively pitching plate
in the forward-motion regime have been analysed in detail. The study of the effect
of the frequency ratio F on the plate motion indicates that the torsional flexibility
can remarkably improve the propulsive performance. Moreover, it is found that the
forward speed increases with the increase in β and A for the parameters used in this
study.

When the plate moves forwards, the vortex structures in the near wake depend
mainly on the forward speed U or the Reynolds number ReU . We have identified
four kinds of vortex structures, i.e. patterns A–D exhibited in figure 15. The Strouhal
number St is a parameter to govern a well-defined series of vortex growth and
shedding regimes for a flapping wing. When St =0.15–0.35 (the range found in
flying and swimming animals), a reverse von Kármán vortex street (corresponding to
patterns A and B) occurs which is associated with the thrust production in animal
locomotion.

Finally, we have discussed the relationships between our computational results and
the animal’s flapping-based locomotion in terms of the frequency ratio F , the phase
shift ϕ, the pitching angle θ and the Strouhal number St . The extensive comparison
and discussion in § 4.5 indicate that our numerical results are consistent with those of
the observations and measurements of swimming and flying animals.

The results obtained in this study may provide physical insight into the
understanding of the propulsive mechanisms of the flapping wings and fins in
swimming and flying animals. However, the flow relating to animal locomotion
is certainly far more diverse and complex than the flow around the pitching plate
considered here. Ideally, three-dimensional computations of viscous flows around
flexible bodies are desirable. This will be a subject of our further work.
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